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Chapter 3. Vector Spaces

Note. We quote Fraleigh and Beauregard’s insightful first paragraph in Chapter
3 from page 179:

“For the sake of efficiency, mathematicians often study objects just
in terms of their mathematical structure, deemphasizing such things
as particular symbols used, names of things, and applications. Any
properties derived exclusively from mathematical structure will hold
for all objects having that structure. Organizing mathematics in this
way avoids repeating the same arguments in different contexts. Viewed
from this perspective, linear algebra is the study of all objects that have
a vector-space structure. The Euclidean spaces R" that we treated in

Chapters 1 and 2 serve as our guide.”

So vector spaces are the overarching concept for this class!

3.1 Vector Spaces

Note. In the first part of Chapter 1 we introduced vectors in R and studied some
of their properties (norms, dot products, bases, etc.). We now define a general
abstract mathematical structure called a “vector space.” We are motivated by
properties of R” in this definition and R" is an example of a vector space, though
there are many other examples of vector spaces. In fact, some of the most useful

applications of vector spaces involve spaces where the vectors are functions.
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Definition 3.1. A vector space is a set V of vectors along with an operation of
addition + of vectors and multiplication of a vector by a scalar (real number),
which satisfies the following. For all «, v, w € V and for all r, s € R:

A1. Associativity of vector addition: (¢ + ¥) + W = @ + (¥ + W)

A2. Commutivity of vector addition: v+ w = w + v

A3. Vector additive identity: There exists 0 € V such that 0 + 7 = ¢

Ad4. Vector additive inverse: 7+ (—7) =0

S1. Distribution of scalar multiplication over vector addition: r (v + @) = rv + r
S2. Distribution of scalar multiplication over scalar addition: (r + s)¥ = rv + sv
S3. Associativity of scalars: r(sv) = (rs)v

ol

S4. Preservation of scale (or scalar multiplicative identity): 1¢/

Definition. 0 is the additive identity. — is the additive inverse of .

Note. Of course R" is an example of a vector space for each natural number n.
In Example 3.1.1 it is argued that the set M, , of all m X n matrices is a vector
space where the matrices are vectors and addition and scalar multiplication are as

given in Section 1.3.

Example 3.1.2. The set P of all polynomials in variable x with real coefficients
is a vector space. Vector addition and scalar multiplication are the usual addition

of polynomials and multiplication of a polynomial by a scalar.
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Note. In Exercise 3.1.16, it is to be shown that the set P, of all polynomials in
variable x with real coefficients and of degree less than or equal to n (together with

the zero polynomial) is a vector space.

Example 3.1.3. Let F be the set of all real-valued functions with domain R. The
vector sum of f and ¢ in F is defined as (f+¢)(z) = f(x)+g(x). For scalar r € R,

scalar multiplication is defined as (rf)(z) = rf(x).

Partial Solution. The zero vector is just the constant function 0(z) = 0. For
f € F we have —f = (—1)f. We can then verify A1-A4 and S1-S4 similar to

above (it is actually less tedious in this example). O

Page 189 Number 6. Consider the set F of all functions mapping R into R, with
scalar multiplication defined for scalar » € R and f € F as (rf)(x) = rf(x), and
vector addition 4 defined as (f ¥ ¢)(z) = max{f(x),g(x)}. Is F a vector space?

Example 3.1.A. Another, much more exotic, example of a vector space is the set

of all functions f with domain [0, 1] such that / f(z)?dr < oo. This vector space
0

=)

Many of the questions in applied math (and quantum theory) can be translated

is denoted L?[0, 1]:

d:z:<oo}

into questions in this space. This vector space is a “Hilbert space” and is studied

in upper level analysis classes.
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Theorem 3.1. Elementary Properties of Vector Spaces.
Every vector space V satisfies:
the vector 0 is the unique additive identity in a vector space,
. for each v € V, —v is the unique additive inverse of v,
. if @ 4+ U= 4+ @ then v = w,

1.
2
3
4. 00 =0for all ¥ € V,
5. 70 = 0 for all scalars r € R,
6

<

. (=

)0 = r(—v) = —(r¥) for all r € R and for all 7 € V.

Note. Proofs of parts 1 and 4 are given in the text on pages 185 and 186. Proofs of
parts 2 (page 190 Number 19), 5 (Page 190 Number 21), and 6 (Page 190 Number

22) are left as exercises. We now give proofs of parts 1 and 3.

Page 190 Number 24. Let V be a vector space and let ¢ and w be nonzero
vectors in V. Prove that if ¥ is not a scalar multiple of w, then ¢ is not a scalar

multiple of ¥+ .

Note. The text introduces the “Universality of Function Spaces” in which the
function space of Example 3.1.3 is modified from the set of all real-valued functions
with domain R to the set of all real-valued functions with domain a given set. For
example, if set S = {1,2,...,n}, then a given function f : S — R yields n real
values, f(1), f(2), ..., f(n). We then have that the set F of all such functions

form a vector space (with all the same basic argument as used in Example 3.1.3).
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In fact, if we associate the vector [f(1), f(2),..., f(n)] in R™ with vector f € F,
then we see that the vector space “structure” of F and R" are identical. We’'ll

elaborate on this idea in Section 3.4 when we introduce vector space isomorphisms.

Note. We can also use the Universality of Function Spaces in connection with the
vector space of all m xn matrices, M, ,. Let set S = {(1,1),(1,2),...,(1,n),(2,1),
(2,2),...,(2,n),(3,1),(3,2),...,(m—1,n),(m,1),(m,2),...,(m,n)}. Then for f :

S — R we have a “natural relationship” between f and an m X n matrix

Page 190 Number 26. Use the universality of function spaces to explain how we
can view the Euclidean vector space R™" and the vector space M, , of all m x n
matrices as essentially the same vector space with just a different notation for the

vectors.
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