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Chapter 3. Vector Spaces

3.2 Basic Concepts of Vector Spaces

Note. We now extend the ideas developed for R
n in Chapters 1 and 2, such as

linear combination, span, subspace, basis, and dimension, to the setting of general

vector spaces. In the process, we introduce some new examples of vector spaces.

Definition 3.2. Given vectors ~v1, ~v2, . . . , ~vk ∈ V and scalars r1, r2, . . . , rk ∈ R,

k∑

`=1

r`~v` = r1~v1 + r2 ~v2 + · · · + rk ~vk

is a linear combination of ~v1, ~v2, . . . , ~vk with scalar coefficients r1, r2, . . . , rk.

Definition 3.3. Let X be a subset of vector space V . The span of X is the set of

all linear combinations of elements in X and is denoted sp(X). If V = sp(X) for

some finite set X , then V is finitely generated.

Note. Let P be the vector space of all polynomials with real coefficients (see

Example 3.1.2). Let M = {1, x, x2, x3, . . .} ⊂ P . Then P = sp(M) since any

p(x) = anx
n + an−1x

n−1 + · · · + a1x + a0 is clearly in sp(M). Notice also that if

we exclude any element of M , say xm, then we no longer have a spanning set of P

since the polynomial q(x) = xm is not in the span of the modified set. So P is not

finitely generated.
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Definition 3.4. A subset W of a vector space V is a subspace of V if W is itself

a vector space.

Theorem 3.2. Test for Subspace.

A subset W of vector space V is a subspace if and only if

(1) ~v, ~w ∈ W ⇒ ~v + ~w ∈ W ,

(2) for all r ∈ R and for all ~v ∈ W , we have r~v ∈ W .

Note. Two obvious subspaces of any vector space V are {~0} and V itself. Any

subspace of V which is not V itself is a proper subspace of V . Subspace {~0} is the

zero subspace (or trivial subspace).

Note. In the vector space Mn = Mn,n of all n×n matrices, the set U of all upper-

triangular matrices forms a subspace since the sum of any two upper-triangular

matrices is upper triangular and a scalar multiple of an upper-triangular matrix is

upper triangular.

Note 3.2.A. In the vector space F of all real-valued functions with domain R (see

Example 3.1.3), some subspaces are:

C = {f ∈ F | f is continuous}

D = {f ∈ F | f is differentiable}

Dn = {f ∈ F | f is n-times differentiable}

D∞ = {f ∈ F | f is differentiable of all orders}

In fact, D is a subspace of C (since all differentiable functions are continuous), Dn

is a subspace of D for all n, and D∞ is a subspace of Dn for all n.
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Examples. Page 202 number 4, Page 202 Number 8.

Definition 3.5. Let X be a set of vectors from a vector space V . A dependence

relation in X is an equation of the form

k∑

`=1

r`~v` = r1~v1 + r2 ~v2 + · · · + rk ~vk = ~0

with some rj 6= 0 and ~vi ∈ X . If such a relation exists, then X is a linearly

dependent set. Otherwise X is a linearly independent set.

Example. Page 202 number 16.

Definition 3.6. Let V be a vector space. A set of vectors in V is a basis for V if

(1) the set of vectors span V , and

(2) the set of vectors is linearly independent.

Note 3.2.B. Consider the vector space Pn of all polynomials with real coefficients

of degree less than or equal to n (see Exercise 3.1.16). A basis is given by B =

{1, x, x2, . . . , xn}. This follows because any p(x) ∈ Pn is of the form p(x) = anx
n +

an−1x
n−1 + · · ·+ a1x+ a0 and so clearly p(x) ∈ sp(1, x, x2, . . . , xn). The zero vector

in Pn is 0 = 0xn + 0xn−1 + · · ·+ 0x + 0, so r11 + r2x + r3x
2 + · · ·+ rn+1x

n = 0 only

for r1 = r2 = · · · = rn+1 = 0, and B is a linearly independent set.

Examples. Page 202 number 20, Page 202 Number 22.
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Theorem 3.3. Unique Combination Criterion for a Basis.

Let B be a set of nonzero vectors in vector space V . Then B is a basis for V if

and only if each vector V can by uniquely expressed as a linear combination of the

vectors in set B.

Note. The proof of Theorem 3.3 is complicated by the fact that a basis could

be infinite. This was not an issue with the corresponding result for a subspace of

R
n (Theorem 2.1, “Alternative Characterization of a Basis”) since we could put

our hands on the finite basis in that case and use all basis elements in any linear

combination. The next two results (Theorem 3.4, “Relative Size of Spanning and

Independent Sets” and Corollary 3.2.A) deal with finite dimensional vector spaces

and so the proofs in these cases are identical to the proofs for R
n (Theorem 2.2 and

Corollary 2.1.A).

Definition. A vector space is finitely generated if it is the span of some finite set.

Note. As long as we only consider finite dimensional vector spaces (which is the

topic of this class), we need not concern ourselves with the subtleties of infinite

dimensional vector spaces. For completeness, we comment that one can prove

that every vector space actually has a basis (notice that the definition of “vector

space” does not address the existence of a basis). Unfortunately, the existence

proof requires the “Axiom of Choice” from set theory (see the footnote on page

198). An implication of this is that we know a basis exists but we have no idea

which vectors make up the basis. This makes the result useless as far as applied

math goes, but it is definitely of a theoretical interest.
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Theorem 3.4. Relative Size of Spanning and Independent Sets.

Let V be a vector space. Let ~w1, ~w2, . . . , ~wk be vectors in V that span V and let

~v1, ~v2, . . . , ~vm be vectors in V that are independent. Then k ≥ m.

Corollary 3.2.A. Invariance of Dimension for Finitely Generated Spaces.

Let V be a finitely generated vector space. Then any two bases of V have the same

number of elements.

Note. As in Section 2.1, now that we know that all bases of a finite dimensional

vector space are of the same size, we can give this common parameter a name.

Definition 3.7. Let V be a finitely generated vector space. The number of

elements in a basis for V is the dimension of V , denoted dim(V ).

Note 3.2.C. Since B = {1, x, x2, . . . , xn} is a basis for Pn (see Note 3.2.B), the

vector space of all polynomials of degree less than or equal to n, then dim(Pn) =

n + 1.

Examples. Page 203 Number 32, Page 203 Number 36.
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Note. In the proof given in Exercise 3.2.36, we never actually used the fact that

{~w1, ~w2, . . . , ~wn} is linearly independent, but only used the fact that it is a spanning

set for W . We can therefore conclude:

Corollary 3.2.B. In n-dimensional vector space V , any linearly inde-

pendent set of n vectors is a basis for V .

Example. Page 204 Number 40.
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