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Chapter 3. Vector Spaces

3.3 Coordinatization of Vectors

Note. In Chapters 1 and 2 we studied the vector space R
n. In Sections 3.1 and

3.2 we defined general vector spaces and studied some of their properties. In this

section we “associate” a general dimension n vector space with the space R
n. This

allows us to study properties of general vector spaces using our knowledge of R
n

and the use of matrix techniques in addressing properties of R
n.

Note. We now define an ordered basis for a finite dimensional vector space and use

the coefficients of these basis elements (in order) when expressing a given vector

as a linear combination of the basis elements to associate a vector in R
n with the

given vector.

Definition. An ordered basis (~b1, ~b2, . . . , ~bn) is an “ordered set” of vectors which is

a basis for some vector space.

Definition 3.8. If B = (~b1, ~b2, . . . , ~bn) is an ordered basis for V and ~v = r1
~b1 +

r2
~b2 + · · · + rn

~bn, then the vector [r1, r2, . . . , rn] ∈ R
n is the coordinate vector of ~v

relative to B, denoted ~vB.
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Example 3.3.A. Let Pn be the vector space of all polynomials with real coefficients

and of degree n or less (see Exercise 3.1.16). Then two ordered bases of Pn are

B = (1, x, x2, . . . , xn) and B′ = (xn, xn−1, . . . , x, 1). When n = 4 and p(x) =

−x+x3+2x4 the coordinate vectors relative to the bases are p(x)B = [0,−1, 0, 1, 2]

and p(x)B′ = [2, 1, 0,−1, 0].

Example. Page 211 Number 6.

Note. We see from the solution of the previous example that the following algo-

rithm applies in finding ~vB when dealing with an ordered basis in R
n.

Note 3.3.A. If the basis vectors in ordered basis B are in R
n, then to find ~vB:

(1) write the basis vectors as column vectors to form [~b1
~b2 · · · ~bn | ~v],

(2) use Gauss-Jordan elimination to get [I | ~vB].

Note. We are about to define the equipment for the most central result in this

class! It will show that when dealing with an n-dimensional vector space, we may

as well be dealing with R
n. This is good news since we developed equipment in

Chapters 1 and 2 to deal with questions involving R
n (namely, the matrix methods

of these chapters).
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Definition. Let f be a function mapping one set R to another set S, f : R → S.

Then f is one to one if f(r1) = f(r2) implies that r1 = r2. Function f is onto if for

each s ∈ S, there is some r ∈ R such that f(r) = s.

Note. We can illustrate the previous definition as follows:

Definition. An isomorphism between two vector spaces V and W is a one-to-one

and onto function α from V to W such that:

(1) if ~v1, ~v2 ∈ V then α(~v1 + ~v2) = α(~v1) + α(~v2), and

(2) if ~v ∈ V and r ∈ R then α(r~v) = rα(~v).

If there is such an α, then V and W are isomorphic, denoted V ∼= W .

Note. An isomorphism is a one-to-one and onto linear transformation, where

by “linear” we mean a condition similar to that given in Definition 2.3, “Linear

Transformations from R
n to R

m.”
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Note. The idea behind a vector space isomorphism is that two isomorphic vector

spaces have the same structure. For example, R
3 and P2 are both vector spaces of

dimension 3 and they have the same structure; we just associate ~v = [a2, a1, a0] ∈ R
3

with p(x) = a2x
2 + a1x + a0 (and conversely). Since addition of ~v, ~w ∈ R

3 where

~v = [a2, a1, a0] and ~w = [b2, b1, b0] corresponds to addition of p(x) = a2x
2 + a1x +

a0 and q(x) = b2x
2 + b1x + b0, because ~v + ~w = [a2 + b2, a1 + b1, a0 + b0] and

p(x) + q(x) = (a2 + b2)x
2 + (a1 + b1)x + (a0 + b0), and scalar multiplication of

~v ∈ R
3 corresponds to scalar multiplication of p(x), because r~v = [ra2, ra1, ra0]

and rp(x) = (ra1)x
2 + (ra1)x + (ra0), then the association of ~v = [a2, a1, a0] and

p(x) = a2x
2 + a1x + a0 is an isomorphism.

Note. We now state a result so important that your humble instructor refers

to it as the “Fundamental Theorem of Finite Dimensional Vector Spaces.” It

justifies our time spent on vector space R
n in Chapters 1 and 2 as time well-

spent on a central concept and not simply as time spent on motivation for our

current study of general vector spaces. Beware that this terminology “Fundamental

Theorem of Finite Dimensional Vector Spaces” is not widespread! It was invented

by your instructor and appears in Real Analysis with an Introduction to Wavelets,

D. Hong, J. Wang, and R. Gardner, Academic Press/Elsevier Press, (2005). This

book also includes, by the way, the “Fundamental Theorem of Infinite Dimensional

Vector Spaces.” Fraleigh and Beauregard state this as “Coordinatization of Finite-

Dimensional Spaces” (Theorem 3.9 in Section 3.4).
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Theorem 3.3.A. The Fundamental Theorem of Finite Dimensional Vec-

tors Spaces.

If V is a finite dimensional vector space (say dim(V ) = n) then V is isomorphic to

R
n.

Example 3.3.B. Consider Pn, the vector space of all polynomials of degree n

or less (see Exercise 3.1.16). Since dim(Pn) = n + 1 (see Section 3.2), so Pn is

isomorphic to R
n+1. Find an isomorphism and prove that it is an isomorphism.

Examples. Page 212 Number 12, Page 212 Number 20.
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