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Chapter 3. Vector Spaces

3.4 Linear Transformations

Note. We have already studied linear transformations from R
n into R

m. Now we

look at linear transformations from one general vector space to another. We’ll see

parallel behavior between these linear transformations and the matrix transforma-

tions of Section 2.3. In fact, we use ordered bases to associate matrices with linear

transformations between general finite dimensional vector spaces.

Definition 3.9. A function T that maps a vector space V into a vector space V ′

is a linear transformation if it satisfies:

(1) (~u + ~v) = T (~u) + T (~v), and (2) T (r~u) = rT (~u),

for all vectors ~u,~v ∈ V and for all scalars r ∈ R.

Note 3.4.A. Exercise 3.4.35 claims that the condition of T : V → V ′ being linear

is equivalent to the condition T (r~u + s~v) = rT (~u) + sT (~v) for all ~u,~v ∈ V and for

all r, s ∈ R. Notice that the same claim was established for V and V ′ Euclidean

spaces in Exercises 2.3.32. We can conclude (from Mathematical Induction, see

Appendix A) that for ~v1, ~v2, . . . , ~vn ∈ V and r1, r2, . . . , rn ∈ R, we have

T (r1~v1 + r2~v2 + · · · + rn~vn) = r1T (~v1) + r2T (~v2) + · · · + rnT (~vn).

Example 3.4.A. Let F be the vector space of all functions mapping R into R (see

Example 3.1.3). Let a be a nonzero scalar and define T : F → F as T (f) = af . Is

T a linear transformation?
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Definition. For a linear transformation T : V → V ′, the set V is the domain

of T and the set V ′ is the codomain of T . If W is a subset of V , then T [W ] =

{T (~w) | ~w ∈ W} is the image of W under T . T [V ] is the range of T . For W ′ ⊂ V ′,

T−1[W ′] = {~v ∈ V | T (~v) ∈ W ′} is the inverse image of W ′ under T . T−1[{~0′}] if

the kernel of T , denoted ker(T ). Notice that ker(T ) = {~v ∈ V | T (~v) = 0′}.

Example 3.4.B. Let F be the vector space of all functions mapping R into R (see

Example 3.1.3). Let a be a nonzero scalar and define T : F → F as T (f) = af , as

in Example 3.4.A. Describe the kernel of T .

Definition. Let V, V ′ and V ′′ be vector spaces and let T : V → V ′ and T ′ : V ′ →

V ′′ be linear transformations. The composition transformation T ′ ◦ T : V → V ′′ is

defined by (T ′ ◦ T )(~v) = T ′(T (~v)) for ~v ∈ V .

Example. Page 214 Example 1. Let F be the vector space of all functions f :

R → R (see Example 3.1.3), and let D be its subspace of all differentiable functions.

Show that differentiation is a linear transformation of D into F .

Example. Page 215 Example 3. Let Ca,b be the set of all continuous functions

mapping [a, b] → R. Then Ca,b is a vector space (based on an argument similar

to that which justifies that C = {f ∈ F | f is continuous} is a subspace of F , as

mentioned in Note 3.2.A). Prove that T : Ca,b → R defined by T (f) =
∫ b

a
f(x) dx

is a linear transformation. Such a transformation which maps functions to real

numbers is called a linear functional.
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Example. Page 215 Example 4. Let C be the vector space of all continuous

functions mapping R into R (see Note 3.2.A). Let a ∈ R and let Ta : C → C be

defined by Ta(f) =
∫ x

a
f(t) dt. Prove that T is a linear transformation.

Note. One might think that the differentiation operator D : D → F and the

operator Ta : C → C in the previous example are “inverses” of each other (we have

not yet defined the inverse of a linear transformation from one general vector space

to another). This is not the case, though, since Ta(f) =
∫ x

a
f(t) dt implies that

Ta(f)(a) =

(
∫ x

a

f(t) dt

)∣

∣

∣

∣

x=a

=

∫ a

a

f(t) dt = 0,

so Ta maps continuous functions to continuous functions which are 0 at x = a.

Now each Ta(f) is differentiable since d
dx

[Ta(f)] = d
dx

[∫ x

a
f(t) dt

]

= f(x) by the

Fundamental Theorem of Calculus. If we define Da = {f ∈ D | d(a) = 0} (Da is a

subspace of D based on an argument similar to that given in Exercise 3.2.4) then

we have Ta : C → Da, D : Da → C, and for f ∈ C,

(D ◦ Ta)(f) = D(Ta(f)) = D

(
∫ x

a

f(t) dt

)

=
d

dx

[
∫ x

a

f(t) dt

]

= f(x) = f.

If f ∈ Da (so f(a) = 0) AND f is continuously differentiable (that is, f ′ is contin-

uous) then

(Ta ◦ D)(f) = Ta(D(f)) = Ta(f
′) =

∫ x

a

f ′(t) dt = f(x) − f(a) = f(x) = f.

So if we define D1,a = {f ∈ Da | f ′ is continuous} (a subspace of Da), then we do

have that the differentiation D : D1,a → C and Ta : C → D1,a are inverses of each

other.
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Note. Fraleigh and Beauregard also give an example of a linear functional T : F →

R defined for given c ∈ R as T (f) = f(c). This is an example of an “evaluation

functional” (see Example 3.4.2). In Example 3.4.5, the authors show that T :

D∞ → D∞ defined, for a0, a1, . . . , an ∈ R, as

T (f) = anf
(n)(x) + an−1f

(n−1)(x) + · · · + a1f
′(x) + a0f(x)

is a linear transformation. This example plays a fundamental role in the study of

nth-order linear differential equations with constant coefficients (where the tools

developed for matrices are useful).

Theorem 3.5. Preservation of Zero and Subtraction

Let V and V ′ be vectors spaces, and let T : V → V ′ be a linear transformation.

Then

(1) T (~0) = ~0′, and

(2) T (~v1 − ~v2) = T (~v1) − T (~v2), for any vectors ~v1 and ~v2 in V .

Theorem 3.6. Bases and Linear Transformations.

Let T : V → V ′ be a linear transformation, and let B be a basis for V . For any

vector ~v in V , the vector T (~v) is uniquely determined by the vectors T (~b) for all

~b ∈ B. In other words, if two linear transformations have the same value at each

basis vector~b ∈ B, then the two transformations have the same value at each vector

in V .
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Theorem 3.7. Preservation of Subspaces.

Let V and V ′ be vector spaces, and let T : V → V ′ be a linear transformation.

(1) If W is a subspace of V , then T [W ] is a subspace of V ′.

(2) If W ′ is a subspace of V ′, then T−1[W ′] is a subspace of V .

Theorem 3.4.A. (Page 229 number 46) Let T : V → V ′ be a linear transformation

and let T (~p) = ~b for a particular vector ~p in V . The solution set of T (~x) = ~b is the

set {~p + ~h | ~h ∈ ker(T )}.

Definition. A transformation T : V → V ′ is one-to-one if T (~v1) = T (~v2) implies

that ~v1 = ~v2 (or by the contrapositive, ~v1 6= ~v2 implies T (~v1) 6= T (~v2)). Transfor-

mation T is onto if for all ~v′ ∈ V ′ there is a ~v ∈ V such that T (~v) = ~v′.

Corollary 3.4.A. One-to-One and Kernel.

A linear transformation T is one-to-one if and only if ker(T ) = {~0}.

Definition 3.10. Let V and V ′ be vector spaces. A linear transformation T : V →

V ′ is invertible if there exists a linear transformation T−1 : V ′ → V such that T−1◦T

is the identity transformation on V and T ◦ T−1 is the identity transformation on

V ′. Such T−1 is called an inverse transformation of T .

Theorem 3.8. A linear transformation T : V → V ′ is invertible if and only if it is

one-to-one and onto V ′. When T−1 exists, it is linear.
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Example 3.4.C. Let F be the vector space of all functions mapping R into R (see

Example 3.1.3). Let a be a nonzero scalar and define T : F → F as T (f) = af , as

in Example 3.4.A. Determine if T is invertible. If so, find its inverse.

Note. It is at this stage that Fraleigh and Beauregard introduce the Fundamental

Theorem of Finite Dimensional Vector spaces (see Theorem 3.3.A). They define an

isomorphism as a one-to-one and onto linear transformation (as we did in Section

3.3, though we didn’t use the language of “linear transformation” at that time).

Their comments on isomorphisms on page 221 are certainly worth reading. For

completeness, we now state their version of the Fundamental Theorem of Finite

Dimensional Vector Spaces along with the name they give it.

Theorem 3.9. Coordinatization of Finite-Dimensional Spaces.

Let V be a finite-dimensional vector space with ordered basis B = (~b1,~b2, . . . ,~bn).

The map T : V → R
n defined by T (~v) = ~vB, the coordinate vector of ~v relative

to B, is an isomorphism. That is, any n-dimensional vector space is isomorphic to

R
n.

Note. Just as matrices represented linear transformations mapping R
n → R

m (see

Corollary 2.3.A, “Standard Matrix Representation of Linear Transformations”), we

can use the coordinatization of general finite dimensional vector spaces V and V ′

to represent a linear transformation mapping V → V ′ with a matrix.
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Theorem 3.10. Matrix Representations of Linear Transformations.

Let V and V ′ be finite-dimensional vector spaces and let B = (~b1,~b2, . . . ,~bn) and

B′ = (~b′1,
~b′2, . . . ,

~b′m) be ordered bases for V and V ′, respectively. Let T : V → V ′ be

a linear transformation, and let T : R
n → R

m be the linear transformation such that

for each ~v ∈ V , we have T (~vB) = T (~v)B′. Then the standard matrix representation

of T is the matrix A whose jth column vector is T (~bj)B′, and T (~v)B′ = A~vB for all

vectors ~v ∈ V.

Definition 3.11. The matrix A of Theorem 3.10 is the matrix representation of

T relative to B,B′.

Examples. Page 227 Number 18, Page 227 Number 22, Page 227 Number 24.

Note. Let T : V → V ′ where B is a basis for V and B′ is a basis for V ′. By

Theorem 3.8, T−1 is linear when it exists. So it has a matrix representation relative

the B′, B. The next result gives this matrix representation in terms of the matrix

representation of T relative to B,B′.

Theorem 3.4.B. The matrix representation of T−1 relative to B′, B is the inverse

of the matrix representation of T relative to B,B′.

Examples. Page 228 Number 28, Page 229 Number 44, Page 226 Number 12.

Revised: 10/24/2018


