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Chapter 5. Eigenvalues and Eigenvectors

5.3 Two Applications

Note. The “two applications” in the title of this section involve (1) long-term

behavior of systems of the form Ak~x where ~x is some initial vector, and (2) systems

of linear differential equations with constant coefficients.

Note. We start with an initial “information vector” ~x and a matrix A such that

at “stage” k the information matrix is Ak~x. A Markov chain is an example of such

a process (see Section 1.7).

Note. Let n × n matrix A be diagonalizable with eigenvalues λ1, λ2, . . . , λn and

corresponding eigenvectors ~v1, ~v2, . . . , ~vn where B = (~v1, ~v2, . . . , ~vn) is a basis for Rn;

that is, let A be diagonalizable (see Corollary 1, “A Criterion for Diagonalization,”

of Section 5.2). If we express initial information vector ~x relative to ordered basis

B, we get ~x = d1~v1 + d2~v2 + · · · + dn~vn. Then

Ak~x = Ak(d1~v1 + d2~v2 + · · · + dn~vn)

= d1A
k~v1 + d2A

k~v2 + · · · + dnA
k~vn

= d1λ
k
1~v1 + d2λ

k
2~v2 + · · · + dnλ

k~vn by Theorem 5.1(1),

“Properties of Eigenvalues and Eigenvectors.”

If we index the eigenvalues such that |λi| ≥ |λj| if i < j (so that |λ1| is a largest
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eigenvalue) then we have

Ak~x = d1λ
k
1~v1 + d2λ

k
2~v2 + · · · + dnλ

k
n~vn

= λk
1(d1~v1 + d2(λ2/λ1)

k~v2 + · · · + dn(λn/λ1)
k~vn) (1)

Thus if k is large and d1 6= 0 the vector Ak~x is approximately equal to d1λ
k
1~v1 in

the sense that ‖Ak~x − d1λ
k
1~v1‖ is small compared with ‖Ak~x‖.

Page 318 Example 2. At the beginning of Section 5.1 we described the Fibonacci

sequence 0, 1, 1, 2, 3, 5, 8, 13, . . . where each new number is the sum of the previous

two. With F0 = 0, ~x =





1

0



, and A =





1 1

1 0



, we can find





Fk+1

Fk



 =





1 1

1 0





k 



1

0



 = Ak~x.

Consider

det(A − λI) =

∣

∣

∣

∣

∣

∣

1 − λ 1

1 −λ

∣

∣

∣

∣

∣

∣

= (1 − λ)(−λ) − (1)(1) = λ2 − λ − 1 = 0.

So λ =
−(−1) ±

√

(−1)2 − 4(1)(−1)

2(1)
=

1 ±
√

5

2
. We take λ1 = (1 +

√
5)/2 and

λ2 = (1 −
√

5)/2. If ~v1 = [v1, v2]
T is an eigenvector corresponding to eigenvalue

λ1 = (1 +
√

5)/2, then we need (A − λ1I)~v1 = ~0. So we consider the augmented

matrix:




1 − (1 +
√

5)/2 1 0

1 −(1 +
√

5)/2 0



 =





(1 −
√

5)/2 1 0

1 (−1 −
√

5)/2 0
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R1↔R2

˜





1 (−1 −
√

5)/2 0

(1 −
√

5)/2 1 0





R2→R2−((1−
√

5)/2)R1

˜





1 (−1 −
√

5)/2 0

0 0 0



 ,

so we need
v1 − ((1 +

√
5)/2)v2 = 0

0 = 0
or

v1 = ((1 +
√

5)/2)v2

v2 = v2

or, with r = v2

as a free variable,
v1 = ((1 +

√
5)/2)r

v2 = r
. We choose r = 2 to get the eigenvector

~v1 = [1 +
√

5, 2]T . If ~v2 = [v1, v2]
T is an eigenvalue corresponding to eigenvalue

λ2 = (1 −
√

5)/2 then we need (A − λ2I)~v2 = ~0. So we consider the augmented

matrix




1 − (1 −
√

5)/2 1 0

1 −(1 −
√

5)/2 0



 =





(1 +
√

5)/2 1 0

1 (−1 +
√

5)/2 0





R1↔R2

˜





1 (−1 +
√

5)/2 0

(1 +
√

5)/2 1 0





R2→R2−((1+
√

5)/2)R1

˜





1 (−1 +
√

5)/2 0

0 0 0



 ,

So we need
v1 + ((−1 +

√
5)/2)v2 = 0

0 = 0
or

v1 = ((1 −
√

5)/2)v2

v2 = v2

or, with s =

v2 as a free variable,
v1 = ((1 −

√
5)/2)s

v2 = s
. We choose s = 2 to get the eigenvalue

~v2 = [1−
√

5, 2]T . We define =





1 +
√

5 1 −
√

5

2 2



. To find the coordinate vector

~d of ~x =





1

0



 relative to the ordered basis B = (~v1, ~v2), we want ~x = C ~d or
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~d = C−1~x. To find C−1, consider

[C | I] =





1 +
√

5 1 −
√

5 1 0

2 2 0 1





R1↔R2

˜





2 2 0 1

1 +
√

5 1 −
√

5 1 0





R1→R1/2

˜





1 1 0 1/2

1 +
√

5 1 −
√

5 1 0





R2→R2−(1+
√

5)R1

˜





1 1 0 1/2

0 −2
√

5 1 (−1 −
√

5)/2





R2→R2/(−2
√

5)

˜





1 1 0 1/2

0 1 −1/(2
√

5) (1 +
√

5)/(4
√

5)





R1→R1−R2

˜





1 0 1/(2
√

5) (−1 +
√

5)/(4
√

5)

0 1 −1/(2
√

5) (1 +
√

5)/(4
√

5)



 .

So

C−1 =





1/(2
√

5) (−1 +
√

5)/(4
√

5)

−1/(2
√

5) (1 +
√

5)/(4
√

5)



 =
1

4
√

5





2 −1 +
√

5

−2 1 +
√

5



 .

Hence

~d = C−1~x =
1

4
√

5





2 −1 +
√

5

−2 1 +
√

5









1

0



 =
1

4
√

5





2

−2



 =
1

2
√

5





1

−1



 =





d1

d2



 .

From equation (1) above, we have




Fk+1

Fk



 = Ak~x = d1λ
k
1~v1 + d2λ

k
2~v2

=

(

1

2
√

5

)

(

1 +
√

5

2

)k




1 +
√

5

2



+

( −1

2
√

5

)

(

1 −
√

5

2

)k




1 −
√

5

2



 .

So Fk = 1√
5

(

(

1+
√

5
2

)k

−
(

1−
√

5
2

)k
)

. Notice that this is the same formula for Fk as

given by Fraleigh and Beauregard even though we have used different eigenvectors.

�
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Note. As can be seen in equation (1), if all eigenvalues λ1, λ2, . . . , λn are less than

1 in magnitude (absolute value for real eigenvalues and “modulus” for complex

numbers) then as k → ∞ we have λj
i → 0 and so Ak~x → ~0. If some λi is greater

than 1 in magnitude then as k → ∞ we have |λk
i | → ∞ and so ‖Ak~x‖ → ∞. These

observations motivate the following definition.

Definition. Let A be an n×n diagonalizable matrix with eigenvectors λ1, λ2, . . . , λn

and corresponding eigenvectors ~v1, ~v2, . . . , ~vn where B = (~v1, ~v2, . . . , ~vn) is a basis

for Rn. Then the process Ak~x is unstable if some |λi| > 1, stable if all |λi| < 1, and

neutrally stable if all |λi| ≤ 1 and some |λj| = 1. The eigenvectors of A are the

normal modes of the process.

Note. In the process yielding the Fibonacci series we have the eigenvalue λ1 =

(1+
√

5)/2 and so |λ1| > 1. So this process is unstable. This is not surprising since

the Fibonacci number of course diverges to ∞. In a Markov chain T~x, T 2~x, T 3~x,

. . . , the sum of the entries of the column vector T k~x s a constant so a Markov chain

is neutrally stable.

Example. Page 325 Number 4.

Note. We saw in Example 8 of Section 5.1 (see the class notes) that the general

solution to the differential equation y′ = λy is y = keλx (where y is a function

of x and the prime represents differentiation with respect to x). We can change
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variables and consider x as a function of t (think “time”), giving the differential

equation x′ = ax with general solution x(t) = keat. We now use this fact to solve

a system of n linear differential equations with constant coefficients.

Definition. Suppose x1, x2, . . . , xn are each differentiable functions of t and that

the derivatives with respect to t of these functions satisfy:

x′
1 = a11x1 + a12x2 + · · · + a1nxn

x′
2 = a21x1 + a22x2 + · · · + a2nxn

...
...

...

x′
n = an1x1 + an2x2 + · · · + annxn

This is a system of n linear differential equations with constant coefficients.

Note. If we let ~x = [x1, x2, . . . , xn]T be a vector of differentiable functions of t,

then we can represent the above system of equations as ~x′ = A~x where A = [aij]

and ~x′ = [x′
1, x

′
2, . . . , ~x

′
n]

T . If A is diagonal then the system is

















x′
1

x′
2

...

x′
n

















=

















a11x1

a22x2

...

annxn
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and so we can solve the system one equation at a time to get

~x =

















x1

x2

...

xn

















=

















k1e
a11t

k2e
a22t

...

kne
annt

















.

Note. In the event that matrix A in the system above is diagonalizable, D =

C−1AC (where the diagonal entries of D are eigenvalues of A and the columns of

C are corresponding eigenvectors of A, as in Theorem 5.2, “Matrix Summary of

Eigenvalues of A”) then the system ~x′ = A~x = C−1AC~x ecomes C−1~x′ = D(C−1~x)

or ~y′ − D~y wher ~y = C−1~x. Then the general solution of ~y′ = D~y is

~y =

















y1

y2

...

yn

















=

















k1e
λ1t

k2e
λ2t

...

kne
λnt

















and then we find ~x from the equation ~x = C~y. We now illustrate this process with

an example.

Example. Page 325 Number 10.
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