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Chapter 5. Eigenvalues and Eigenvectors

5.3 Two Applications

Note. The “two applications” in the title of this section involve (1) long-term
behavior of systems of the form A*Z where ¥ is some initial vector, and (2) systems

of linear differential equations with constant coefficients.

Note. We start with an initial “information vector” ¥ and a matrix A such that
at “stage” k the information matrix is A*Z. A Markov chain is an example of such

a process (see Section 1.7).

Note. Let n x n matrix A be diagonalizable with eigenvalues A1, \o,..., A\, and
corresponding eigenvectors v, Us, . . . , Uy, where B = (01, ¥, . .., ¥,) is a basis for R";
that is, let A be diagonalizable (see Corollary 1, “A Criterion for Diagonalization,”
of Section 5.2). If we express initial information vector Z relative to ordered basis

B, we get ¥ = dyv} + doUs + - - - + d,U,,. Then
ARz = AM(dyo) + doty + - - - + dy,T),)
= dlAkﬁl + dzAkﬁz —+ 4 dnAkﬁn
= AV 4 doNsty + - - 4+ dAF0, by Theorem 5.1(1),

“Properties of Eigenvalues and Eigenvectors.”

If we index the eigenvalues such that |\ > || if i < j (so that |\i| is a largest
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eigenvalue) then we have

AT = dAST + dpMsy -+ do N,

N (dity + do(Na/ M) Mo + -+ + di (A M) 00n) (1)

Thus if k is large and d; # 0 the vector A*# is approximately equal to d; o) in

the sense that ||A*Z — d; \Fo7)|| is small compared with || A*Z]|.

Page 318 Example 2. At the beginning of Section 5.1 we described the Fibonacci

sequence 0,1,1,2,3,5,8,13, ... where each new number is the sum of the previous
1 11
two. With Fy =0, ¥ = ,and A = , we can find
0 10
k
Fiq _ 11 1 _ 4kz
. 10 0
Consider
1—-X 1 )
det(A—\T) = =1=-XNFN)-D1)=X=-A=1=0.
1 =X

—(-D £ V(=12 —4)(-1) _ 1£V5
2(1) 2
Ay = (1 —+/5)/2. If #} = [v1,v5)7 is an eigenvector corresponding to eigenvalue

So A = . We take \; = (1 + v/5)/2 and

A = (14 +/5)/2, then we need (A — \MZ)% = 0. So we consider the augmented

matrix:

1—(14++/5)/2 1 0 (1—+/5)/2 1 0
1 —(1++5)/2]|0 1 (-1—+/5)/2|0
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R1<—>R2 1

(1-V5)/2

v — ((1+v5)/2)v

so we need

. U1
as a free variable,

U3
ho= 14+ V5,27 If &

(—1

Ry—Ry—((1-/5)/2) Ry

—5)/2{0 gl
1 0 0 0 0

(L +/5)/2)vs

or, with r = v,
U2

(1 ++v5)/2)r

. We choose r = 2 to get the eigenvector
r

= [v1, )T is an eigenvalue corresponding to eigenvalue

(1 —+/5)/2 then we need (A — \Z)% = 0. So we consider the augmented

matrix
1 — (1= v5)/2 1 o | a+vE)2 1 0]
1 —(1-VB)2|0| 1 (-1+v5)/2]|0 |
BB, 1 (—1+V5)/2|0 | B (UVB/20 | 1 (=14 +/5)/2|0
(1+V5)/2 1 0 0 0 0|

(1= /5)/2)v,

v+ ((F14+V5)/2v, = 0 v =
So we need ! ( )/, or ! or, with s =
0 =20 Vo — (%)
v, = ((1=+5)/2)s
vy as a free variable, ! ( )/2) . We choose s = 2 to get the eigenvalue
Vo — S
_ 14+vV5 1-+5
Uy = [1—+/5,2]". We define = . To find the coordinate vector
2 2

. 1
dof ¥ =
0

relative to the ordered basis B = (7, %), we want ¥ = Cd or
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d = C~'%. To find C~! consider

cl7- [1”3 el 0] ’Hv[ S 1]
2 2 |01 1+v5 1—=+/5[1 0
Ri— Ry /2 1 1 |0 1/2_ RomRo—(I+VB)RL | 7 1 |0 1/2
1+vV5 1-V5(1 0 [0 2\/31(1\/3)/2}
Ry—Ra/(-2V5) | 1 1 0 1/2
0 1|-1/(2v5) (1+\/3)/(4\/5)}
BoRiR |1 0] 1/(2V5) (-1 +5)/(4V5)
[0 1| —1/(2v5) (1++/5)/(4V5) }
So
| vevs <1+¢3>/<4V5>}:;_ 2 1+¢3}
“1/@vE) (14VE)/AvE) | VB -2 1445
Hence

i L 2 —1+V5 | |1 1 2__L L I A
T OUTAA | e B o] B | 2B |a|

From equation (1) above, we have

F)
s = Akf = dl)\lf171 + dz)\l§172
Fy

k k
So|F, =+ ((M) — (%) ) .| Notice that this is the same formula for F}, as

/5 2
given by Fraleigh and Beauregard even though we have used different eigenvectors.

]
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Note. As can be seen in equation (1), if all eigenvalues A1, Ao, ..., A, are less than
1 in magnitude (absolute value for real eigenvalues and “modulus” for complex
numbers) then as k — oo we have M) — 0 and so A*Z — 0. If some ); is greater
than 1 in magnitude then as & — oo we have |\}| — oo and so || A*Z|| — oco. These

observations motivate the following definition.

Definition. Let A be an nxn diagonalizable matrix with eigenvectors A, Ao, ..., A\,
and corresponding eigenvectors ¥y, ¥y, ..., U, where B = (U7,75,...,7,) is a basis
for R”. Then the process A*Z is unstable if some |\;| > 1, stable if all |\;| < 1, and
neutrally stable if all |\;| < 1 and some |\;| = 1. The eigenvectors of A are the

normal modes of the process.

Note. In the process yielding the Fibonacci series we have the eigenvalue \; =
(14+/5)/2 and so |A\;| > 1. So this process is unstable. This is not surprising since
the Fibonacci number of course diverges to co. In a Markov chain T%, T?%, T°Z,
..., the sum of the entries of the column vector T"Z s a constant so a Markov chain

is neutrally stable.

Example. Page 325 Number 4.

Note. We saw in Example 8 of Section 5.1 (see the class notes) that the general
solution to the differential equation 3/ = Ay is y = ke’ (where y is a function

of x and the prime represents differentiation with respect to x). We can change
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variables and consider = as a function of ¢ (think “time”), giving the differential
equation ¥’ = az with general solution z(t) = ke®. We now use this fact to solve

a system of n linear differential equations with constant coefficients.

Definition. Suppose x1,x9,...,x, are each differentiable functions of ¢ and that

the derivatives with respect to ¢ of these functions satisty:

Ty = a1171 + a12T2 + - -+ A1,Ty,
/

Ty = @A2171 + G22T9 + -+ + A2,y
/

X, = an1T1 + Ap2To + - -+ AppTy

This is a system of n linear differential equations with constant coefficients.

Note. If we let & = [z1,79,...,2,]7 be a vector of differentiable functions of ¢,

then we can represent the above system of equations as @ = A%z where A = [a;]

and 7 = [z}, 2),..., 2 ]7. If Ais diagonal then the system is
- _ ,
Xy a1y
/
Lo a929X9
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and so we can solve the system one equation at a time to get

X1 k1 ettt
CLQQt
. i) ]{326
Tr = =
Apnt
T ke

Note. In the event that matrix A in the system above is diagonalizable, D =
C~1AC (where the diagonal entries of D are eigenvalues of A and the columns of
C are corresponding eigenvectors of A, as in Theorem 5.2, “Matrix Summary of
Eigenvalues of A”) then the system 7 = A% = C~'ACT ecomes C~'7' = D(C~1%)
or ' — Dij wher ¥ = C~'Z. Then the general solution of §' = D7 is

(i ky ettt
. Y2 koee!
y ey g

Un kne’\"t

and then we find & from the equation ¥ = C'y. We now illustrate this process with

an example.

Example. Page 325 Number 10.
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