Chapter 6. Orthogonality

6.2 The Gram Schmidt Process

Note. In Section 6.1 we expressed a fondness (for computational simplicity) for bases of vector spaces made of pairwise orthogonal unit vectors. In this section we give a process (the Gram-Schmidt Process) which allows us to convert a given basis into a “nice” basis. The process can be computationally lengthy and is heavily based on the projections introduced in Section 6.1.

Definition. A set \(\{ \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k \} \) of nonzero vectors in \(\mathbb{R}^n \) is orthogonal if the vectors \(\vec{v}_j \) are mutually perpendicular; that is, if \(\vec{v}_i \cdot \vec{v}_j = 0 \) for \(i \neq j \).

Theorem 6.2. Orthogonal Bases.
Let \(\{ \vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k \} \) be an orthogonal set of nonzero vectors in \(\mathbb{R}^n \). Then this set is independent and consequently is a basis for the subspace \(\text{sp}(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k) \).

Note. To find the projection of vector \(\vec{b} \) on to subspace \(W \) in Section 6.1 we were required to find a coordinate vector relative to a certain ordered basis. This can be simplified if we have an orthogonal basis for subspace \(W \), as given in the following theorem.
Theorem 6.3. Projection Using an Orthogonal Basis.

Let \(\{v_1, v_2, \ldots, v_k\} \) be an orthogonal basis for a subspace \(W \) of \(\mathbb{R}^n \), and let \(\vec{b} \in \mathbb{R}^n \). The projection of \(\vec{b} \) on \(W \) is

\[
\vec{b}_W = \text{proj}_W(\vec{b}) = \frac{\vec{b} \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{\vec{b} \cdot v_2}{v_2 \cdot v_2} v_2 + \cdots + \frac{\vec{b} \cdot v_k}{v_k \cdot v_k} v_k
\]

\[
= \text{proj}_{\vec{v}_1}(\vec{b}) + \text{proj}_{\vec{v}_2}(\vec{b}) + \cdots + \text{proj}_{\vec{v}_k}(\vec{b}).
\]

Example. Page 347 Number 4.

Definition 6.3. Let \(W \) be a subspace of \(\mathbb{R}^n \). A basis \(\{q_1, q_2, \ldots, q_k\} \) for \(W \) is orthonormal if

1. \(q_i \cdot q_j = 0 \) for \(i \neq j \), and
2. \(q_i \cdot q_i = 1 \).

That is, each vector of the basis is a unit vector and the vectors are pairwise orthogonal.

Note. If \(\{q_1, q_2, \ldots, q_k\} \) is an orthonormal basis for \(W \), then

\[
\vec{b}_W = \text{proj}_W((\vec{b}) = (\vec{b} \cdot q_1)q_1 + (\vec{b} \cdot q_2)q_2 + \cdots + (\vec{b} \cdot q_k)q_k.
\]

Note. The previous note shows why it is computationally desirable to have an orthonormal basis. Notice that it only requires the computation of some dot products; recall that if we are given an arbitrary basis \(\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_k\} \) then to write \(\vec{b} \) as a linear combination of these basis elements we must solve the system of equations \(A\vec{x} = \vec{b} \) where \(A \) is a matrix with columns \(\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_k \) (see Note 3.3.A, for example).
Theorem 6.4. Orthonormal Basis (Gram-Schmidt) Theorem.

Let W be a subspace of \mathbb{R}^n, let $\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_k\}$ be any basis for W, and let

$$W_j = \text{sp}(\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_j) \text{ for } j = 1, 2, \ldots, k.$$

Then there is an orthonormal basis $\{\vec{q}_1, \vec{q}_2, \ldots, \vec{q}_k\}$ for W such that $W_j = \text{sp}(\vec{q}_1, \vec{q}_2, \ldots, \vec{q}_j)$.

Note. The proof of Theorem 6.4 is computational. We summarize the proof in the following procedure:

Gram-Schmidt Process.

To find an orthonormal basis for a subspace W of \mathbb{R}^n:

1. Find a basis $\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_k\}$ for W.

2. Let $\vec{v}_1 = \vec{a}_1$. For $j = 1, 2, \ldots, k$, compute in succession the vector \vec{v}_j given by subtracting from \vec{a}_j its projection on the subspace generated by its predecessors.

3. The \vec{v}_j so obtained form an orthogonal basis for W, and they may be normalized to yield an orthonormal basis.

Note. We can recursively describe the way to find \vec{v}_j as:

$$\vec{v}_j = \vec{a}_j - \left(\frac{\vec{a}_j \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 + \frac{\vec{a}_j \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2} \vec{v}_2 + \cdots + \frac{\vec{a}_j \cdot \vec{v}_{j-1}}{\vec{v}_{j-1} \cdot \vec{v}_{j-1}} \vec{v}_{j-1} \right) = \vec{a}_j - \text{proj}_{\text{sp}(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_{j-1})}(\vec{a}_j).$$

If we normalize the \vec{v}_j as we go by letting $\vec{q}_j = (1/|\vec{v}_j|)|\vec{v}_j|$, then we have

$$\vec{v}_j = \vec{a}_j - ((\vec{a}_j \cdot \vec{q}_1)\vec{q}_1 + (\vec{a}_j \cdot \vec{q}_2)\vec{q}_2 + \cdots + (\vec{a}_j \cdot \vec{q}_{j-1})\vec{q}_{j-1}).$$
Note. We can geometrically illustrate the Gram-Schmidt Process in this notation in a special case as follows:

Example. Page 348 Number 10.

Note. A matrix “factorization” involves writing a given matrix A as a product $A = BC$ where matrices B and C have some desired property. The desired properties are usually related to simplifying computations. Based on the proof of Theorem 6.4, “Orthonormal Basis (Gram-Schmidt) Theorem,” we can deduce the following.

Corollary 1. QR-Factorization.

Let A be an $n \times k$ matrix with independent column vectors in \mathbb{R}^n. There exists an $n \times k$ matrix Q with orthonormal column vectors and an upper-triangular invertible $k \times k$ matrix R such that $A = QR$.

Note. We saw in Theorem 2.3(2), “Existence and Determination of Basis,” that every independent set of vectors in \mathbb{R}^n can be enlarged to a basis for \mathbb{R}^n. The next corollary to Theorem 6.4 shows that a similar result holds for every set of orthogonal vectors in \mathbb{R}^n.
Corollary 2. Expansion of an Orthogonal Set to an Orthogonal Basis.
Every orthogonal set of vectors in a subspace W of \mathbb{R}^n can be expanded if necessary to an orthogonal basis of W.

Examples. Page 348 Number 20, Page 340 Number 30, Page 340 Number 32, and Page 349 Number 34.

Revised: 4/23/2019