Chapter 6. Orthogonality 6.2 The Gram Schmidt Process

Note. In Section 6.1 we expressed a fondness (for computational simplicity) for bases of vector spaces made of pairwise orthogonal unit vectors. In this section we give a process (the Gram-Schmidt Process) which allows us to convert a given basis into a "nice" basis. The process can be computationally lengthy and is heavily based on the projections introduced in Section 6.1.

Definition. A set ${\lbrace \vec{v_1}, \vec{v_2}, \ldots, \vec{v_k} \rbrace}$ of nonzero vectors in \mathbb{R}^n is *orthogonal* if the vectors \vec{v}_j are mutually perpendicular; that is, if $\vec{v}_i \cdot \vec{v}_j = 0$ for $i \neq j$.

Theorem 6.2. Orthogonal Bases.

Let ${\lbrace \vec{v_1}, \vec{v_2}, \ldots, \vec{v_k} \rbrace}$ be an orthogonal set of nonzero vectors in \mathbb{R}^n . Then this set is independent and consequently is a basis for the subspace $sp(\vec{v_1}, \vec{v_2}, \ldots, \vec{v_k})$.

Note. To find the projection of vector \vec{b} on to subspace W in Section 6.1 we were required to find a coordinate vector relative to a certain ordered basis. This can be simplified if we have an orthogonal basis for subspace W , as given in the following theorem.

Theorem 6.3. Projection Using an Orthogonal Basis.

Let $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_k}\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n , and let $\vec{b} \in \mathbb{R}^n$. The projection of \vec{b} on W is

$$
\vec{b}_W = \text{proj}_W(\vec{b}) = \frac{\vec{b} \cdot \vec{v_1}}{\vec{v_1} \cdot \vec{v_1}} \vec{v_1} + \frac{\vec{b} \cdot \vec{v_2}}{\vec{v_2} \cdot \vec{v_2}} \vec{v_2} + \dots + \frac{\vec{b} \cdot \vec{v_k}}{\vec{v_k} \cdot \vec{v_k}} \vec{v_k}
$$

$$
= \text{proj}_{\vec{v_1}}(\vec{b}) + \text{proj}_{\vec{v_2}}(\vec{b}) + \dots + \text{proj}_{\vec{v_k}}(\vec{b}).
$$

Example. Page 347 Number 4.

Definition 6.3. Let W be a subspace of \mathbb{R}^n . A basis $\{\vec{q}_1, \vec{q}_2, \ldots, \vec{q}_k\}$ for W is orthonormal if

- 1. $\vec{q}_i \cdot \vec{q}_j = 0$ for $i \neq j$, and
- **2.** $\vec{q}_i \cdot \vec{q}_i = 1$.

That is, each vector of the basis is a unit vector and the vectors are pairwise orthogonal.

Note. If ${\lbrace \vec{q_1}, \vec{q_2}, \ldots, \vec{q_k} \rbrace}$ is an orthonormal basis for W, then

$$
\vec{b}_W = \text{proj}_W((\vec{b}) = (\vec{b} \cdot \vec{q_1})\vec{q_1} + (\vec{b} \cdot \vec{q_2})\vec{q_2} + \cdots + (\vec{b} \cdot \vec{q_k})\vec{q_k}.
$$

Note. The previous note shows why it is computationally desirable to have an orthonormal basis. Notice that it only requires the computation of some dot products; recall that if we are given an arbitrary basis $\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_k\}$ then to write \vec{b} as a linear combination of these basis elements we must solve the system of equations $A\vec{x} = \vec{b}$ where A is a matrix with columns $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_k$ (see Note 3.3.A, for example).

Theorem 6.4. Orthonormal Basis (Gram-Schmidt) Theorem.

Let W be a subspace of \mathbb{R}^n , let $\{\vec{a_1}, \vec{a_2}, \ldots, \vec{a_k}\}$ be any basis for W, and let

$$
W_j = sp(\vec{a_1}, \vec{a_2}, \dots, \vec{a_j})
$$
 for $j = 1, 2, \dots, k$.

Then there is an orthonormal basis $\{\vec{q}_1, \vec{q}_2, \ldots, \vec{q}_k\}$ for W such that $W_j = sp(\vec{q}_1, \vec{q}_2, \ldots, \vec{q}_j)$.

Note. The proof of Theorem 6.4 is computational. We summarize the proof in the following procedure:

Gram-Schmidt Process.

To find an orthonormal basis for a subspace W of \mathbb{R}^n :

- **1.** Find a basis $\{\vec{a_1}, \vec{a_2}, \dots, \vec{a_k}\}$ for *W*.
- **2.** Let $\vec{v_1} = \vec{a_1}$. For $j = 1, 2, ..., k$, compute in succession the vector $\vec{v_j}$ given by subtracting from \vec{a}_j its projection on the subspace generated by its predecessors.
- **3.** The $\vec{v_j}$ so obtained form an orthogonal basis for W, and they may be normalized to yield an orthonormal basis.

Note. We can recursively describe the way to find \vec{v}_j as:

$$
\vec{v_j} = \vec{a_j} - \left(\frac{\vec{a_j} \cdot \vec{v_1}}{\vec{v_1} \cdot \vec{v_1}} \vec{v_1} + \frac{\vec{a_j} \cdot \vec{v_2}}{\vec{v_2} \cdot \vec{v_2}} \vec{v_2} + \cdots + \frac{\vec{a_j} \cdot \vec{v_{j-1}}}{\vec{v_{j-1}} \cdot \vec{v_{j-1}}} \vec{v_{j-1}}\right) = \vec{a_j} - \text{proj}_{\text{sp}(\vec{v_1}, \vec{v_2}, \dots, \vec{v_{j-1}})}(\vec{a_j}).
$$

If we normalize the $\vec{v_j}$ as we go by letting $\vec{q_j} = (1/||\vec{v_j}||)\vec{v_j}$, then we have

$$
\vec{v_j} = \vec{a_j} - ((\vec{a_j} \cdot \vec{q_1})\vec{q_1} + (\vec{a_j} \cdot \vec{q_2})\vec{q_2} + \cdots + (\vec{a_j} \cdot \vec{q_{j-1}})\vec{q_{j-1}}).
$$

Note. We can geometrically illustrate the Gram-Schmidt Process in this notation in a special case as follows:

Example. Page 348 Number 10.

Note. A matrix "factorization" involves writing a given matrix A as a product $A =$ BC where matrices B and C have some desired property. The desired properties are usually related to simplifying computations. Based on the proof of Theorem 6.4, "Orthonormal Basis (Gram-Schmidt) Theorem." we can deduce the following.

Corollary 1. QR-Factorization.

Let A be an $n \times k$ matrix with independent column vectors in \mathbb{R}^n . There exists an $n \times k$ matrix Q with orthonormal column vectors and an upper-triangular invertible $k \times k$ matrix R such that $A = QR$.

Example. Page 348 Number 26.

Note. We saw in Theorem 2.3(2), "Existence and Determination of Basis," that every independent set of vectors in \mathbb{R}^n can be enlarged to a basis for \mathbb{R}^n . The next corollary to Theorem 6.4 shows that a similar result holds for every set of orthogonal vectors in \mathbb{R}^n .

Corollary 2. Expansion of an Orthogonal Set to an Orthogonal Basis.

Every orthogonal set of vectors in a subspace W of \mathbb{R}^n can be expanded if necessary to an orthogonal basis of W.

Examples. Page 348 Number 20, Page 340 Number 30, Page 340 Number 32, and Page 349 Number 34.

Revised: 4/23/2019