
6.2 The Gram-Schmidt Process 1

Chapter 6. Orthogonality

6.2 The Gram Schmidt Process

Note. In Section 6.1 we expressed a fondness (for computational simplicity) for

bases of vector spaces made of pairwise orthogonal unit vectors. In this section

we give a process (the Gram-Schmidt Process) which allows us to convert a given

basis into a “nice” basis. The process can be computationally lengthy and is heavily

based on the projections introduced in Section 6.1.

Definition. A set {~v1, ~v2, . . . , ~vk} of nonzero vectors in R
n is orthogonal if the

vectors ~vj are mutually perpendicular; that is, if ~vi · ~vj = 0 for i 6= j.

Theorem 6.2. Orthogonal Bases.

Let {~v1, ~v2, . . . , ~vk} be an orthogonal set of nonzero vectors in R
n. Then this set is

independent and consequently is a basis for the subspace sp(~v1, ~v2, . . . , ~vk).

Note. To find the projection of vector ~b on to subspace W in Section 6.1 we were

required to find a coordinate vector relative to a certain ordered basis. This can be

simplified if we have an orthogonal basis for subspace W , as given in the following

theorem.
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Theorem 6.3. Projection Using an Orthogonal Basis.

Let {~v1, ~v2, . . . , ~vk} be an orthogonal basis for a subspace W of R
n, and let ~b ∈ R

n.

The projection of ~b on W is

~bW = projW (~b) =
~b · ~v1

~v1 · ~v1
~v1 +

~b · ~v2

~v2 · ~v2
~v2 + · · · +

~b · ~vk

~vk · ~vk

~vk

= proj~v1
(~b) + proj~v2

(~b) + · · · + proj~vk
(~b).

Example. Page 347 Number 4.

Definition 6.3. Let W be a subspace of R
n. A basis {~q1, ~q2, . . . , ~qk} for W is

orthonormal if

1. ~qi · ~qj = 0 for i 6= j, and

2. ~qi · ~qi = 1.

That is, each vector of the basis is a unit vector and the vectors are pairwise

orthogonal.

Note. If {~q1, ~q2, . . . , ~qk} is an orthonormal basis for W , then

~bW = projW (~(b) = (~b · ~q1)~q1 + (~b · ~q2)~q2 + · · · + (~b · ~qk)~qk.

Note. The previous note shows why it is computationally desirable to have an

orthonormal basis. Notice that it only requires the computation of some dot prod-

ucts; recall that if we are given an arbitrary basis {~a1,~a2, . . . ,~ak} then to write ~b

as a linear combination of these basis elements we must solve the system of equa-

tions A~x = ~b where A is a matrix with columns ~a1,~a2, . . . ,~ak (see Note 3.3.A, for

example).



6.2 The Gram-Schmidt Process 3

Theorem 6.4. Orthonormal Basis (Gram-Schmidt) Theorem.

Let W be a subspace of R
n, let {~a1, ~a2, . . . , ~ak} be any basis for W , and let

Wj = sp(~a1, ~a2, . . . , ~aj) for j = 1, 2, . . . , k.

Then there is an orthonormal basis {~q1, ~q2, . . . , ~qk} for W such that Wj = sp(~q1, ~q2, . . . , ~qj).

Note. The proof of Theorem 6.4 is computational. We summarize the proof in

the following procedure:

Gram-Schmidt Process.

To find an orthonormal basis for a subspace W of R
n:

1. Find a basis {~a1, ~a2, . . . , ~ak} for W .

2. Let ~v1 = ~a1. For j = 1, 2, . . . , k, compute in succession the vector ~vj given by

subtracting from ~aj its projection on the subspace generated by its predeces-

sors.

3. The ~vj so obtained form an orthogonal basis for W , and they may be normalized

to yield an orthonormal basis.

Note. We can recursively describe the way to find ~vj as:

~vj = ~aj−

(

~aj · ~v1

~v1 · ~v1
~v1 +

~aj · ~v2

~v2 · ~v2
~v2 + · · · +

~aj · ~vj−1

~vj−1 · ~vj−1
~vj−1

)

= ~aj−projsp(~v1,~v2,...,~vj−1)(~aj).

If we normalize the ~vj as we go by letting ~qj = (1/‖~vj‖)~vj , then we have

~vj = ~aj − ((~aj · ~q1)~q1 + (~aj · ~q2)~q2 + · · · + (~aj · ~qj−1)~qj−1).



6.2 The Gram-Schmidt Process 4

Note. We can geometrically illustrate the Gram-Schmidt Process in this notation

in a special case as follows:

Example. Page 348 Number 10.

Note. A matrix “factorization” involves writing a given matrix A as a product A =

BC where matrices B and C have some desired property. The desired properties

are usually related to simplifying computations. Based on the proof of Theorem

6.4, “Orthonormal Basis (Gram-Schmidt) Theorem.” we can deduce the following.

Corollary 1. QR-Factorization.

Let A be an n× k matrix with independent column vectors in R
n. There exists an

n×k matrix Q with orthonormal column vectors and an upper-triangular invertible

k × k matrix R such that A = QR.

Example. Page 348 Number 26.

Note. We saw in Theorem 2.3(2), “Existence and Determination of Basis,” that

every independent set of vectors in R
n can be enlarged to a basis for R

n. The

next corollary to Theorem 6.4 shows that a similar result holds for every set of

orthogonal vectors in R
n.
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Corollary 2. Expansion of an Orthogonal Set to an Orthogonal Basis.

Every orthogonal set of vectors in a subspace W of R
n can be expanded if necessary

to an orthogonal basis of W .

Examples. Page 348 Number 20, Page 340 Number 30, Page 340 Number 32, and

Page 349 Number 34.
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