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Chapter 6. Orthogonality

6.3 Orthogonal Matrices

Note. In Exercise 6.2.29 it is to be shown that an n × k matrix A has columns

which are orthonormal if and only if ATA = I. In this section we restrict our

attention to square matrix with this property. We’ll see that such matrices when

treated as linear transformations, preserve lengths (i.e., norms) and angles (i.e.,

dot products).

Definition 6.4. An n × n matrix A is orthogonal if ATA = I.

Note. Since the columns of an orthogonal matrix from an orthonormal set (as ob-

served above), then it might seem reasonable to call them “orthonormal” matrices,

but the term “orthogonal;; is standard for such matrices. Notice that in Definition

6.4 we could replace the condition ATA = I with the condition A−1 = AT (notice

that, since A is square, AAT = I by Theorem 1.11, “A Commutative Property”).

Theorem 6.5. Characterizing Properties of an Orthogonal Matrix.

Let A be an n × n matrix. The following conditions are equivalent:

1. The rows of A form an orthonormal basis for R
n.

2. The columns of A form an orthonormal basis for R
n.

3. The matrix A is orthogonal—that is, A is invertible and A−1 = AT .
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Example. Page 358 Number 2.

Note. We now show that an orthogonal matrix (when treated as a linear trans-

formation) preserves dot products, lengths, and angles making them “especially

desirable” as Fraleigh and Beauregard say (page 351).

Theorem 6.6. Properties of A~x for an Orthogonal Matrix A.

Let A be an orthogonal n×n matrix and let ~x and ~y be any column vectors in R
n.

Then

1. (A~x) · (A~y) = ~x · ~y,

2. ‖A~x‖ = ‖~x‖, and

3. The angle between nonzero vectors ~x and ~y equals the angle between A~x and

A~y.

Example. Page 358 Number 12.

Note. In Theorem 5.5, “Diagonalization of Real Symmetric Matrices,” we claimed

that every real symmetric matrix is real diagonalizable (though the proof was post-

poned to Chapter 9 since it requires complex numbers). It turns out that we can

go further and show that every real symmetric matrix A is real diagonalizable as

C−1AC = D where D is diagonal and C (and C−1) are orthogonal; in addition, all

entries of C, C−1, and D are real. To prove thie, we need to explore a property of

the eigenvectors of real symmetric matrix A.



6.3 Orthogonal Matrices 3

Theorem 6.7. Orthogonality of Eigenspaces of a Real Symmetric Matrix.

Eigenvectors of a real symmetric matrix that correspond to different eigenvalues

are orthogonal. That is, the eigenspaces of a real symmetric matrix are orthogonal.

Note. We now have the equipment to consider the diagonalization of real sym-

metric matrices by using orthogonal matrix C.

Theorem 6.8. Fundamental Theorem of Real Symmetric Matrices.

Every real symmetric matrix A is diagonalizable. The diagonalization C−1AC = D

can be achieved by using a real orthogonal matrix C.

Note. The converse of Theorem 6.8 is also true. If D = C−1AC is a diagonal

matrix and C is an orthogonal matrix, then A is symmetric (see Page 359 Number

24). The equation D = C−1AC is called the orthogonal diagonalization of A.

Example. Page 358 Number 16.

Note. Recall that every linear transformation T : R
n → R

m corresponds to some

m × n matrix A (called the standard matrix representation of T ) and conversely

every m×n matrix A corresponds to a linear transformation T : R
n → R

m (defined

as T (~x) = A~x). See Section 2.3, “Linear Transformations of Euclidean Spaces.” So

we can extend the idea of an orthogonal matrix to an orthogonal transformation.

The following definition is inspired by Theorem 6.6(1) (the Preservation of Dot

Product).
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Definition 6.5. A linear transformation T : R
n → R

n is orthogonal if it satisfies

T (~v) · T (~w) = ~v · ~w for all ~v, ~w ∈ R
n.

Note. We nwo see that the pervious definition yields the desired relationship

between orthogonal matrices and orthogonal linear transformations.

Theorem 6.9. Orthogonal Transformations vis-à-vis Matrices.

A linear transformation T of R
n into itself is orthogonal if and only if its standard

matrix representation A is an orthogonal matrix.

Example. Page 359 Number 34.

Examples. Page 359 Number 20, Page 359 Number 24, Page 359 Number 30.
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