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Chapter 6. Orthogonality

6.5 The Method of Least Squares

Note. In this section we consider linear systems of equations (which, ironically,

sometimes involve functions which are not linear) which do not have solutions. We

introduce a way to find a “best” approximate solution. You have likely encoun-

tered this idea before. It is covered in our Introduction to Probability and Statistics

(MATH 1530) class as “regression” (see my online notes at http://faculty.etsu.

edu/gardnerr/1530/Chapter5.pdf). It is also covered as a multivariable opti-

mization problem in Calculus 2 (MATH 2110); see the last example in my notes

for “Extreme Values and Saddle Points” where the formula for the regression line

is derived using partial derivatives: http://faculty.etsu.edu/gardnerr/2110/

notes-12e/c14s7.pdf.

Note. Here, we also deal with linear regression as an optimization problem, but

we do so using projections and the following result (the derivation of which appears

in Section 6.1, page 328 of the text).

Theorem 6.5.A. Let ~b ∈ R
n and let W be a subspace of R

n. Then the projection

of ~b onto W , denoted ~bW (see Theorem 6.1 and Definition 6.2), is the unique vector

in W which minimizes the quantity ‖~b − ~w‖ where ~w ∈ W .
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Note. To further explain the problem, we consider Fraleigh and Beauregard’s

Problem 1: According to Hooke’s Law, the distance that a spring stretches is

proportional to the force applied. Suppose that we attach four different weights

a1, a2, a3, and a4 in turn to the bottom of a spring suspended vertically. We measure

the four lengths b1, b2, b3, and b4 of the stretched spring producing the following

data:

i 1 2 3 4

ai (weight in ounces) 2.0 4.0 5.0 6.0

bi (length in inches) 6.5 8.5 11.0 12.5

If we plot the points (ai, bi) in the xy-plane we get

We want to find the “best fit line” of the form f(x) = r0 + r1x. From the graph,

we see that there is not a line passing through each of the points (as Fraleigh

and Beauregard state on page 370: “we expect to have some error in physical

measurements”). So if we use f(x) to create four linear equations in the unknowns

r0 and r1 we get:
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i 1 2 3 4

r0 + r1ai = bi r0 + r1(2.0) = 6.55 r0 + r1(4.0) = 8.5 r0 + r1(5.0) = 11.0 r0 + r1(6.0) = 12.5

This yields four equations in two unknowns and we find that the system is “overde-

termined” (it has more equations than unknowns) and inconsistent. So we wish to

make choices for r0 and r1 that are optimal in some sense.

Note. With data points (a,bi) for i = 1, 2, . . . ,m and the desired function f(x) =

r0 + r1x, we are looking for r0 and r1 such that
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or ~b ≈ A~r. We approach this approximation by minimizing the length of the vector

A~r−~b. Defining di = |(r0+r1x)−bi| we see that di represents the vertical distances

from the data points to the graph of the line y = f(x) (so we are not minimizing

the distance from data points to the line but the distances given in Figure 6.13).

In fact, to minimize ‖A~r−~b‖ we equivalently minimize ‖A~r−~b‖2 which is in terms

of the di’s:

‖A~r −~b‖2 = d2

1
+ d2

2
+ · · · + d2

m.

So we are in fact minimizing the sum of the squares of the distances di. That is

why the technique is called the method of least squares.
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Note. If ~a1 and ~a2 are the columns of A in the system above then vector A~r =

r0~a1 + r1~a2 is in the space W = sp(~a1,~a2) (the column space of A). So for some

given vector r ∈ R we have geometrically the relationship between ~a1, ~a2,~b, Ar, and

Ar −~b as given in Figure 6.14 (think of r as a variable which minimizes ‖Ar −~b‖.

We know by Lemma 6.5.A that ‖Ar −~b‖ = |~b− Ar‖ is minimized when Ar = ~bW ,

where ~bW is the projection of ~b onto subspace W = sp(~a1,~a2).
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Note. With our notation, the projection of ~b onto W = sp(~a1,~a2) is ~bW =

A(ATA)−1~b by “Projection ~bW of ~b on the Subspace W” on page 362 of the text

and on page 4 of the class notes for Section 6.4. So the desired vector r satisfies

Ar = A(ATA)−1AT~b and so r = (ATA)−1A~b. We can alternatively solve for r by

solving the system of equations (ATA)r = A~b.

Example 1. With the data from the Hooke’s Law example above, we have
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mals). So

r = (ATA)−1~b =
1

35





81 −17

−17 4









1 1 1 1

2.0 4.0 5.0 6.0





















6.5

8.5

11.0

12.5

















1

35





109.5

53.5



 .

So we take r0 = 109.5/35 and r1 = 53.5/35. But the measurements of the data are

given to one decimal place, so we approximate as r0 ≈ 3.1 and r1 ≈ 1.5. So we take

as the regression line f(x) = 1.5x +3.1. The graph of the line and data together is

given in Figure 6.15.
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Example 2. In Problem 3 of this section, the size of a population of rabbits is

given for four consecutive years as

ai (year of observation) 1 2 3 4

bi (# rabbits in 1,000s) 3 4.5 8 17

As you see in Calculus 2, populations are expected to follow an exponential growth

function (see my online notes for “Exponential Change and Separable Differential

Equations” at http://faculty.etsu.edu/gardnerr/1920/12/c7s2.pdf). So we

look for a function of the form y = f(x) = resx for some r and s. This function is

equivalent to

ln y = ln(resx) = ln r + ln(esx) = ln r + sx.

So we can treat the equation ln y = ln r + sx as a linear relation between x and

ln y. So we transform the data from points (ai, bi) to points (ai, ln bi):

ai 1 2 3 4

bi 3 4.5 8 17

bi 1.10 1.50 2.08 2.83

where we approximate the logarithm values to two decimal places. Now we take
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We find (see page 376 for some of the computations) that

r = (ATA)−1AT~b ≈
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(where we approximate results to three decimal places). Now this gives ln r ≈ 0.435

and s ≈ 0.577. So ≈ e0.435 ≈ 1.54. Therefore we have used linear regression to get

the regression exponential function f(x) = 1.54e0.577x. See Figure 6.16 for a graph

of the data and f(x).

Note. There is nothing special about the exponential function in the previous ex-

ample. As long as the desired function can be translated into a linear combination,

as in the previous example; we could use a function f(x) = r + sxx for example.

Note. Suppose we perform an experiment where we measure an output value bi

in terms of several input values ai1, ai2, . . . , ain. For example, we might survey

people on how comfortable they currently consider the weather and measure the

temperature, humidity, wind speed, and barometric pressure at the time of their

response. We could then perform a least squares linear regression, as before, in
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search of a function of the form

y = f(x) = r0 + r1x1 + r2x2 + · · · + rnxn

where we have the data points (ai1, 1i2, . . . , ain, bi) for 1 ≤ i ≤ m. As above, define
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If m > n + 1 (so there are more data points than unknowns) then we have an

overdetermined linear systems as before. So by the same geometric argument as

above (just in higher dimensions so that Figure 6.14 no longer holds, strictly speak-

ing). So again we choose r = (ATA)−1AT~b (or (ATA)r = AT~b). This is often called

“multiple linear regression.” Of course we don’t want to do these computations by

hand!

Note. As in the population growth example, we can use multiple linear regression

to find a least squares nonlinear function.

Example 3. In Problem 2 on page 371 we are given the data (ai, bi) (representing

the weight in tons of a boat, ai, and the price of the boat in units of $10,000, bi):

ai 2 4 5 8

bi 1 3 5 12

Eyeing the data, it seems to fall along a parabola. So we find a quadratic function
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of the form y = f(x) = r0 + r1x + r2x
2. We now consider the transformed data:

ai 2 4 5 8

a2

i 4 16 25 64

bi 1 3 5 12

so that
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After computations we find (to three decimal places) r = (ATA)−1AT~b ≈
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so that the regression function is f(x) = 0.207 + 0.10x + 0.183x2. See Figure 6.17.
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Note. We have used the method of least squares to estimate a solution r to the

system of equations A~r = ~b. In fact, we could do this for any overdetermined

system A~x = ~b, in which for any overdetermined system A~x = ~b, in which case we

take x = (ATA)−1AT~b as the least squares solution of the overdetermined solution.

Note. If you have seem simple linear regression before, then you may recall that

there are easy formulas for r0 and r1 in terms of the data. Exercise 6.5.14 gives a

special case of this:

Let (a1, b1), (a2, b2), . . . , (am, bm) be data points. If
∑m

i=1
ai = 0, show

that the line that best fits the data in the least squares sense is given

by r0 + r1x where r0 = (
∑m

i=1
bi) /m and r1 = (

∑m

i=1
aibi)/

(
∑m

i=1
a2

i

)

.

This exercise depends on a = (
∑m

i=1
ai)/m = 0. Any data set can be translated to

satisfy this condition (by replacing ai with ai − a). This observation allows us to

derive the general formula for r0 and r1 without the a = 0 restriction:

r1 =

∑m

i=1
(ai − a)(bi − b)

∑m
i=1

(ai − a)2
and r0 = b − r1a

where a = (
∑m

i=1
ai)/m and b = (

∑m

i=1
bi)/m. An important topic we have not

touched on here is correlation and the correlation coefficient.
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