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Chapter 7. Change of Basis

7.2 Matrix Representations and Similarity

Note. The purpose of this section is to consider the effect that choosing different

bases for coordinatization has on the matrix representation of a linear transfor-

mation. All results are stated in terms of R
n but (similar to the examples in the

notes for the previous section) can be translated into applications in any finite-

dimensional vector space using the Fundamental Theorem of Finite Dimensional

Vector Space (the proof of which is based on coordinatization).

Note. In Theorem 3.10, “Matrix Representations of Linear Transformations,”

in Section 3.4 we saw that if V and V ′ are vector spaces with ordered bases B =

(~b1,~b2, . . . ,~bn) and B′ = (~b′
1
,~b′

2
, . . . ,~b′m), respectively, then the matrix representation

of T relative to B,B′ is

RB,B′ =
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

...
...

...

T (~b1)B′ T (~b2)B′ · · · T (~bn)B′

...
...

...











.

This matrix relates to the transformation T and coordinate vectors T (~v)B′ =

RB,B′~vB for all ~v ∈ V . Just as we represent compositions of linear transformations

with products of their standard matrix representation in Section 2.3, if we have

vector spaces V , V ′, and V ′′ with ordered bases B, B′, and B′′, respectively, and

linear transformations T : V → V ′ and T ′ : V ′ → V ′′ with matrix representations

RB,B′ and RB′,B′′, respectively, then the matrix representation of transformation

T ′ ◦ T : V → V ′′ is RB,B′′ = RB′,B′′RB,B′. Here, we have for ~v ∈ V ,

((T ′ ◦ T )~v)B′′ = (T ′(T~v))B′′ = (T ′(RB,B′~vB))B′′ = RB′,B′′RB,B′~vB.
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Note. If T : R
n → R

n is a linear transformation then we can find a matrix

representation of it similar to what we described above by considering

RB =











...
...

...

T (~b1)B T (~b2)B · · · T (~bn)B

...
...

...











where B = (~b1,~b2, . . . ,~bn). If we wich to find the matrix representation of T with

respect to ordered basis B′, we can take ~vB′ ∈ R
n and (1) convert it to B coordinates

using CB′,B, (2) applying T using RB, and (3) converting back to B′ coordinates.

This gives the relationship RB′ = CB,B′RBCB′,B. Since CB,B′ and CB′,B are inverses,

we have RB′ and RB related as RB′ = C−1RBC (where C = CB′,B). So we see that

RB′ and RB are similar matrices (see Definition 5.4 in section 5.2). That is, matrix

representations of the same linear transformations of the same linear transformation

relative to different bases are similar. We summarize this in the following.

Theorem 7.1. Similarity of Matrix Representations of T .

Let T be a linear transformation of a finite-dimensional vector space V into it-

self, and let B and B′ be ordered bases of V . Let RB and RB′ be the matrix

representations of T relative to B and B′, respectively. Then

RB′ = C−1RBC

where C = CB′,B is the change-of-coordinates matrix from B′ to B. Hence, RB′

and RB are similar matrices.

Example. Page 406 number 2.
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Theorem 7.A. Significance of the Similarity Relationship for Matrices.

Two n×n matrices are similar if and only if they are matrix representations of the

same linear transformation T relative to suitable ordered bases.

Note. Certain properties of matrices are independent of the coordinate system in

which they are expressed. These properties are called coordinate-independent. For

example, we will see that the eigenvalues of a matrix are coordinate-independent

quantities.

Theorem 7.2. Eigenvalues and Eigenvectors of Similar Matrices.

Let A and R be similar n × n matrices, so that R = C−1AC for some invertible

n×n matrix C. Let the eigenvalues of A be the (not necessarily distinct) numbers

λ1, λ2, . . . , λn.

1. The eigenvalues of R are also λ1, λ2, . . . , λn.

2. The algebraic and geometric multiplicity of each λi as an eigenvalue of A remains

the same as when it is viewed as an eigenvalue of R.

3. If ~vi ∈ R
n is an eigenvector of the matrix A corresponding to λi, then C−1~vi is

an eigenvector of the matrix R corresponding to λi.

Note. We now give a proof of Theorem 7.2(1). Proofs of parts (2) and (3) are to

be given in Page 407 Numbers 24 and 25, respectively.
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Definition. The geometric multiplicity of an eigenvalue λ of a transformation T

is the dimension of the eigenspace Eλ = {~v ∈ V | T (~v) = λ~v}. The algebraic

multiplicity λ is the algebraic multiplicity of the λ as a root of the characteristic

polynomial of T (technically, the characteristic polynomial of the matrix which

represents T ).

Note. Recall that Theorem 5.4, “A Criterion for Diagonalization,” states that n×n

matrix A is diagonalizable if and only if the algebraic multiplicity of each eigenvalue

is equal to its geometric multiplicity. This motivates the following definition of

diagonalizable for a linear transformation on a finite-dimensional vector space.

Definition 7.2. A linear transformation T of a finite-dimensional vector space V

into itself is diagonalizable if V has an ordered basis consisting of eigenvectors of

T .

Example. Page 407 Number 20.
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