Introduction to Algebra, MATH 4127

Homework 2, Sections I.2 and I.3

Due Friday September 12, 2014 at 2:30

Write in complete sentences!!! *Explain* what you are doing and convince me that you understand what you are doing and why. Justify all steps by quoting the relevant results from the textbook.

- **I.2.A.** Determine whether the binary operation $a * b = \sin(a+b)$ on \mathbb{R} is commutative and whether it is associative. If the property holds, give a proof. If the property does not hold, give a counterexample.
- **I.2.23b.** Let H be the subset of $M_2(\mathbb{R})$ consisting of all matrices of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ for $a, b \in \mathbb{R}$. Is H closed under matrix multiplication? If so, give a (general) proof. If not, a specific example showing violation of closure is sufficient.
- **I.2.36.** Suppose that * is an associative binary operation on a set S. Let $H = \{a \in S \mid a * x = x * a \text{ for all } x \in S\}$. Prove that H is closed under *. (We think of H as consisting of all elements of S that commute with every element of A.)
- **I.3.8.** Determine whether $\phi : M_2(\mathbb{R}) \to \mathbb{R}$ where $\phi(A)$ is the determinant of matrix A, is an isomorphism between $\langle M_2(\mathbb{R}), \cdot \rangle$ and $\langle \mathbb{R}, \cdot \rangle$. If so, then prove ϕ is an isomorphism and if not then explain which part of the definition of isomorphism is violated. Recall that an isomorphism is a one to one and onto mapping with the homomorphism property. HINT: For all $A, B \in M_2(\mathbb{R})$ we have $\det(AB) = \det(A)\det(B)$.
- **I.3.27.** Prove that if $\phi : S \to S'$ is an isomorphism of $\langle S, * \rangle$ with $\langle S', *' \rangle$ and $\psi : S' \to S''$ is an isomorphism of $\langle S', *' \rangle$ with $\langle S'', *'' \rangle$, then the composite function $\psi \circ \phi$ is an isomorphism of $\langle S, * \rangle$ with $\langle S'', *'' \rangle$. You may assume that $\psi \circ \phi$ is one to one and onto, and so you only need to show that the homomorphism property is satisfied.