Introduction to Algebra, MATH 5127

Homework 6, Section II.9, Solutions Due Friday October 17, 2014 at 2:30

Write in complete sentences!!! *Explain* what you are doing and convince me that you understand what you are doing and why. Justify all steps by quoting the relevant results from the textbook.

II.9.A. The alternating group A_4 consists of all even permutations on the set $\{1, 2, 3, 4\}$. In terms of the cyclic notation and as a product of transpositions, these permutations are: $\alpha_1 = \iota = (1)$, $\alpha_2 = (1, 2)(3, 4), \alpha_3 = (1, 3)(2, 4), \alpha_4 = (1, 4)(2, 3), \alpha_5 = (1, 2, 3) = (1, 3)(1, 2), \alpha_6 = (2, 4, 3) = (2, 3)(2, 4), \alpha_7 = (1, 4, 2) = (1, 2)(1, 4), \alpha_8 = (1, 3, 4) = (1, 4)(1, 3), \alpha_9 = (1, 3, 2) = (1, 2)(1, 3), \alpha_{10} = (1, 4, 3) = (1, 3)(1, 4), \alpha_{11} = (2, 3, 4) = (2, 4)(2, 3), \text{ and } \alpha_{12} = (1, 2, 4) = (1, 4)(1, 2).$ Fill in the upper left 6×6 part of this multiplication table for A_4 . Show your computations.

	α_1	α_2	$lpha_3$	$lpha_4$	α_5	$lpha_6$	α_7	$lpha_8$	$lpha_9$	α_{10}	α_{11}	α_{12}
α_1												
α_2												
α_3												
α_4												
α_5												
$lpha_6$												
α_7												
α_8												
α_9												
α_{10}												
α_{11}												
α_{12}												

Does this information reveal any subgroups of A_4 ?

- **II.9.27(a).** Prove that every permutation in S_n $(n \ge 3)$ can be written as a product of at most n-1 transpositions. HINT: On page 90, a cycle is written as a product of transpositions.
- **II.9.27(b).** Prove that every permutation in S_n that is not a cycle can be written as a product of at most n-2 transpositions.
- **II.9.39.** Prove that S_n is generated by $\{(1, 2), (1, 2, ..., n)\}$. HINT: Show that as r varies, $\sigma = (1, 2, ..., n)^r (1, 2) (1, 2, ..., n)^{n-r}$ gives all transpositions in S_n of the form (1, 2), (2, 3), ..., (n 1, n), (n, 1). Then show that any transposition is a product of transpositions of this special form. NOTE: Since this gives a generating set of S_n of size two, we could use this to produce a Cayley digraph of S_n .