Introduction to Algebra, MATH 4127 Homework 8, Sections II.13 and II.14, Solutions

Due Friday October 31, 2014 at 2:30

Write in complete sentences!!! *Explain* what you are doing and convince me that you understand what you are doing and why. Justify all steps by quoting the relevant results from the textbook.

- **II.13.A.** Let $\phi : \mathbb{R} \to \mathbb{R}^*$, where \mathbb{R} is additive and \mathbb{R}^* (the nonzero real numbers) is multiplicative, be given by $\phi(x) = e^x$. Is ϕ a homomorphism? Is ϕ and isomorphism?
- **II.13.29.** Let G be a group, and let $g \in G$ be fixed. Let $\phi_g : G \to G$ be defined by $\phi_g(x) = gxg^{-1}$ for $x \in G$. Prove that i_g is an isomorphism of G with itself, called an *automorphism* of G.
- **II.13.B** Let $\phi : G \to G'$ and $\psi : G \to G'$ both be group homomorphisms. Let $H = \{g \in G \mid \phi(g) = \psi(g)\}$. Prove or disprove that H is a subgroup of G.
- **II.14.7.** Find the order of the group $(\mathbb{Z}_2 \times S_3)/(\langle 1, \rho_1 \rangle)$. HINT: The elements of the quotient group are the cosets of $\langle 1, \rho_1 \rangle$.
- **II.14.34.** Prove that if finite group G has exactly one subgroup H of a given order, then H is a normal subgroup of G. HINT: Let $i_g : G \to G$ be the inner automorphism defined as $i_g(x) = gxg^{-1}$ for all $x \in G$. Apply i_g to H and use Exercise 5.41, which implies that $i_g[H]$ is a subgroup of G.