Graph Automorphism Groups

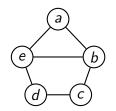
Robert A. Beeler, Ph.D.

East Tennessee State University

February 23, 2018

What is a graph?

A graph G = (V, E) is a set of vertices, V, together with as set of edges, E. For our purposes, each edge will be an unordered pair of distinct vertices.



$$V(G) = \{a, b, c, d, e\}$$

 $E(G) = \{ab, ae, bc, be, cd, de\}$

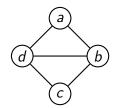
Graph Automorphisms

A graph automorphism is simply an isomorphism from a graph to itself. In other words, an automorphism on a graph G is a bijection $\phi:V(G)\to V(G)$ such that $uv\in E(G)$ if and only if $\phi(u)\phi(v)\in E(G)$.

Note that graph automorphisms *preserve adjacency*. In layman terms, a graph automorphism is a symmetry of the graph.

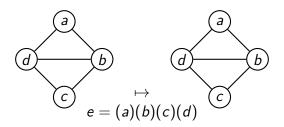
An Example

Consider the following graph:



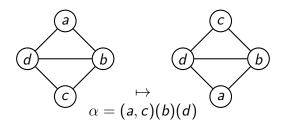
An Example (Part 2)

One automorphism simply maps every vertex to itself. This is the *identity* automorphism.



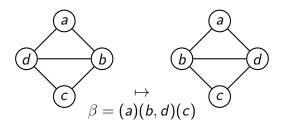
An Example (Part 3)

One automorphism switches vertices a and c.



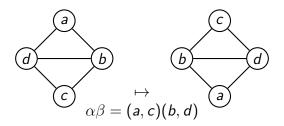
An Example (Part 4)

One automorphism switches vertices b and d.



An Example (Part 5)

The final automorphism switches vertices a and c and also switches b and d.



The Automorphism Group

Let Aut(G) denote the set of all automorphisms on a graph G. Note that this forms a *group* under function composition. In other words,

- (i) Aut(G) is <u>closed</u> under function composition.
- (ii) Function composition is <u>associative</u> on Aut(G). This follows from the fact that function composition is associative in general.
- (iii) There is an identity element in Aut(G). This is mapping e(v) = v for all $v \in V(G)$.
- (iv) For every $\sigma \in Aut(G)$, there is an <u>inverse</u> element $\sigma^{-1} \in Aut(G)$. Since σ is a bijection, it has an inverse. By definition, this is an automorphism.

Facts about graph automorphisms

Graph automorphisms are degree preserving. In other words, for all $u \in V(G)$ and for all $\phi \in Aut(G)$, $deg(u) = deg(\phi(u))$.

WHY? Let $u \in V(G)$ with neighbors $u_1,...,u_k$. Let $\phi \in Aut(G)$. Since ϕ preserves adjacency, it follows that $\phi(u_1),...,\phi(u_k)$ are neighbors of $\phi(u)$. Thus, $deg(\phi(u)) \geq k$. If $v \notin \{u_1,...,u_k\}$ is a neighbor of $\phi(u)$, then $\phi^{-1}(v)$ is a neighbor of u. Therefore, the neighbors of $\phi(u)$ are precisely $\phi(u_1),...,\phi(u_k)$. Ergo, $deg(u) = deg(\phi(u))$.

Facts about graph automorphisms (Part 2)

Graph automorphisms are *distance preserving*. In other words, for all $u, v \in V(G)$ and for all $\phi \in Aut(G)$, $d(u, v) = d(\phi(u), \phi(v))$.

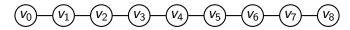
WHY? Let $u=u_0,u_1,...,u_{d-1},u_d=v$ be a shortest path from u to v. Note that, $\phi(u)=\phi(u_0),\phi(u_1),...,\phi(u_{d-1}),\phi(u_d)=\phi(v)$ is a path from $\phi(u)$ to $\phi(v)$. Thus, $d(\phi(u),\phi(v))\leq d=d(u,v)$. Suppose that $\phi(u),v_1,...,v_{m-1},\phi(v)$ is a shortest path from $\phi(u)$ to $\phi(v)$. It follows that $u,\phi^{-1}(v_1),...,\phi^{-1}(v_{m-1}),v$ is a shortest path form u to v. It follows that $d(u,v)\leq d(\phi(u),\phi(v))$. Hence, we have equality.

Facts about graph automorphisms (Part 3)

The automorphism group of G is equal to the automorphism group of the complement \overline{G} .

WHY? Note that automorphisms preserve not only adjacency, but non-adjacency as well. Hence, $\phi \in Aut(G)$ if and only if $\phi \in Aut(\overline{G})$. It follows that $Aut(G) = Aut(\overline{G})$.

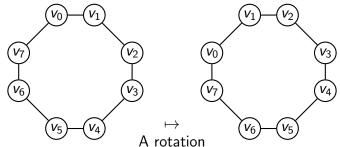
Graph Families - the Path



By the above comments, v_0 can only map to itself or to the other endpoint v_{n-1} . Thus the only automorphisms are the identity and $\phi(v_i) = v_{n-i-1}$. Hence, $Aut(P_n) \cong \mathbb{Z}_2$.

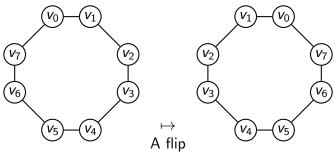
Graph Families - Cycles

The automorphism group of the cycle C_n is generated by two operations:



Graph Families - Cycles

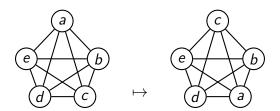
The automorphism group of the cycle C_n is generated by two operations:



So, $Aut(C_n) \cong D_n$, the *n*th dihedral group.

Graph Families - the Complete Graph

Note that any transposition of vertices is possible on the complete graph. Ergo, $Aut(K_n) \cong S_n$, the *n*th symmetric group.

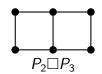


Graph Families - Complete Bipartite

For the complete bipartite graph, $K_{n,m}$, we get all permutations on X and all permutations on Y. If n=m, then we also get the permutation that switches x_i with y_i for all i. Thus, if $n \neq m$, then $Aut(K_{n,m}) \cong S_n \times S_m$. If n=m, then $Aut(K_{n,m}) \cong S_n^2 \ltimes \mathbb{Z}_2$.

The Cartesian product

Recall that the *Cartesian product* of graphs G and H is the graph with vertex set $\{(g,h):g\in V(G),h\in V(H)\}$. Two vertices (g_1,h_1) and (g_2,h_2) are adjacent if and only if either (i) $g_1=g_2$ and $h_1h_2\in E(H)$ or (ii) $h_1=h_2$ and $g_1g_2\in V(G)$. This graph is denoted $G\Box H$



18 / 1

Cartesian Products (Part 2)

 $Aut(G) \times Aut(H)$ is a subgroup of $Aut(G \square H)$.

WHY? Let $\phi \in Aut(G)$ and let $\theta \in Aut(H)$. Consider the mapping $\xi : V(G \square H) \to V(G \square H)$ defined by $\xi((g,h)) = (\phi(g),\theta(h))$. We claim that ξ is an automorphism of $G \square H$. Suppose that (g_1,h_1) and (g_2,h_2) are adjacent in $G \square H$. If $h_1=h_2$, then $\theta(h_1)=\theta(h_2)$. Further, g_1 and g_2 would be adjacent in G. It follows that $\phi(g_1)$ and $\phi(g_2)$ are adjacent in G. Since $\xi((g_1,h_1))=(\phi(g_1),\theta(h_1))$ and $\xi((g_2,h_2))=(\phi(g_2),\theta(h_2))$, it follows that $\xi((g_1,h_1))$ and $\xi((g_2,h_2))$ are adjacent in $G \square H$. A similar argument holds if $g_1=g_2$ and h_1 is adjacent to h_2 in H.

Cartesian Products (Part 3)

A natural question is when $Aut(G \square H)$ contains an element that is not of the form described above. To do this, we need a bit more terminology. A graph D is a *divisor* of a graph G if their exists a graph G such that $G \cong D \square H$. A graph G is *prime* if G has no divisor other than itself and G and G and G and G are relatively prime if they share no common factor other than G with these terms in mind, we present results about the automorphism group of Cartesian products.

¹Examples of prime graphs include trees, odd cycles, and complete graphs.

Cartesian Products (Part 4)

- (i) Every connected graph G can be written as $G \cong G_1 \square \cdots \square G_k$, where the G_i are prime graphs. This factorization is unique, up to permutations on the prime factors².
- (ii) If G is a connected graph, then Aut(G) is generated by $Aut(G_i)$ and the transpositions interchanging isomorphic prime divisors.
- (iii) In particular, if the G_i are relatively prime connected graphs, then Aut(G) is the direct product of the $Aut(G_i)$ over all i.

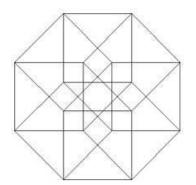
The factorization may not be unique for disconnected graphs. As an example, note that $(K_1 \cup K_2 \cup K_2^2) \square (K_1 \cup K_2^3)$ is isomorphic to $(K_1 \cup K_2^2 \cup K_2^4) \square (K_1 \cup K_2)$.

Cartesian Products (Part 5)

The comment on the previous slide about "transpositions interchanging isomorphic prime divisors" deserves a bit more explanation. Suppose that the connected graph G has prime factorization $G = G_1 \square \cdots \square G_n$, where G_i and G_i are isomorphic prime divisors for some $i \neq j$. Thus, there is isomorphism $\psi: G_i \to G_i$. For all $k \in \{1, ..., |V(G_i)|\}$, suppose that $v_{i,k} \in V(G_i)$ and $v_{i,k} \in V(G_2)$ such that $\psi(v_{i,k}) = v_{i,k}$. Then there is an automorphism $\zeta \in Aut(G_i \square G_i)$ such that $\zeta = (v_{i,1}, v_{i,1})...(v_{i,|V(G_2)|}, v_{i,|V(G_1)|})$. In other words, ζ "swaps" the isomorphic prime factors G_i and G_i .

Cartesian Products (Part 6)

In particular, for the hypercube Q_n , $Aut(Q_n) \cong \mathbb{Z}_2^n \ltimes S_n$.



23 / 1

The Inverse Problem

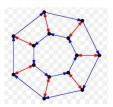
Earlier in this talk, we have concentrated on the following problem: "Given a graph G, determine the automorphism group of G." In 1936, Dénes König (1884-1944) proposed the following problem his book *Theorie der endlichen und unendlichen Graphen*³: "Given a finite group Γ , find a graph G such that $Aut(G) \cong \Gamma$."

This problem was solved by Roberto Frucht (1906-1997) in 1939.

Graph Automorphism Groups

Cayley Graphs

Frucht's construction makes heavy use of Cayley graphs. These were introduced by Arthur Cayley (1821-1895) in 1878. Suppose that Γ is a group and that S is a generating set of Γ . $Cay(\Gamma, S)$ has a vertex for each element of the group Γ . Let $x,y\in V(Cay(\Gamma,S))$. There is a arc pointing from x to y if and only if there exists an $g\in S$ such that xg=y. Traditionally, the different generators are represented by different colored arcs.



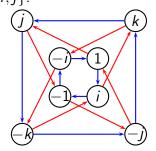
Frucht's Theorem

The idea behind the proof of Frucht's Theorem is quite simple

- (i) Begin with the Cayley graph $Cay(\Gamma, S)$.
- (ii) Replace each arc of color c_i with a graph g_i that preserves the orientation, but does not introduce any new symmetry.

Example - The Quaternion Group

As an example, take the quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = ijk = -1\}$. A generating set for this group is $S = \{i, j\}$.

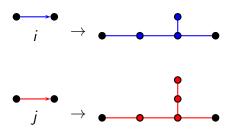


The Cayley Graph $Cay(Q_8, \{i, j\})$

27 / 1

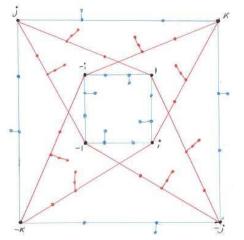
Example - The Quaternion Group (Part 2)

We then replace each of the arcs as follows:



Example - The Quaternion Group (Part 3)

The result is the following:

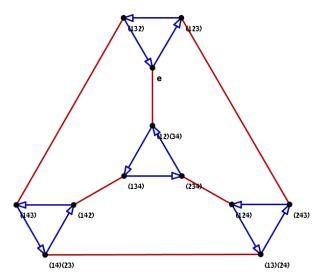


29 / 1

Example - The Alternating Group

Consider the Consider the Alternating group A_4 . This is the group of order 12 consisting of all even permutations on the set $\{1,2,3,4\}$. This group is generated by (1,2,3) and (1,2)(3,4). We represent right multiplication by (1,2,3) as a blue arc. We represent right multiplication by (1,2)(3,4) as a red edge. Note that since (1,2)(3,4) is its own inverse, the red edges are undirected.

Example - The Alternating Group (Part 2)

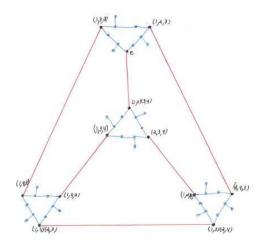


Example - The Alternating Group (Part 3)

We then do our replacements as we did above.

Example - The Alternating Group (Part 4)

Our result:



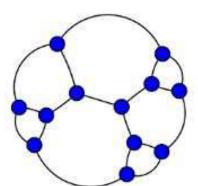
Other Frucht-type constructions

As it turns out, graphs are rather pliable things. Frucht's theorem still holds, even if we put additional restrictions on our graphs. For example:

- (i) Given a finite group Γ , there is a k-regular graph G such that $Aut(G) \cong \Gamma$.
- (ii) Given a finite group Γ , there is a k-vertex-connected graph G such that $Aut(G) \cong \Gamma$.
- (iii) Given a finite group Γ , there is a k-chromatic graph G such that $Aut(G) \cong \Gamma$.

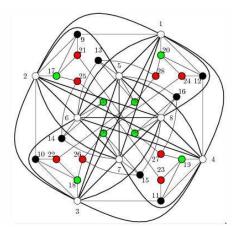
Minimum graphs with a given group

A natural problem is given a group Γ , find the minimum graph whose automorphism group is isomorphic to Γ . For example, below we have the Frucht graph. This is the smallest 3-regular graph whose automorphism group is the trivial group.



Minimum graphs with a given group (Part 2)

Just for fun, below is the smallest graph whose automorphism group is the quaternion group. This graph has 32 vertices.



Other Problems - Edge Automorphisms

Throughout this talk, we have looked at *vertex automorphisms*. We can just as easily talk about *edge automorphisms*.

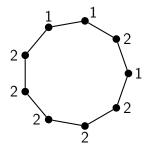
An edge automorphism is a bijection $\xi: E(G) \to E(G)$ such that the edges x and y share and endpoint in G if and only if the edges $\xi(x)$ and $\xi(y)$ share an endpoint in G. Again, the set of edge automorphisms forms a group under function composition. A natural question is to determine the edge automorphism group of a given graph.

Other Problems - Distinguishing Labelings

In 1996, Albertson and Collins introduced the distinguishing number of a graph. For the distinguishing number, we label the vertices of G with (not-necessarily distinct) elements of $\{1,...,k\}$. The goal is to do this in such a way that no element of Aut(G) preserves all of the vertex labels. However, we wish to do this in such a way that we use the minimum number of labels as possible. This minimum number is the distinguishing number.

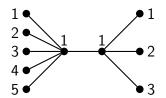
Other Problems - Distinguishing Labelings (Part 2)

As an example, consider the cycle:



Other Problems - Distinguishing Labelings (Part 3)

As a second example, consider the double star:



Other Problems - Distinguishing Chromatic Numbers

In 2006, this was followed by a paper by Collins and Trenk that introduced the *distinguishing chromatic number of a graph*. This is a distinguishing labeling that is also a proper coloring.

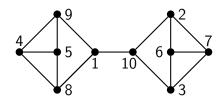
Other Problems - Palindromic Labelings

In December 2017, I submitted a manuscript introducing palindromic labelings. A palindromic labeling is a bijection $f: V(G) \to \{1,...,|V(G)|\}$ such that if $uv \in E(G)$, then there exists $x,y \in V(G)$ such that $xy \in E(G)$, f(x) = |V(G)| + 1 - f(u), and f(y) = |V(G)| + 1 - f(v). A graph that admits a palindromic labeling is a palindromic graph. Examples of palindromic graphs include paths, cycles, and complete graphs.

Equivalently, a graph G is palindromic if there exists $\phi \in Aut(G)$ such that ϕ^2 is the identity and ϕ has at most one fixed point.

Other Problems - Palindromic Labelings (Part 2)

An example of a palindromic labeling:



Questions?

