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Section I.7. Generating Sets and Cayley Digraphs

Note. In this section, we generalize the idea of a single generator of a group to a

whole set of generators of a group. Remember, a cyclic group has a single generator

and is isomorphic to either Z (if it is of infinite order) or Zn (if it is of finite order),

by Theorem 6.10. However, there are more groups than just the ones which are

cyclic.

Example 7.1. Recall the Klein 4-group, V :

∗ e a b c

e e a b c

a a e c b

b b c e a

c c b a e

Then the set {a, b} is said to generate V since every element of V can be written

in terms of a and b: e = a2, a = a1, b = b1, and c = ab. We can also show that V

is generated by {a, c} and {b, c}. In addition, {a, b, c} is a generating set (though

we could view one of the elements in this generating set as unnecessary).

Exercise 7.2. Find the subgroup of Z12 generated by {4, 6}.

Solution. We get all multiples of 4 and 6, so the subgroup contains 0, 4, 8, and

6. We get sums of 4 and 6: 4 + 6 = 10. Also, 2 ≡ 10 + 4 (mod 12) = 4 + 4 + 6. So

the subgroup is {0, 2, 4, 6, 8, 10}. Of course, we cannot generate any odd elements

of Z12.
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Note. The following result goes in a little bit of a different direction in terms of

subgroups.

Theorem 7.4. The intersection of some subgroups Hi of a group G for i ∈ I is

again a subgroup of G.

(Note. Set I is called an index set for the intersection. In general, the index set

may not be finite—it may not even be countable. Now for the proof.)

Note. For any set {ai | i ∈ I} with ai ∈ G, there is at least one subgroup of

G containing all ai (namely, the improper subgroup G). So if the intersection of

all subgroups of G containing {ai | i ∈ I} is taken, a subgroup of G containing

{ai | i ∈ I} results (called the “smallest subgroup of G containing {ai | i ∈ I}”).

This justifies the following definition.

Definition 7.5. Let G be a group and let ai ∈ G for i ∈ I. The smallest subgroup

of G containing {ai | i ∈ I} is the subgroup generated by the set {ai | i ∈ I}. This

subgroup is defined as the intersection of all subgroups of G containing {ai | i ∈ I}:

H = ∩i∈JHj where the set of all subgroups of G containing {ai | i ∈ I} is {Hj |

j ∈ J}. If this subgroup is all of G, then the set {ai ∈ i ∈ I} generates G and the

ai are generators of G. If there is a finite set {ai | i ∈ I} that generates G, then G

is finitely generated.
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Note. The following result shows how the elements of a group are related to the

generating set.

Theorem 7.6. If G is a group and ai ∈ G for i ∈ I, then the subgroup H of G

generated by {ai | i ∈ I} has as elements precisely those elements of G that are

finite products of integral powers of the ai, where the powers of a fixed ai may

occur several times in the product.

Note. We now associate directed graphs (“digraphs”) with groups based on a

generating set. Such digraphs are called Cayley digraphs or Cayley diagrams.

Definition (not explicit in the text). For a group G with generating set

{a1, a2, . . . , an}, define a digraph with vertex set V with the same elements as the

elements of G. For each pair of vertices v1 and v2 define an arc (v1, v2) of color ai

if v1ai = v2. The totality of all arcs form the arc set A of the digraph. The vertex

set V and arc set A together form a Cayley digraph for group G with respect to

generating set {a1, a2, . . . , an}.

Note. We will only deal with small generating sets and instead of colors, we’ll

code the arcs with different types of arcs: −→ or .
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Note. The text uses the convention that if a generator g is its own inverse (i.e.,

g2 = e) then for any arc (v1, v2) (for which we have v1g = v2) we also have arc

(v2, v1) (since (v1g)g = v2g or v1e = v2g or v1 = v2g), and these two arcs are

replaced with a single undirected edge. Strictly speaking, this does not yield a

digraph, but a mixed graph (which has both edges and arcs).

Note. Our text doesn’t really use Cayley digraphs except in this section. Ad-

ditional details on Cayley digraphs can be found in Groups and Their Graphs by

Israel Grossman and Wilhelm Magnus, New York: Yale University Press, 1964.

Example 7.7. Consider Z6 with generating set {1} where right addition by 1 is

represented by an arc of the form −→. If the generating set of Z6 is {5} and right

addition by 5 is represented by an arc of the form , then we get the following:
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Example 7.10. With group Z6 and generating set {2, 3}, with right addition by

2 represented by −→ and right addition by 3 represented by then we get:

Note. The Cayley digraph for a graph must satisfy:

1. The digraph is connected. That is, we can get from any vertex g to any vertex

h by traveling along arcs, starting at g and ending at h. The reason this is

true is that the Cayley digraph is based on a generating set and that every

equation gx = h has a solution x (and x can be expressed in terms of the

generating set).

2. At most one arc goes from a vertex g to a vertex h. This is because gx = h

has a unique solution. If x is in the generating set, then the arc from g to h

is present. If x is not in the generating set, then the arc from g to h is not

present.

3. Each vertex g has exactly one arc of each color starting at g, and one arc of

each color ending at g. This is because the arc of color ai going out of g goes

to vertex gai. The arc of color ai coming into g is the arc coming from (ga−1
i ).
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4. If two different sequences of arcs start at g and end at h, then if we follow

these same two sequences by starting at any vertex u, both will end at the

same vertex. This is because the two sequences represent some product of

group generators. The two sequences produce the same element of the group

because the equation gx = h has a unique solution.

Note. The text states that any digraph which satisfies these 4 properties is a

Cayley digraph for some group (though no proof or reference is given). The text also

claims that some finite groups were first discovered by finding the corresponding

Cayley digraphs (again, without a reference—see page 71).

Exercise 7.11. How can we tell from a Cayley digraph whether or not the corre-

sponding group is commutative?

Solution. A group is commutative if and only if its generators commute (since

each element is a product of the generators). The generators commute if and only

if for each vertex u of the Cayley digraph, we follow an arc of color ai to a new

vertex v and then follow an arc of color aj to vertex w, AND ALSO we can take

the arc of color aj from vertex u to some vertex v′ and then take the arc of color

ai from v′ and end at vertex w again:
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where ai is represented by −→ and aj is represented by .

Exercise 7.19. For n ≥ 3, there exists a nonabelian group with 2n elements that

is generated by two elements of order 2.

Proof. We have a generator g of order 2 if g2 = e and so if g is represented as −→

then between any two vertices u and v we have the Cayley digraph of the form

which the text (and also the Groups and Their Graphs book) represents as

So we can show the existence of such a group by giving the Cayley digraph and

violating the property of a Cayley digraph for an abelian group as given in Exercise

7.11. This is accomplished as follows:

(Notice this does not work for n = 2 since it yields an abelian group in that case—in

fact, it gives the Cayley digraph of the Klein 4-group V .)
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Example. Consider the Cayley digraph given below. This is the Cayley digraph

for the quaternions, denoted Q8, which will be encountered again in Section IV.24.

The dotted arrow represents multiplication on the right by i and the solid arrow

represents multiplication on the right by j. Create a multiplication table for the

quaternions.

Solution. For multiplication on the right by i we have: 1 · i = i, i · i = −1,

−1 · i = −i, −i · i = 1, j · i = −k, −k · i = −j, −j · i = k, and k · i = j.

For multiplication on the right by j we have: 1 · j = j, j · j = −1, −1 · j = −j,

−j · j = 1, i · j = k, k · j = −i, −i · j = −k, and −k · j = i. This gives us 16

of the entries in the multiplication table for Q8. Since 1 is the identity, we get

another 15 entries. All entries can be found from this information. For example,

k · k = k · (i · j) = (k · i) · j = (j) · j = −1. The multiplication table is:
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· 1 i j k −1 −i −j −k

1 1 i j k −1 −i −j −k

i i −1 k −j −i 1 −k j

j j −k −1 i −j k 1 −i

k k j −i −1 −k −j i 1

−1 −1 −i −j −k 1 i j k

−i −i 1 −k j i −1 k −j

−j −j k 1 −i j −k −1 i

−k −k −j i 1 k j −i −1

Notice that each of i, j, and k are square roots of −1. So the quaternions are, in a

sense, a generalization of the complex numbers C.
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