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Section IV.21. The Field of Quotients

of an Integral Domain

Note. This section is a homage to the rational numbers! Just as we can start with
the integers Z and then “build” the rationals by taking all quotients of integers
(while avoiding division by 0), we start with an integral domain and build a field
which contains all “quotients” of elements of the integral domain. This is our first
encounter with the idea of starting with an algebraic structure and then extending
it to a larger, more complete structure. In this case we are extending an integral
domain to a field that contains all inverses of elements of the integral domain (and

possibly [probably] more).

Note. We start with integral domain D and extend it to a field of quotients F

following the text’s steps:

Step 1. Define the elements of F'.

Step 2. Define 4+ and - on F.

Step 3. Verify the field axioms for + and - on F.

Step 4. Show that F' can be viewed as containing D as an integral subdomain.
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Note. For part of Step 1, we define the set S = {(a,b) | a,b € D,b # 0}. The
analogy with Q is that we think of p/q¢ € Q as (p,q) € Z x Z. Notice that for

p1/q1,p2/q2 € Q if we have p1/q1 = pa/qo then pigas = pogr. This is the motivation
for the next definition (and notice that equality of the “quotients” is dealt with in

terms of multiplication).

Definition 21.1. Two elements (a,b), (¢c,d) € S are equivalent, denoted (a,b) ~
(¢,d), if and only if ad = be.

Lemma 21.2. The relation ~ between elements of S is an equivalence relation.

Note. To complete Step 1, we define F’ as the set of equivalence classes of S under

~. We denote the equivalence class containing (a, b) as [(a,b)].

Note. For Step 2, we define + and - on F, again by mimicing the behavior of Q,

as given in the following lemma.

Lemma 21.3. For [(a,b)],[(c,d)] € F, the equations
[(a,b)] + [(¢,d)] = [(ad + be, bd)]

and [(a, )] - [(¢,d)] = [(ac, bd)]

give well-defined operations of addition and multiplication on F.
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Note. The real claim of Lemma 21.3 is that + and - can be defined using any
element of an equivalence class. That is, the sum and product of two elements of
F' can be computed using any representatives of the equivalence classes involved in

the sum and product.

Lemma. (Step 3) F as defined above is a field. That is,
1. +in F'is commutative.
2. 4+ in F is associative.
3. [(0,1)] is the additive identity in F.
4. [(—a,b)] is the additive inverse for [(a,b)] in F.
5. - is associative in F.

6. - is commutative in F'.

7. The distribution laws hold in F':

(@, )] - ([(e; )] + [(r, 8)]) = [(a,0)] - [(¢, )] + [(a, b)] - [(r, 5)]
(right distribution will follow from commutivity of -).
8. [(1,1)] is the multiplicative identity in F.

9. If [(a,b)] € F, [(a,b)] # [(0,1)], then [(b,a)] € F is the multiplicative inverse
of [(a,b)].
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Note. “Lemma” establishes that F' is a field (Step 3). We now only need to

establish that D is an integral subdomain of F'. This is the next lemma.

Lemma 21.4. (Step 4) The map i : D — F given by i(a) = [(a,1)] is an

isomorphism of D with a subring of F

Theorem 21.5. Any integral domain D can be enlarged to (or embedded in) a
field F" such that every element of F' can be expressed as a quotient of two elements
of D. (Strictly speaking, every element of F' is a quotient of two elements of [D]
where i is as defined in Lemma 21.4.) Such a field is a field of quotients of D.
Proof. The lemmas of this section establish that the field exists. Let [(a,b)] € F.
Then

[(a,0)] = [(a, D] - [(1,0)] = i(a) - (i(b))~" = i(a) /(D).
Here, “/” means multiplication by the multiplicative inverse. Notice that the mul-
tiplicative inverse of [(b,1)] is [(1,b)], so the inverse of i(b) is (i(b))~! since 4 is an

isomorphism from D to i[D]. 1

Note. The next result shows that the field F' created above containing integral

domain D is minimal and that the field of quotients of D is unique.

Theorem 21.6. Let F' be a field of quotients of D and let L be any field containing
D. Then there exists a map ¢ : F© — L that gives an isomorphism of F' with
a subfield of L such that ¢¥(a) = a for a € D. (Technically, ¥([a,1]) = a, or
Yoi:D — L where (¢poi)(a) =1Y(i(a)) = ¥([a,1]) = a where i : D — F'is as
defined in Lemma 21.4.)
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Note. The minimality concept in Theorem 21.6 can be illustrated with a diagram:

The idea is that any field L containing D also contains F—well, strictly speaking,
L contains the isomorphic image of F', ¥)[F]. So there is no “smaller” field than F’
which contains D. The fact that v is an isomorphism yields the uniqueness (“up

to isomorphism”).

Corollary 21.8. Every field L containing an integral domain D contains a field

of quotients of D.

Corollary 21.9. Any two fields of quotients of an integral domain are isomorphic.
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