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Section IV.21. The Field of Quotients

of an Integral Domain

Note. This section is a homage to the rational numbers! Just as we can start with

the integers Z and then “build” the rationals by taking all quotients of integers

(while avoiding division by 0), we start with an integral domain and build a field

which contains all “quotients” of elements of the integral domain. This is our first

encounter with the idea of starting with an algebraic structure and then extending

it to a larger, more complete structure. In this case we are extending an integral

domain to a field that contains all inverses of elements of the integral domain (and

possibly [probably] more).

Note. We start with integral domain D and extend it to a field of quotients F

following the text’s steps:

Step 1. Define the elements of F .

Step 2. Define + and · on F .

Step 3. Verify the field axioms for + and · on F .

Step 4. Show that F can be viewed as containing D as an integral subdomain.
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Note. For part of Step 1, we define the set S = {(a, b) | a, b ∈ D, b 6= 0}. The

analogy with Q is that we think of p/q ∈ Q as (p, q) ∈ Z × Z. Notice that for

p1/q1, p2/q2 ∈ Q if we have p1/q1 = p2/q2 then p1q2 = p2q1. This is the motivation

for the next definition (and notice that equality of the “quotients” is dealt with in

terms of multiplication).

Definition 21.1. Two elements (a, b), (c, d) ∈ S are equivalent, denoted (a, b) ∼

(c, d), if and only if ad = bc.

Lemma 21.2. The relation ∼ between elements of S is an equivalence relation.

Note. To complete Step 1, we define F as the set of equivalence classes of S under

∼. We denote the equivalence class containing (a, b) as [(a, b)].

Note. For Step 2, we define + and · on F , again by mimicing the behavior of Q,

as given in the following lemma.

Lemma 21.3. For [(a, b)], [(c, d)] ∈ F , the equations

[(a, b)] + [(c, d)] = [(ad+ bc, bd)]

and [(a, b)] · [(c, d)] = [(ac, bd)]

give well-defined operations of addition and multiplication on F .
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Note. The real claim of Lemma 21.3 is that + and · can be defined using any

element of an equivalence class. That is, the sum and product of two elements of

F can be computed using any representatives of the equivalence classes involved in

the sum and product.

Lemma. (Step 3) F as defined above is a field. That is,

1. + in F is commutative.

2. + in F is associative.

3. [(0, 1)] is the additive identity in F .

4. [(−a, b)] is the additive inverse for [(a, b)] in F .

5. · is associative in F .

6. · is commutative in F .

7. The distribution laws hold in F :

[(a, b)] · ([(c, d)] + [(r, s)]) = [(a, b)] · [(c, d)] + [(a, b)] · [(r, s)]

(right distribution will follow from commutivity of ·).

8. [(1, 1)] is the multiplicative identity in F .

9. If [(a, b)] ∈ F , [(a, b)] 6= [(0, 1)], then [(b, a)] ∈ F is the multiplicative inverse

of [(a, b)].
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Note. “Lemma” establishes that F is a field (Step 3). We now only need to

establish that D is an integral subdomain of F . This is the next lemma.

Lemma 21.4. (Step 4) The map i : D → F given by i(a) = [(a, 1)] is an

isomorphism of D with a subring of F

Theorem 21.5. Any integral domain D can be enlarged to (or embedded in) a

field F such that every element of F can be expressed as a quotient of two elements

of D. (Strictly speaking, every element of F is a quotient of two elements of i[D]

where i is as defined in Lemma 21.4.) Such a field is a field of quotients of D.

Proof. The lemmas of this section establish that the field exists. Let [(a, b)] ∈ F .

Then

[(a, b)] = [(a, 1)] · [(1, b)] = i(a) · (i(b))−1 = i(a)/i(b).

Here, “/” means multiplication by the multiplicative inverse. Notice that the mul-

tiplicative inverse of [(b, 1)] is [(1, b)], so the inverse of i(b) is (i(b))−1 since i is an

isomorphism from D to i[D].

Note. The next result shows that the field F created above containing integral

domain D is minimal and that the field of quotients of D is unique.

Theorem 21.6. Let F be a field of quotients of D and let L be any field containing

D. Then there exists a map ψ : F → L that gives an isomorphism of F with

a subfield of L such that ψ(a) = a for a ∈ D. (Technically, ψ([a, 1]) = a, or

ψ ◦ i : D → L where (ψ ◦ i)(a) = ψ(i(a)) = ψ([a, 1]) = a where i : D → F is as

defined in Lemma 21.4.)
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Note. The minimality concept in Theorem 21.6 can be illustrated with a diagram:

ψ[F ]
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H

H

ψ
∼=

D

The idea is that any field L containing D also contains F—well, strictly speaking,

L contains the isomorphic image of F , ψ[F ]. So there is no “smaller” field than F

which contains D. The fact that ψ is an isomorphism yields the uniqueness (“up

to isomorphism”).

Corollary 21.8. Every field L containing an integral domain D contains a field

of quotients of D.

Corollary 21.9. Any two fields of quotients of an integral domain are isomorphic.
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