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Section VI.32. Geometric Constructions

Note. In this section we explore the three famous compass and straight edge

constructions from classical Greece:

1. Doubling the Cube: For a cube of a given size (i.e., given the length of a side),

construct a cube of twice the volume of the given cube.

2. Squaring the Circle: For a given circle (i.e., given the diameter of the circle),

construct a square with the same area as the circle.

3. Trisect an Angle: Given an angle, find an angle 1/3 the size of the given angle.

Surprisingly, none of these are possible and this can be shown using our knowledge

of field theory.

Note. An explanation of what it means to perform a compass and straight edge

construction, as well as illustrations of the results of this section, are given in

my YouTube video Compass Straightedge Constructions (it has over 10,000 views;

accessed 3/21/2024).

Definition. A real number α is constructible if we can construct a line segment

of length |α| in a finite number of steps from a given unit length segment and a

straight edge and compass (as described in the supplement).

Theorem 32.1. If α and β are constructible real numbers, then so are α + β,

α− β, αβ, and α/β if β 6= 0.

https://www.youtube.com/watch?v=S24GYj1rWGs
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Note. An animated proof of Theorem 32.1 is given in the YouTube video Compass

Straightedge Constructions (accessed 3/21/2024).

Corollary 32.5. The set of constructible real numbers C forms a subfield of the

field of real numbers.

Note. Theorem 32.1 implies that each integer is constructible, and so each rational

number is constructible: Q ≤ C. We now seek to specifically classify the elements

of C.

Note. As illustrated in the supplement, compass and straight edge constructions

take place in the Euclidean plane. Since Q ≤ C, each point in the Cartesian plane

with two rational coordinates can be located. The only way we can locate other

points in the plane is through one of the following intersections of lines and circles:

Case 1. As an intersection of two lines, each of which passes through two known

points having rational coordinates;

Case 2. As an intersection of a line that passes through two points having rational

coordinates and a circle whose center has rational coordinates and whose radius

is rational;

Case 3. As an intersection to two circles whose centers have rational coordinates

and whose radii are rational.

https://www.youtube.com/watch?v=S24GYj1rWGs
https://www.youtube.com/watch?v=S24GYj1rWGs
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Note. We know from classical algebra that the equations of the lines and circles

mentioned above are of the form

ax + by + c = 0 and x2 + y2 + dx + ey + f = 0

where a, b, c, d, e, f ∈ Q. We now explore the implications of the three cases men-

tioned above.

Note. In Case 1, we need to solve two linear equations in two unknowns (x and y).

We will get as solutions rational combinations of the coefficients of the two linear

equations. In Case 3, if the two circles have equations

x2 + y2 + d1x + e1y + f1 = 0 and x2 + y2 + d2x + e2y + f2 = 0,

then subtracting these equations leads to the linear equation (d1 − d2)x + (e1 −

e2)y + (f1 − f2) = 0, which is the equation for the chord passing through the two

points of intersection of the circles (or a single point, or no points, depending on

the geometry of the situation). So we need to solve the system consisting of this

linear equation and one of the equations of a circle. Therefore, case 3 reduces to

Case 2.

Note. In Case 2, we have the system

ax + by + c = 0 (1)

x2 + y2 + dx + ey + f = 0. (2)

We can solve for y in (1) and get y as a rational expression of x (namely y = (−(ax+

c)/b), and then substitute the result into (2) to produce a quadratic equation in
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x which yields values of x based on rational combinations of coefficients and the

square root function, as given by the quadratic formula. Therefore, by Theorem

32.1, every rational number can be constructed and by these observations any

square roots of rational numbers can be constructed. The process can then be

iterated to produce square roots of rational combinations of square roots of rational

combinations. . . a finite number of times.

Note. Fraleigh is a little informal on the passage from Q to constructible numbers

(see the first full paragraph on page 296). For a clearer proof, see pages 238–240 of

Thomas Hungerford’s Algebra (Springer-Verlag, 1974). The constructible numbers

can then be described as:

(i) All rational numbers are constructible (as given by Theorem 32.1).

(ii) If c ≥ 0 is constructible, the
√

c is constructible (as shown below in Theorem

32.8).

(iii) If c, d are constructible then c+d, c−d, cd, and c/d for d 6= 0 are constructible

(as given by Theorem 32.1).

Theorem 32.6. The field of constructible real numbers consists precisely of all

real numbers that we can obtain from Q by taking square roots of positive numbers

a finite number of times and applying a finite number of field operations.

Proof. The fact that the described numbers are the only ones we can construct

follows from the description of the cases above. In the supplement, we show that

square roots of positive constructible numbers can be constructed. The theorem

then follows.
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Corollary 32.8. If γ is constructible and γ /∈ Q then there is a finite sequence

of real numbers α1, α2, . . . , αn, where an = γ, such that Q(α1, α2, . . . , αi) is an

extension of Q(α1, α2, . . . , αi−1) of degree 2. In particular, [Q(γ) : Q] = 2r for some

integer r ≥ 0.

Idea of Proof. As explained above, any constructible number is based on a

finite number of extractions of square roots of rational combinations of previ-

ously constructible numbers, starting with the rationals Q. The finite sequence

of αi’s then follows. Since αi+1 is produced from Q(α1, α2, . . . , αi) by taking square

roots of a rational combination of elements of Q(α1, α2, . . . , αi), then the extension

Q(α1, α2, . . . , αi+1) of Q(α1, α2, . . . , αi) is of degree 2. So [Q(α1, α2, . . . , αn) : Q] =

2n and by Theorem 31.4

2n = [Q(α1, α2, . . . , αn) : Q] = [Q(α1, α2, . . . , αn) : Q(γ)][Q(γ) : Q].

Hence, [Q(γ) : Q] = 2r for some integer r ≥ 0. �

Note. We are now equiped, thanks principally to Corollary 32.8, to show that

the three classic compass and straight edge constructions cannot be done. This is

because each requires the construction of a nonconstructible number.

Theorem 32.9. Doubling the cube is impossible. That is, given a side of a cube,

it is not always possible to construct with a compass and straight edge the side of

a cube that has double the volume.
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Theorem 32.10. Squaring the circle is impossible. That is, given a circle it is not

always possible to construct with a compass and straight edge a square with area

equal to the area of the given circle.

Theorem 32.11. Trisecting the angle is impossible. That is, there exists an angle

that cannot be trisected with a straight edge and compass.

Note. The idea of constructibility was a large part of the geometric ideas of classic

Greek geometry. This can be seen by the method of proof in Euclid’s Elements.

Note. Euclid addresses the construction of regular n-gons specifically as follows:

n Reference in the Elements

3 Book I, Proposition 1

4 Book I, Proposition 46

5 Book IV. Proposition 11

6 Book IV. Proposition 15

15 Book IV. Proposition 16

If a regular n-gon can be constructed and inscribed in a circle (as Euclid does;

though he also circumscribes circles as well), then a regular 2n-gon can be con-

structed simply by bisecting the edges of the n-gon and projecting the point of

bisection onto the circle. With attention on n ≤ 20, we know that the Greek’s

could construct n-gons for n ∈ {3, 4, 5, 6, 8, 10, 12, 15, 16, 20}. We now know that

regular n-gons cannot be constructed for n ∈ {7, 9, 11, 13, 14, 18, 19}. Notice that

n = 17 is in neither list.
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Note. Gauss showed that a regular 17-gon can be constructed with a compass and

straight edge. He did not actually give the construction, but only showed that it

existed. He did remark that the key point to the construction is constructing a line

of length

1

16

[
−1 +

√
17 +

√
34− 2

√
17 +

√
68 + 12

√
17− 16

√
34 + 2

√
17− 2(1−

√
17)

√
34− 2

√
17

]
which we clearly see as a constructible number. The first explicit construction of a

17-gon was given by Ulrich von Huguenin in 1803. H. W. Richmond found a simpler

version in 1893. (see page 136 of Why Beauty is Truth: A History of Symmetry by

Ian Stewart, NY: Basic Books, 2007). It seems surprising that a question addressed

in Euclid’s Elements was picked up in the 19th century and taken further down the

field! This accomplishment, again, involves Gauss.

Note. What Gauss did was give sufficient conditions for the construction of a

regular n-gon with a compass and straight edge. However, he did not show the

conditions were necessary. The problem was completely solved by Pierre Wantzel in

1837 and published as “Recherches sur les moyens de reconnâıtre si un Problème de

Géométrie peut se résoudre avec la règle et le compas” in Journal de Mathématiques

Pures et Appliquées 1(2), 366-372. In this paper he also proved the impossibility

of doubling the cube and trisecting and angle (see the historical note on page 298

of Fraleigh).

Note. An n-gon can be constructed with a compass and straight edge if and only

if n = 2kp1p2 · · · pt where each pi is a distinct Fermat prime. A Fermat prime is

a prime number of the form 2(2n) + 1. The only known Fermat primes are 3, 5,
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17, 257, and 65,537. (This information is from Wikipedia.) For more details on

this problem, see “The Problem of Constructing Regular Polygons” by B. Bold,

Chapter 7 in Famous Problems of Geometry and How to Solve Them, NY: Dover,

49–71, 1982.

Revised: 3/21/2024


