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Section VII.37. Applications of the Sylow Theory

Note. We now get some mileage out of the Sylow Theorems. We prove a few

general results, and then further explore properties of finite groups of certain orders.

Theorem 37.1. Every group of prime-power (that is, every finite p-group) is

solvable.

Note. We have followed Hungerford’s proofs of the Sylow Theorems. Older proofs

use the “class equation” which we now discuss.

Note. Let X be a finite G-set where G is a finite group. With Xg = {z € X |

gr = x for all ¢ € G} and Gz; = {gz; | ¢ € G}, we have from Equation (2) on

page 322
X[ =Xl + ) |G (1)
1=s+1
where x1, 29, . .., x, are the fixed points under the action of G (so they are in Xg—

they represent the orbits of length 1) there are r orbits of elements, and z; is chosen

from the ith orbit.

Note. Now let set X be the group GG and define the action as conjugation: for
r € X =G and g € G, define the action on z as grg~'. then

Xg = {z€G|grg !t =xforall ge G}

= {x € G| gx =uxg forall g€ G}
= Z(G)
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where Z(G) is the center of G (see page 58). Let ¢ = |Z(G)| and n; = |Gx;|. Then

Equation (1) becomes
|Gl =c+ner1 + e+ -+ 0y (2)
where n; is the number of elements in the ith orbit of G:
ni = |G| = {gzg™" | g € G}.

By Theorem 16.16 |Gx;| = (G : G,.) (the number of left cosets of G, in G) and
(also by Theorem 16.16) this is a divisor of |G|.

Definition. Equation (2) is the class equation of G. FEach orbit in G under

conjugation by G is a conjugate class in G.

Example 37.3. Recall that if G is abelian, then Z(G) = G and so the class
equation is |G| = ¢ (and the number of orbits is r = 1). So for a nontrivial
example, consider S3 = {po, p1, p2, p1, p2, i3 }. Then A(G) = {po} and ¢ = 1. Now

we compute conjugate classes using the multiplication table for S3 (see page 79):

pL: POy = PopLpo = pop1L = pi
PLOIPL = P1p1p2 = P1po = p1
p2p1py ' = papip1 = pap2 = pi
papry = papipn = paps = p2
papifiy ' = papifly = Haty = P2

3oLyt = p3pips = [zt = po.
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So the orbit of p; (and po) is {p1, p2}. Next:

B pokapgt = potipo = Popn = i
PPy = prinpe = piiis = fa
patipy’ = pappr = papia = pi3
ey = papa g = papo =
popifiy ' = piafi iz = fiapy = i3
pap ' = pispifis = pizpa = fio.

So the orbit of p; (and po and ps3) is {1, g2, ps}. So ny = |Gp1| = 2 and ny =
|Gui| = 3. The class equation of Sz is then |S3] =6 =c+mny+ng =1+ 2+ 3.

Notice that the conjugate classes are not of the same sizes.

Theorem 37.4. The center of a finite nontrivial p-group of G is nontrivial.

Lemma 37.5. Let G be a group containing normal subgroups H and K such that
HNK ={e} and HV K = G. Then G is isomorphic to H x K.

Note. For a prime number p, every group of order p? is abelian.

Theorem 37.6. For a prime number p, every group of order p? is abelian.

Note. Combining Theorem 37.6 with the Fundamental Theorem of Finitely Gen-
erated Abelian Groups (Theorem 11.12), we see that a group of order p?, p prime,

is either isomorphic to Z,2 or Z, X Z,.
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Note. We further illustrate the power of the Sylow Theorems by exploring fi-
nite simple groups. As mentioned in the supplement to Introduction to Modern
Algebra (MATH 4127/5127), “Finite Simple Groups,” simple groups are the build-
ing blocks of finite groups, as revealed in the Jordan-Ho6lder Theorem (Theorem
35.15). William Burnside conjectured that every finite simple group of non-prime
order must be of even order. This was proved by Walter Feit and John Thompson
in an issue of the Pacific Journal of Mathematics entirely devoted to their result:
“Solvability of Groups of Odd Order” [Pacific Journal of Mathematics, 13(3), 775~
1029 (1963)].

Pacific

Journal of

Mathematics

Pacific Journal of Mathematics, 13(3), 775-1029 (1963) [from
http://msp.org/pjm/1963/13-3/pjm-v13-n3-s. pdf]

Theorem 37.7. If p and ¢ are prime with p < ¢, then every group G of order pq
has a single subgroup of order ¢ and this subgroup is normal in GG. Hence G is not

simple. If ¢ is not congruent to 1 modulo p, then G is abelian and cyclic.



VII1.37. Applications of the Sylow Theory 5

Note. We can restate Theorem 37.3 as: If group G is of order pg where p and q
are distinct primes then G is not simple. If, in addition, p < g and ¢ Z 1 (mod p),
then G = Z, X Ly = Ly,

Note. Notice that the proof of the first part of Theorem 37.7 implies the following
(not stated explicitly in the text):
Corollary 37.7. If a group G of finite order has only one proper nontrivial

subgroup of a given order, then that subgroup is normal and G is not simple.

Lemma 37.8. If H and K are finite subgroups of a group G, then

H| K]

HE|= 121
K = AR

Note 1. We now use Sylow theory to draw some conclusions about abelian and
simple groups. We will also use the fact established in Exercise 15.34 that a sub-
group H of index 2 (i.e. H has two cosets) in a finite group G is normal and hence

G is not simple.

Example 37.9. No group of order p” for r > 1 is simple, where p is prime. By the
First Sylow Theorem (Theorem 36.8), G contains a subgroup of order p"~! which

is normal in G. So G is not simple.
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Example 37.10. Theorem 37.7 allows us to classify many finite groups as cyclic:

P q q (mod p) | The Groups of order pq
21q>2 1 ?
3| 5 2 s
3 7 1 ?
3| 11 2 T
31 13 1 ?
3| 17 2 Zs1
50 7 2 T
51 11 1 ?
5| 13 3 Zes
5| 17 2 Zss
5| 19 4 Zos
7| 1 4 Torr
7| 13 6 T
7| 17 3 Tt
7| 19 5 Zrss

Example 37.11. No group G of order 20 is simple. By the First Sylow Theorem
(Theorem 36.8), G has a Sylow 5-subgroup. By the Third Sylow Theorem (Theorem
36.11) the number of such Sylow 5-subgroups of GG is 1 (mod 5) and is a divisor of
|G| = 20. So this number must be 1. By Corollary 37.7, this Sylow 5-subgroup is

a normal subgroup and G is not simple.



VII1.37. Applications of the Sylow Theory 7

Note. Notice that an argument similar to that of Example 37.11 shows that no
group of order 40 is simple (again, the only number which is both 1 (mod 5) and
a divisor of 40 is 1). However, this argument fails for 80 (since 16 is both 1 (mod

5) and a divisor of 80).

Example 37.12. No group G of order 30 is simple. This argument is a bit more
involved than the previous one. We again show that there is a unique Sylow p-
subgroup, but we are unclear on what p is (well, it is either 3 or 5). By the Third
Sylow Theorem (Theorem 36.11), the number of Sylow 5-subgroups is either 1 or
6, and the number of Sylow 3-subgroups is either 1 or 10. But is G has 6 distinct
Sylow 5-subgroups, then the intersection of any two such subgroups is again a
subgroup (Theorem 7.4) and so must have an order that is a divisor of 5 (Theorem
of Lagrange, Theorem 10.10). Since the groups are distinct, it must be that the
intersection is {e}. So each of the 6 Sylow 5-subgroups contain 4 elements of order
5, and hence G contains 24 elements of order 5. Similarly, if G has 10 Sylow 3-
subgroups, each of the 10 Sylow 3-subgroups contains 2 elements of order 3, and
hence G' contains 20 elements of order 3. But then G must contain at least 45
elements (24 of order 5, 20 of order 3, and e). So G cannot have both 6 Sylow 5-
subgroups and 10 Sylow 3-subgroups. So G had either a unique Sylow 5-subgroup
or a unique Sylow 3-subgroup. By Corollary 37.7" the unique Sylow p-subgroups is

normal and G is not simple.
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Example 37.13. No group G of order 48 is simple. By the Third Sylow Theorem
(Theorem 36.11) G has either 1 or 3 Sylow 2-subgroups of order 2! = 16 (recall that
a Sylow p-subgroup is a maximal subgroup of order p" for some n € N). (1) If there
is only 1 such subgroup, then as above Corollary 37.7" implies that G is not simple.
(2) I there are 3, we now construct a normal subgroup of G of order 8. Let H and K
be two such distinct Sylow 2-subgroups. Then HN K is a subgroup of H (Theorem
7.4) and has order 1, 2, 4, or 8 by the Theorem of Lagrange (Theorem 10.10). But
if [ HN K| < 4 then by Lemma 37.8, |H K| > 16 x 16/4 = 64, contradicting the facts
that HK C G and |G| = 48. So HN K must be of order 8. So HN K is a subgroup
of both H and K (Theorem 7.4) of order half the order of H and K. So by Note
1 above, H N K is a normal subgroup of both H and K. The normalizer of H N K
is (by definition) NNHN K] ={g € G| g(HN K)g~! = HN K} and so includes
both H and K since H N K is normal in both A and K. Since |H| = |K| = 16
and |[H N K| = 8, then |[N[H N K]|| > 24. Since H < N|H N K| (and N[H N K]
is itself a group by Exercise 36.11) then by the Theorem of Lagrange (Theorem
10.10) |N[H N K]| is a multiple of 16 and a divisor of 48. Hence |[N[H N K]| = 48
and so HN K = G. So HN K is normal in G (by Theorem 14.13(2), say) and G

is not simple.
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Example 37.14. No group G of order 36 is simple. By the Third Sylow Theorem
(Theorem 36.11), G has either 1 or 4 Sylow 9-subgroups. If there is only 1 such
subgroup, then by Corollary 37.7' it is a normal subgroup of G and G is not simple.
If there are 4 such distinct subgroups of order 9, then let H and K be two of them.
Now, |H N K| > 3, since |H N K| < 2 implies by Lemma 37.8 that 36 > |HK| =
(|H||K|)/|[HNK| >9x9/2 > 40. As in the previous example, N[H N K] includes
H and K. Since |H| = |K| =09, then |N[H N K]| is a multiple of 9 by Lagrange’s
Theorem and since H # K, then this is at least 18 and since N[H N K] < G it
is a divisor of 36. So |N[H N K]| is either 18 or 36. If |[N[H N K]| = 18 = 36/2,
then by Note 1 above N[H N K] is a normal subgroup of G and G is not simple. If
IN[H N K]| =36 then N[H N K] =G and H N K is a normal subgroup of G and

G is not simple.

Example 37.15. Every group G of order 255 = (3)(5)(17) is abelian. By the Third
Sylow Theorem (Theorem 36.11), G has a Sylow 17-subgroup, and the number of
such subgroups is 1 (mod 17) and a divisor of 255. Hence there is one such subgroup
and by Corollary 37.7" this subgroup, say H, is normal. Then G/H has order 15.
Since |G/H| = 15, by Example 37.10 G/H is abelian. By Theorem 15.20, since
G/H is abelian, the commutator subgroup C' of G is a subgroup of H: C' < H.
Since |H| = 17, then

either |C] =1 or |C| = 17. (%)

As argued several times above, the Third Sylow Theorem (Theorem 36.11) shows
that G has either 1 or 85 Sylow 3-subgroups and either 1 or 51 Sylow 5-subgroups.
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As argued in Example 37.12, by Theorem 7.4 and the Theorem of Lagrange, the
intersection of two distinct Sylow 3-subgroups (or two distinct Sylow 5-subgroups)
must consist only of e. So if there are both 85 Sylow 3-subgroups and 51 Sylow
5-subgroups, then there are 85 x 2 = 170 elements of order 2 in G and 51 x4 = 204
elements of order 5 in G. But 170 4+ 204 = 374 > 255 = |G|, so there is either only
1 Sylow 3-subgroup of G or only 1 Sylow 5-subgroup of G. By Corollary 37.7,
GG then has either a normal subgroup of order 3 or a normal subgroup of order 5.
Denote this normal subgroup as K. Then |G/K| = (G : K) = |G|/|K]| is either
(5)(17) or (3)(17). We now apply Theorem 37.7 with either p = 3 and ¢ = 17 of
p =5 and ¢ = 17. In either case, ¢ = 2 (mod p) (and ¢ Z 1 (mod p)) and so
Theorem 37.7 implies that G/K is abelian. Now, by Theorem 15.20 again, C' < K
and so the possible values of |C| are 1, 3, 5. Combining this with (%), gives that
|C| =1 and so C' = {e}. by Theorem 15.20, G/N is abelian if and only if C' < N.
With N = C = {e}, we then have that G/N = G/C = G/{e} = G is abelian.
Notice that G = Zg X Z5 X Z17 = Zass (by the Fundamental Theorem of Finitely
Generated Abelian Groups—Theorem 11.12).
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