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Section VII.37. Applications of the Sylow Theory

Note. We now get some mileage out of the Sylow Theorems. We prove a few

general results, and then further explore properties of finite groups of certain orders.

Theorem 37.1. Every group of prime-power (that is, every finite p-group) is

solvable.

Note. We have followed Hungerford’s proofs of the Sylow Theorems. Older proofs

use the “class equation” which we now discuss.

Note. Let X be a finite G-set where G is a finite group. With XG = {x ∈ X |

gx = x for all g ∈ G} and Gxi = {gxi | g ∈ G}, we have from Equation (2) on

page 322

|X | = |XG| +

r∑

i=s+1

|Gxi| (1)

where x1, x2, . . . , xr are the fixed points under the action of G (so they are in XG—

they represent the orbits of length 1) there are r orbits of elements, and xi is chosen

from the ith orbit.

Note. Now let set X be the group G and define the action as conjugation: for

x ∈ X = G and g ∈ G, define the action on x as gxg−1. then

XG = {x ∈ G | gxg−1 = x for all g ∈ G}

= {x ∈ G | gx = xg for all g ∈ G}

= Z(G)
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where Z(G) is the center of G (see page 58). Let c = |Z(G)| and ni = |Gxi|. Then

Equation (1) becomes

|G| = c + nc+1 + nc+2 + · · · + nr (2)

where ni is the number of elements in the ith orbit of G:

ni = |Gxi| = {gxg−1 | g ∈ G}.

By Theorem 16.16 |Gxi| = (G : Gxi
) (the number of left cosets of Gxi

in G) and

(also by Theorem 16.16) this is a divisor of |G|.

Definition. Equation (2) is the class equation of G. Each orbit in G under

conjugation by G is a conjugate class in G.

Example 37.3. Recall that if G is abelian, then Z(G) = G and so the class

equation is |G| = c (and the number of orbits is r = 1). So for a nontrivial

example, consider S3 = {ρ0, ρ1, ρ2, µ1, µ2, µ3}. Then A(G) = {ρ0} and c = 1. Now

we compute conjugate classes using the multiplication table for S3 (see page 79):

ρ1 : ρ0ρ1ρ
−1

0 = ρ0ρ1ρ0 = ρ0ρ1 = ρ1

ρ1ρ1ρ
−1

1 = ρ1ρ1ρ2 = ρ1ρ0 = ρ1

ρ2ρ1ρ
−1

2 = ρ2ρ1ρ1 = ρ2ρ2 = ρ1

µ1ρ1µ
−1

1 = µ1ρ1µ1 = µ1µ3 = ρ2

µ2ρ1µ
−1

2 = µ2ρ1µ2 = µ2µ1 = ρ2

µ3ρ1µ
−1

3 = µ3ρ1µ3 = µ3µ2 = ρ2.
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So the orbit of ρ1 (and ρ2) is {ρ1, ρ2}. Next:

µ1 : ρ0µ1ρ
−1

0 = ρ0µ1ρ0 = ρ0µ1 = µ1

ρ1µ1ρ
−1
1 = ρ1µ1ρ2 = ρ1µ3 = µ2

ρ2µ1ρ
−1

2 = ρ2µ1ρ1 = ρ2µ2 = µ3

µ1µ1µ
−1
1 = µ1µ1µ1 = µ1ρ0 = µ1

µ2µ1µ
−1

2 = µ2µ1µ2 = µ2ρ1 = µ3

µ3µ1µ
−1

3
= µ3µ1µ3 = µ3ρ2 = µ2.

So the orbit of µ1 (and µ2 and µ3) is {µ1, µ2, µ3}. So n2 = |Gρ1| = 2 and n2 =

|Gµ1| = 3. The class equation of S3 is then |S3| = 6 = c + n2 + n3 = 1 + 2 + 3.

Notice that the conjugate classes are not of the same sizes.

Theorem 37.4. The center of a finite nontrivial p-group of G is nontrivial.

Lemma 37.5. Let G be a group containing normal subgroups H and K such that

H ∩ K = {e} and H ∨ K = G. Then G is isomorphic to H × K.

Note. For a prime number p, every group of order p2 is abelian.

Theorem 37.6. For a prime number p, every group of order p2 is abelian.

Note. Combining Theorem 37.6 with the Fundamental Theorem of Finitely Gen-

erated Abelian Groups (Theorem 11.12), we see that a group of order p2, p prime,

is either isomorphic to Zp2 or Zp × Zp.
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Note. We further illustrate the power of the Sylow Theorems by exploring fi-

nite simple groups. As mentioned in the supplement to Introduction to Modern

Algebra (MATH 4127/5127), “Finite Simple Groups,” simple groups are the build-

ing blocks of finite groups, as revealed in the Jordan-Hölder Theorem (Theorem

35.15). William Burnside conjectured that every finite simple group of non-prime

order must be of even order. This was proved by Walter Feit and John Thompson

in an issue of the Pacific Journal of Mathematics entirely devoted to their result:

“Solvability of Groups of Odd Order” [Pacific Journal of Mathematics, 13(3), 775–

1029 (1963)].

Pacific Journal of Mathematics, 13(3), 775-1029 (1963) [from

http://msp.org/pjm/1963/13-3/pjm-v13-n3-s.pdf]

Theorem 37.7. If p and q are prime with p < q, then every group G of order pq

has a single subgroup of order q and this subgroup is normal in G. Hence G is not

simple. If q is not congruent to 1 modulo p, then G is abelian and cyclic.
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Note. We can restate Theorem 37.3 as: If group G is of order pq where p and q

are distinct primes then G is not simple. If, in addition, p < q and q 6≡ 1 (mod p),

then G ∼= Zp × Zq
∼= Zpq.

Note. Notice that the proof of the first part of Theorem 37.7 implies the following

(not stated explicitly in the text):

Corollary 37.7′. If a group G of finite order has only one proper nontrivial

subgroup of a given order, then that subgroup is normal and G is not simple.

Lemma 37.8. If H and K are finite subgroups of a group G, then

|HK| =
|H| |K|

|H ∩ K|
.

Note 1. We now use Sylow theory to draw some conclusions about abelian and

simple groups. We will also use the fact established in Exercise 15.34 that a sub-

group H of index 2 (i.e. H has two cosets) in a finite group G is normal and hence

G is not simple.

Example 37.9. No group of order pr for r > 1 is simple, where p is prime. By the

First Sylow Theorem (Theorem 36.8), G contains a subgroup of order pr−1 which

is normal in G. So G is not simple.
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Example 37.10. Theorem 37.7 allows us to classify many finite groups as cyclic:

p q q (mod p) The Groups of order pq

2 q > 2 1 ?

3 5 2 Z15

3 7 1 ?

3 11 2 Z33

3 13 1 ?

3 17 2 Z51

5 7 2 Z35

5 11 1 ?

5 13 3 Z65

5 17 2 Z85

5 19 4 Z95

7 11 4 Z77

7 13 6 Z91

7 17 3 Z119

7 19 5 Z133

Example 37.11. No group G of order 20 is simple. By the First Sylow Theorem

(Theorem 36.8), G has a Sylow 5-subgroup. By the Third Sylow Theorem (Theorem

36.11) the number of such Sylow 5-subgroups of G is 1 (mod 5) and is a divisor of

|G| = 20. So this number must be 1. By Corollary 37.7′, this Sylow 5-subgroup is

a normal subgroup and G is not simple.
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Note. Notice that an argument similar to that of Example 37.11 shows that no

group of order 40 is simple (again, the only number which is both 1 (mod 5) and

a divisor of 40 is 1). However, this argument fails for 80 (since 16 is both 1 (mod

5) and a divisor of 80).

Example 37.12. No group G of order 30 is simple. This argument is a bit more

involved than the previous one. We again show that there is a unique Sylow p-

subgroup, but we are unclear on what p is (well, it is either 3 or 5). By the Third

Sylow Theorem (Theorem 36.11), the number of Sylow 5-subgroups is either 1 or

6, and the number of Sylow 3-subgroups is either 1 or 10. But is G has 6 distinct

Sylow 5-subgroups, then the intersection of any two such subgroups is again a

subgroup (Theorem 7.4) and so must have an order that is a divisor of 5 (Theorem

of Lagrange, Theorem 10.10). Since the groups are distinct, it must be that the

intersection is {e}. So each of the 6 Sylow 5-subgroups contain 4 elements of order

5, and hence G contains 24 elements of order 5. Similarly, if G has 10 Sylow 3-

subgroups, each of the 10 Sylow 3-subgroups contains 2 elements of order 3, and

hence G contains 20 elements of order 3. But then G must contain at least 45

elements (24 of order 5, 20 of order 3, and e). So G cannot have both 6 Sylow 5-

subgroups and 10 Sylow 3-subgroups. So G had either a unique Sylow 5-subgroup

or a unique Sylow 3-subgroup. By Corollary 37.7′ the unique Sylow p-subgroups is

normal and G is not simple.
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Example 37.13. No group G of order 48 is simple. By the Third Sylow Theorem

(Theorem 36.11) G has either 1 or 3 Sylow 2-subgroups of order 24 = 16 (recall that

a Sylow p-subgroup is a maximal subgroup of order pn for some n ∈ N). (1) If there

is only 1 such subgroup, then as above Corollary 37.7′ implies that G is not simple.

(2) I there are 3, we now construct a normal subgroup of G of order 8. Let H and K

be two such distinct Sylow 2-subgroups. Then H∩K is a subgroup of H (Theorem

7.4) and has order 1, 2, 4, or 8 by the Theorem of Lagrange (Theorem 10.10). But

if |H∩K| ≤ 4 then by Lemma 37.8, |HK| ≥ 16×16/4 = 64, contradicting the facts

that HK ⊆ G and |G| = 48. So H ∩K must be of order 8. So H ∩K is a subgroup

of both H and K (Theorem 7.4) of order half the order of H and K. So by Note

1 above, H ∩K is a normal subgroup of both H and K. The normalizer of H ∩K

is (by definition) N [H ∩ K] = {g ∈ G | g(H ∩ K)g−1 = H ∩ K} and so includes

both H and K since H ∩ K is normal in both H and K. Since |H| = |K| = 16

and |H ∩ K| = 8, then |N [H ∩ K]| ≥ 24. Since H < N [H ∩ K] (and N [H ∩ K]

is itself a group by Exercise 36.11) then by the Theorem of Lagrange (Theorem

10.10) |N [H ∩ K]| is a multiple of 16 and a divisor of 48. Hence |N [H ∩ K]| = 48

and so H ∩ K = G. So H ∩ K is normal in G (by Theorem 14.13(2), say) and G

is not simple.
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Example 37.14. No group G of order 36 is simple. By the Third Sylow Theorem

(Theorem 36.11), G has either 1 or 4 Sylow 9-subgroups. If there is only 1 such

subgroup, then by Corollary 37.7′ it is a normal subgroup of G and G is not simple.

If there are 4 such distinct subgroups of order 9, then let H and K be two of them.

Now, |H ∩ K| ≥ 3, since |H ∩ K| ≤ 2 implies by Lemma 37.8 that 36 ≥ |HK| =

(|H| |K|)/|H ∩K| ≥ 9× 9/2 > 40. As in the previous example, N [H ∩K] includes

H and K. Since |H| = |K| = 9, then |N [H ∩ K]| is a multiple of 9 by Lagrange’s

Theorem and since H 6= K, then this is at least 18 and since N [H ∩ K] < G it

is a divisor of 36. So |N [H ∩ K]| is either 18 or 36. If |N [H ∩ K]| = 18 = 36/2,

then by Note 1 above N [H ∩K] is a normal subgroup of G and G is not simple. If

|N [H ∩ K]| = 36 then N [H ∩ K] = G and H ∩ K is a normal subgroup of G and

G is not simple.

Example 37.15. Every group G of order 255 = (3)(5)(17) is abelian. By the Third

Sylow Theorem (Theorem 36.11), G has a Sylow 17-subgroup, and the number of

such subgroups is 1 (mod 17) and a divisor of 255. Hence there is one such subgroup

and by Corollary 37.7′ this subgroup, say H, is normal. Then G/H has order 15.

Since |G/H| = 15, by Example 37.10 G/H is abelian. By Theorem 15.20, since

G/H is abelian, the commutator subgroup C of G is a subgroup of H: C ≤ H.

Since |H| = 17, then

either |C| = 1 or |C| = 17. (∗)

As argued several times above, the Third Sylow Theorem (Theorem 36.11) shows

that G has either 1 or 85 Sylow 3-subgroups and either 1 or 51 Sylow 5-subgroups.
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As argued in Example 37.12, by Theorem 7.4 and the Theorem of Lagrange, the

intersection of two distinct Sylow 3-subgroups (or two distinct Sylow 5-subgroups)

must consist only of e. So if there are both 85 Sylow 3-subgroups and 51 Sylow

5-subgroups, then there are 85×2 = 170 elements of order 2 in G and 51×4 = 204

elements of order 5 in G. But 170 + 204 = 374 > 255 = |G|, so there is either only

1 Sylow 3-subgroup of G or only 1 Sylow 5-subgroup of G. By Corollary 37.7′,

G then has either a normal subgroup of order 3 or a normal subgroup of order 5.

Denote this normal subgroup as K. Then |G/K| = (G : K) = |G|/|K| is either

(5)(17) or (3)(17). We now apply Theorem 37.7 with either p = 3 and q = 17 of

p = 5 and q = 17. In either case, q ≡ 2 (mod p) (and q 6≡ 1 (mod p)) and so

Theorem 37.7 implies that G/K is abelian. Now, by Theorem 15.20 again, C ≤ K

and so the possible values of |C| are 1, 3, 5. Combining this with (∗), gives that

|C| = 1 and so C = {e}. by Theorem 15.20, G/N is abelian if and only if C ≤ N .

With N = C = {e}, we then have that G/N = G/C = G/{e} ∼= G is abelian.

Notice that G ∼= Z3 × Z5 × Z17
∼= Z255 (by the Fundamental Theorem of Finitely

Generated Abelian Groups—Theorem 11.12).
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