2.3. Bolzano-Weierstrass Theorem.

Note. In this section we show that every bounded set of real numbers has a “limit point.” We also give a proof of Theorem 2-9 which claims that a sequence of real numbers is Cauchy if and only if it converges.

Definition. A real number x is a *limit point* of a set of real numbers A is for all $\varepsilon > 0$, the interval $(x - \varepsilon, x + \varepsilon)$ contains infinitely many points of A.

Theorem 2-12. Bolzano-Weierstrass Theorem.
Every bounded infinite set of real numbers has at least one limit point.

Theorem 2-13. Let $\{a_n\}$ be a sequence. Then L is a (finite) subsequential limit of $\{a_n\}$ if and only if L satisfies either of the following:

1. There are infinitely many terms of $\{a_n\}$ equal to L, or
2. L is a limit point of a set consisting of the terms of $\{a_n\}$.

Theorem 2-14. Every bounded sequence has a convergent subsequence.
2.3. Bolzano-Weierstrass Theorem

Theorem 2-15.

(a) A sequence that is unbounded above has a subsequence that diverges to $+\infty$.

(b) A sequence that is unbounded below has a subsequence that diverges to $-\infty$.

Note. The following theorem gives another characterization of convergent sequences.

Theorem 2-16. A sequence $\{a_n\}$ converges if and only if it is unbounded and has exactly one subsequential limit.

Definition. Let $\{a_n\}$ be a sequence of real numbers. The $\limsup a_n = \overline{\lim} a_n$ is the least upper bound of the set of subsequential limits of $\{a_n\}$, and $\liminf \underline{\lim} a_n$ is the greatest lower bound of the set of subsequential limits of $\{a_n\}$.

Note. By using least upper bounds and greatest lower bounds in the previous definition, we are guaranteed that $\limsup a_n = \overline{\lim} a_n$ and $\liminf \underline{\lim} a_n$ exist for all sequences of real numbers $\{a_n\}$. Of course, these might be $-\infty$ or $+\infty$, however.

Example. If $\{a_n\} = \{\sin n\}$ (n in radians) then $\overline{\lim} a_n = 1$ and $\underline{\lim} a_n = 1$. In fact, the set of subsequential limit points is $[-1, 1]$.
Exercise 2.3.16. Let \(\{a_n\} \) be a sequence. Then \(\limsup a_n = \lim a_n \) is a subsequential limit of \(\{a_n\} \).

Note. The previous result shows that \(\lim a_n \) is the largest subsequential limit of \(\{a_n\} \). Of course, a similar result holds for \(\lim a_n \).

Theorem 2-17. Let \(\{a_n\} \) be a bounded sequence. Then

(a) \(\lim a_n = L \) if and only if for all \(\varepsilon > 0 \), there exists infinitely many terms of \(\{a_n\} \) in \((L - \varepsilon, L + \varepsilon) \) but only finitely many terms of \(\{a_n\} \) with \(a_n > L + \varepsilon \).

(b) \(\lim a_n = K \) if and only if for all \(\varepsilon > 0 \), there exists infinitely many terms of \(\{a_n\} \) in \((K - \varepsilon, K + \varepsilon) \) but only finitely many terms of \(\{a_n\} \) with \(a_n < K - \varepsilon \).

Corollary 2-17. A bounded sequence \(\{a_n\} \) converges if and only if \(\lim a_n = \lim a_n \).

Theorem 2-18.

(a) \(\lim(a_n + b_n) \leq \lim a_n + \lim b_n \), and

(b) \(\lim a_n + \lim b_n \leq \lim(a_n + b_n) \).

Note. Equality does not always hold in Theorem 2-18. Consider \(\{a_n\} = \{\sin^2 n\} \) and \(\{b_n\} = \{\cos^2 n\} \). Then \(\lim a_n = \lim b_n = 1 \), but \(\lim(a_n + b_n) = 1 < a + 1 = 2 \).
Definition. A function \(f : \mathbb{R} \to \mathbb{R} \) is said to be \textit{bounded} if the range of \(f \) is a bounded set. For a bounded function denote \(\text{lub}(\text{range}(f)) \) as \(\sup(f) \) and \(\text{glb}(\text{range}(f)) \) and \(\inf(f) \).

Theorem 2-19. Let \(f \) and \(g \) be bounded functions with the same domain. Then:

(a) \(\sup(f + g) \leq \sup(f) + \sup(g) \), and

(b) \(\inf(f) + \inf(g) \leq \inf(f + g) \).

Recall. A sequence \(\{a_n\} \) is a \textit{Cauchy sequence} if

for all \(\varepsilon > 0 \), there exists \(N(\varepsilon) \) such that

if \(n, m > N(\varepsilon) \) then \(|a_n - a_m| < \varepsilon \).

Theorem 2-9 claims that a sequence converges if and only if it is Cauchy. The following exercises verify this claim.

Exercise 2.3.13. Let \(\{a_n\} \) be a Cauchy sequence.

(a) Then \(\{a_n\} \) is bounded.

Proof. For \(\varepsilon = 1 \), there exists \(N > 0 \) such that for all \(m, n > N \), \(|a_n - a_m| < 1 \), in particular, \(|a_m - a_N| < 1 \) for all \(m > N \). So \(|a_m| < |a_N| + 1 \) for all \(m > N \). Therefore, \(M = \max\{|a_1|, |a_2|, \ldots, |a_N|, |a_N| + 1\} \) is an upper bound for \(\{a_n\} \) and \(-M \) is a lower bound.

(b) There is at least one subsequential limit point for \(\{a_n\} \).
2.3. Bolzano-Weierstrass Theorem

Proof. Since \(\{a_n\} \) is bounded by (a), Theorem 2-14 implies that \(\{a_n\} \) has a convergent subsequence.

(c) There is no more than one subsequential limit point of \(\{a_n\} \).

Proof. Suppose not, suppose \(L \) and \(M \) are both subsequential limit points. WLOG, \(L < M \). Let \(\epsilon = (M - L)/3 \). Then there exists \(N_1(\epsilon) \) such that for all \(k > N_1 \), \(a_k \in (L - \epsilon, L + \epsilon) \). Similarly, there exists \(N_2 \) such that for all \(m > N_2 \), \(a_m \in (M - \epsilon, M + \epsilon) \). But then for \(k \) and \(m \), \(a_k < L + \frac{\epsilon}{3} < M - \frac{\epsilon}{3} < a_m \) from which \(|a_m - a_k| > \epsilon \). So for all \(N > 0 \), there are \(k > N \) and \(m > N \) such that \(|a_m - a_k| > \epsilon \). Therefore, \(\{a_n\} \) is not Cauchy, a contradiction.

(d) \(\{a_n\} \) converges.

Proof. Since there is only one subsequential limit point, \(\lim a_n = \lim a_n \) and by Corollary 2-17, the sequence converges (also follows from Theorem 2-16).

Exercise 2.3.14. A convergent sequence is Cauchy.

Proof. Let \(\epsilon > 0 \). If \(\{a_n\} \) is convergent, then there exists \(N > 0 \) such that for all \(n > N \), \(|a_n - L| < \epsilon/2 \). Let \(n, m > N \). Then \(|a_n - a_m| = |a_n - L - (a_m - L)| \leq |a_n - L| + |a_m - L| = \epsilon/2 + \epsilon/2 = \epsilon \). Therefore \(\{a_n\} \) is Cauchy.

Revised: 1/22/2014