Theory of Matrices

Chapter 2. Vectors and Vector Spaces

2.1. Operations on Vectors—Proofs of Theorems

Theory of Matrices

May 24, 2020

Theory of Matrices

May 24, 2020 3 / 20

Theorem 2.1.1(A1) (continued)

Theorem 2.1.1. Properties of Vector Algebra in \mathbb{R}^n .

Let $x, y, z \in \mathbb{R}^n$. Then:

A1.
$$(x + y) + z = x + (y + z)$$
 (Associativity of Vector Addition)

Proof (continued).

$$(x+y)+z = [x_1+(y_1+z_1),x_2+(y_2+z_2),\dots x_n+(y_n+z_n)]$$
since addition in $\mathbb R$ is associative
$$= [x_1,x_2,\dots,x_n]+[y_1+z_1,y_2+z_2,\dots,y_n+z_n]$$
by the definition of vector addition
$$= [x_1,x_2,\dots,x_n]+([y_1,y_2,\dots,y_n]+[z_1,z_2,\dots,z_n])$$
by the definition of vector addition
$$= x+(y+z).$$

Theorem 2.1.1(A1)

Theorem 2.1.1. Properties of Vector Algebra in \mathbb{R}^n .

Let $x, y, z \in \mathbb{R}^n$. Then:

A1.
$$(x + y) + z = x + (y + z)$$
 (Associativity of Vector Addition)

Proof. Let $x, y, z \in \mathbb{R}^n$ be $x = [x_1, x_2, \dots, x_n], y = [y_1, y_2, \dots, y_n],$ and $z = [z_1, z_2, \dots, z_n]$. Then:

$$(x + y) + z = ([x_1, x_2, ..., x_n] + [y_1, y_2, ..., y_n]) + [z_1, z_2, ..., z_n]$$

 $= [x_1 + y_1, x_2 + y_2, ..., x_n + y_n] + [z_1, z_2, ..., z_n]$
by the definition of vector addition
 $= [(x_1 + y_1) + z_1, (x_2 + y_2) + z_2, ..., (x_n + y_n) + z_n]$
by the definition of vector addition
 $= [x_1 + (y_1 + z_1), x_2 + (y_2 + z_2), ..., x_n + (y_n + z_n)]$
since addition in \mathbb{R} is associative

Theorem 2.1.2

Theorem 2.1.2. Let V_1 and V_2 be vector spaces of *n*-vectors. Then $V_1 \cap V_2$ is a vector space.

Proof. By our definition of "vector space," we only need to prove that $V_1 \cap V_2$ is closed under linear combinations. Let $x, y \in V_1 \cap V_2$ and $a,b \in \mathbb{R}$. Since V_1 is a vector space then it is closed under linear combinations and so $ax + by \in V_1$. Similarly, $ax + by \in V_2$. So $ax + by \in V_1 \cap V_2$. Since x and y are arbitrary elements of $V_1 \cap V_2$ and $a,b \in \mathbb{R}$ are arbitrary scalars, then $V_1 \cap V_2$ is closed under linear combinations. That is, $V_1 \cap V_2$ is a vector space.

May 24, 2020 May 24, 2020 5 / 20 Theory of Matrices

Theorem 2.1.3

Theorem 2.1.3

Theorem 2.1.3. If V_1 and V_2 are vector spaces of *n*-vectors, then $V_1 + V_2$ is a vector space.

Proof. By our definition of "vector space," we must show that V_1+V_2 is closed under linear combinations. Let $x,y\in V_1+V_2$ and let $a,b\in\mathbb{R}$. Then $x=x_1+x_2$ and $y=y_1+y_2$ for some $x_1,y_1\in V_1$ and $x_2,y_2\in V_2$. Since V_1 and V_2 are vector spaces, then they are closed under linear combinations and so $ax_1+by_1\in V_1$ and $ax_2+by_2\in V_2$. Therefore

$$ax + by = a(x_1 + x_2) + b(y_1 + y_2) = (ax_1 + by_1) + (ax_2 + by_2) \in V_1 + V_2.$$

Since x and y are arbitrary vectors in V_1+V_2 and $a,b\in\mathbb{R}$ are arbitrary scalars, then we have that V_1+V_2 is closed under linear combinations. That is, V_1+V_2 is a vector space.

Theory of Matrices

May 24, 2020

Theorem 2.1.5

Theorem 2.1.5. If $\{v_1, v_2, \dots, v_k\}$ is a basis for a vector space V, then each element can be uniquely represented as a linear combination of the basis vectors.

Proof. Suppose that

$$x = b_1 v_1 + b_2 v_2 + \dots + b_k v_k = c_1 v_1 + c_2 v_2 + \dots + c_k v_k$$
. Then

$$0 = x - x = (b_1v_1 + b_2v_2 + \dots + b_kv_k) - (c_1v_1 + c_2v_2 + \dots + c_kv_k)$$
$$= (b_1 - c_1)v_1 + (b_2 - c_2)v_2 + \dots + (b_k - c_k)v_k.$$

Since the basis consists (by definition) of a linearly independent set of vectors, then $b_1-c_1=b_2-c_2=\cdots b_k-c_k=0$; that is, $b_1=c_1,b_2=c_2,\ldots,b_k=c_k$. Therefore, the representation of x is unique. Since x is an arbitrary vector in V, the claim follows.

Theorem 2.1.4

Theorem 2.1.4. If vector spaces V_1 and V_2 are essentially disjoint then every element of $V_1 \oplus V_2$ can be written as $v_1 + v_2$, where $v_1 \in V_1$ and $v_2 \in V_2$, in a unique way.

Proof. Let V_1 and V_2 be essentially disjoint vector spaces of n-vectors; that is, $V_1 \cap V_2 = \{0\}$. Suppose some $v \in V_1 \oplus V_2$ is of the form $v = v_1 + v_2 = v_1' + v_2'$ where $v_1, v_2' \in V_1$ and $v_2, v_2' \in V_2$. Then $v_1 - v_1' = v_2' - v_2$. So $v_1 - v_1' \in V_1$ and $v_2' - v_2 \in V_2$ since V_1 and V_2 are vector space. But then $v_1 - v_1', v_2' - v_2 \in V_1 \cap V_2$ and so $v_1 - v_1' = 0$ and $v_2' - v_2 = 0$. That is, $v_1 = v_1'$ and $v_2 = v_2'$. So the representation of $v \in V_1 \oplus V_2$ as a sum of an element of V_1 and an element of V_2 is unique, as claimed.

Theory of Matrices

May 24, 2020

Theorem 2.1.6(3) Properties of Inner Product

Theorem 2.1.6(3)

Theorem 2.1.6. Properties of Inner Products.

Let $x, y \in \mathbb{R}^n$ and let $a \in \mathbb{R}$. Then:

3. $a\langle x,y\rangle=\langle ax,y\rangle$ (Factoring of Scalar Multiplication in Inner Products). **Proof.** Let $x,y\in\mathbb{R}^n$ be $x=[x_1,x_2,\ldots,x_n]$ and $y=[y_1,y_2,\ldots,y_n]$. Then

$$a\langle x,y\rangle = a\langle [x_1,x_2,\ldots,x_n],[y_1,y_2,\ldots,y_n]\rangle$$

$$= a(x_1y_1 + x_2y_2 + \cdots + x_ny_n)$$
 by the definition of $\langle x, y \rangle$

$$= a(x_1y_1) + a(x_2y_2) + \cdots + a(x_ny_n)$$

by distribution property of multiplication over addition in $\mathbb R$

$$= (ax_1)y_1 + (ax_2)y_2 + \cdots + (ax_n)y_n$$

by associativity for multiplication in ${\mathbb R}$

$$= \langle [ax_1, ax_2, \dots, ax_n], [y_1, y_2, \dots, y_n] \rangle$$

by the definition of inner product

$$=\langle ax, y \rangle.$$

Theory of Matrices May 24, 2020 8 / 20 () Theory of Matrices May 24, 2020 9 / 2

Theorem 2.1.7

Theorem 2.1.7. Schwarz Inequality.

For any $x, y \in \mathbb{R}^n$ we have $|\langle x, y \rangle| < \langle x, x \rangle^{1/2} \langle y, y \rangle^{1/2}$.

Proof. Let $t \in \mathbb{R}$. Then

$$0 \leq \langle (tx+y), (tx+y) \rangle \text{ by Theorem 2.1.6(1)}$$

$$= t\langle x, tx+y \rangle + \langle y, tx+y \rangle \text{ by linearity in the 1st entry}$$

$$= t(t\langle x, x \rangle + \langle x, y \rangle) + (t\langle y, x \rangle + \langle y, y \rangle) \text{ by linearity in the 2nd entry}$$

$$= t^2\langle x, x \rangle + 2t\langle x, y \rangle + \langle y, y \rangle \text{ by Theorem 1.2.6(2)}$$

$$= at^2 + bt + c$$

where $a = \langle x, x \rangle$, $b = 2\langle x, y \rangle$, and $c = \langle y, y \rangle$. As a quadratic in t, $at^2 + bt + c$ cannot have two distinct roots or else we would have $at^2 + bt + c < 0$ for some t. This means that the discriminant $b^2 - 4ac$ in the quadratic equation $t = (-b \pm \sqrt{b^2 - 4ac})/(2a)$, must be $b^2-4ac \le 0$; that is, $(b/2)^2 \le ac$. Hence, we have $(b/2)^2 = \langle x,y \rangle^2 \le ac$ $=\langle x,x\rangle\langle y,y\rangle$ or $\sqrt{\langle x,y\rangle^2}=|\langle x,y\rangle|\leq \langle x,x\rangle^{1/2}\langle y,y\rangle^{1/2}$.

Theory of Matrices

Theorem 2.1.8 (continued 1)

Proof (continued). Finally,

$$\rho(x+y)^{2} = \rho((c_{1}+d_{1})v_{1}+(c_{2}+d_{2})v_{2}+\cdots+(c_{k}+d_{k})v_{k})^{2}$$

$$= \sum_{j=1}^{k} (c_{j}+d_{j})^{2} = \sum_{j=1}^{k} (c_{j}^{2}+2c_{j}d_{j}+d_{j}^{2})$$

$$= \sum_{j=1}^{k} c_{j}^{2}+2\sum_{j=1}^{k} c_{j}d_{j}+\sum_{j=1}^{k} d_{j}^{2}$$

$$\leq \sum_{j=1}^{k} c_{j}^{2}+2\left\{\sum_{j=1}^{k} c_{j}^{2}\right\}^{1/2}\left\{\sum_{j=1}^{k} d_{j}^{2}\right\}^{1/2}+\sum_{j=1}^{k} d_{j}^{2}$$
by Theorem 2.1.7 (Schwarz's Inequality in \mathbb{R}^{n})
$$= \left(\left\{\sum_{j=1}^{k} c_{j}^{2}\right\}^{1/2}+\left\{\sum_{j=1}^{k} d_{j}^{2}\right\}^{1/2}\right)^{2}=(\rho(x)+\rho(y))^{2}.$$
Theory of Matrices

Theorem 2.1.8

Theorem 2.1.8 The basis norm is indeed a norm for any basis $\{v_1, v_2, \dots, v_k\}$ of vector space V.

Proof. Let $x = c_1 v_1 + c_2 v_2 + \cdots + c_k v_k$ and $y = d_1 v_1 + d_2 v_2 + \cdots + d_k v_k$. If $x \neq 0$ then some $c_i \neq 0$ and so $\rho(x) > 0$. Clearly $\rho(0) = 0$. So "Nonnegativity and Mapping of the Identity" is satisfied. Next

$$\rho(ax) = \rho(a(c_1v_1 + c_2v_2 + \dots + c_kv_k)) = \rho((ac_1)v_1 + (ac_2)v_2 + \dots + (ac_k)v_k)$$

$$= \left\{ \sum_{j=1}^k (ac_j)^2 \right\}^{1/2} = |a| \left\{ \sum_{j=1}^k c_j^2 \right\}^{1/2} = |a|\rho(x)$$

Theory of Matrices

and "Relation of Scalar Multiplication to Real Multiplication" holds.

Theorem 2.1.8 (continued 2)

Theorem 2.1.8 The basis norm is indeed a norm for any basis $\{v_1, v_2, \dots, v_k\}$ of vector space V.

Proof (continued). ...

$$\rho(x + y)^2 = (\rho(x) + \rho(y))^2.$$

Taking square roots, $\rho(x+y) < \rho(x) + \rho(y)$ and so the Triangle Inequality holds. Therefore ρ is a metric on V.

May 24, 2020

10 / 20

Theorem 2.1.10

Theorem 2.1.10. Every norm on (finite dimensional vector space) V is equivalent to the basis norm ρ for any given basis $\{v_1, v_2, \dots, v_k\}$. Therefore, any two norms on V are equivalent.

Proof. Let $\|\cdot\|_a$ be any norm on vector space V and let $\{v_1, v_2, \ldots, v_k\}$ be a basis for the space. Then for some unique scalars $c_1, c_2, \ldots, c_k \in \mathbb{R}$ we have $x = c_1v_1 + c_2v_2 + \cdots + c_kv_k$. Then, by the Triangle Inequality and "Relation of Scalar Multiplication to Real Multiplication,"

$$||x||_a = \left\|\sum_{i=1}^k c_i v_i\right\|_a \le \sum_{i=1}^k |c_i| ||v_i||_a.$$

Now with $[|c_1|, |c_2|, \dots, |c_k|], [||v_1||_a, ||v_2||_a, \dots, ||v_k||_a] \in \mathbb{R}^k$ we have by the Schwarz Inequality (Theorem 2.1.7) that

$$\sum_{i=1}^{k} |c_i| \|v_i\|_a \le \left\{ \sum_{i=1}^{k} |c_i|^2 \right\}^{1/2} \left\{ \sum_{i=1}^{k} \|v_i\|_a^2 \right\}^{1/2}.$$

Theory of

v 24, 2020 14 /

Theorem 2.1.1

Theorem 2.1.10 (continued 2)

Proof (continued). Define $f:C\to\mathbb{R}$ as $f(u)=\left\|\sum_{i=1}^k u_iv_i\right\|_a$. Gentle claims that f is continuous (page 20). Let's prove this. Let $y=\sum_{i=1}^k u_iv_i\in C$ and let $\varepsilon>0$. Set $\delta=\varepsilon$. For any $x=\sum_{i=1}^k u_i'v_i\in C$ with $\|y-x\|_a<\delta$ we have

$$\varepsilon = \delta > \left\{ \begin{array}{l} \|y\|_{a} - \|x\|_{a} \\ \|x\|_{a} - \|y\|_{a} \end{array} \right. = \left\{ \begin{array}{l} \|\sum_{i=1}^{k} u_{i} v_{i}\|_{a} - \|\sum_{i=1}^{k} u'_{i} v_{i}\|_{a} \\ \|\sum_{i=1}^{k} u'_{i} v_{i}\|_{a} - \|\sum_{i=1}^{k} u_{i} v_{i}\|_{a} \end{array} \right.$$

$$= \begin{cases} f(y) - f(x) \\ f(x) - f(y) \end{cases} = \begin{cases} |f(y) - f(x)| & \text{if } f(y) \ge f(x) \\ |f(x) - f(y)| & \text{if } f(y) < f(x). \end{cases}$$

That is, $|f(y) - f(x)| < \varepsilon$. So $f : C \to \mathbb{R}$ is continuous.

Theorem 2 1 10

Theorem 2.1.10 (continued 1)

Proof (continued). Hence

$$||x||_a \le \left\{\sum_{i=1}^k ||v_i||_a^2\right\}^{1/2} \rho(x) = \tilde{s}\rho(x) \text{ for } \tilde{s} = \left\{\sum_{i=1}^k ||v_i||_a^2\right\}^{1/2}.$$

Next, let $C = \left\{ x = \sum_{i=1}^k u_i v_i \in V \middle| \sum_{i=1}^k |u_i|^2 = 1 \right\}$. Gentle states that set C is "obviously [topologically] closed" (page 20). Set C is the surface of the unit sphere in V under ρ , $C = \{x \in V \mid \rho(x) = 1\}$. We give a proof that C is a topologically closed set by showing that its complement, $V \setminus C$, is open. Let $x \in V \setminus C$ and let $\varepsilon = |1 - \rho(x)| > 0$. Then the open ball $\{v \in V \mid \rho(v - x) < \varepsilon\}$ contains no elements of C: for $y \in C$,

$$\rho(y-x) \ge \left\{ \begin{array}{l} \rho(y) - \rho(x) \\ \rho(x) - \rho(y) \end{array} \right. = \left\{ \begin{array}{l} 1 - \rho(x) \\ \rho(x) - 1 \end{array} \right. = \left\{ \begin{array}{l} \varepsilon \text{ if } \rho(x) < 1 \\ \varepsilon \text{ if } \rho(x) > 1. \end{array} \right.$$

(Notice that the Triangle Inequality for norms implies for any $x, y \in V$ that $||x|| = ||x - y + y|| \le ||x - y|| + ||y||$ or $||x - y|| \ge ||x|| - ||y||$.)

Theory of Matrices

May 24 2020 15

Theorem 2.1.1

Theorem 2.1.10 (continued 3)

Proof (continued). By the Heine-Borel Theorem (since C is closed and bounded and V is finite dimensional), C is compact and so continuous function f attains a minimum value on C, say $f(u_*) \leq f(u)$ for all $u \in C$. Let $\tilde{r} = f(u_*) > 0$. If $x = \sum_{i=1}^k c_i v_i \neq 0$ then

$$||x||_{a} = \left\| \sum_{i=1}^{k} c_{i} v_{i} \right\|_{a} = \left\{ \sum_{j=1}^{k} c_{j}^{2} \right\}^{1/2} \left\| \sum_{i=1}^{k} \left(\frac{c_{i}}{\left\{ \sum_{j=1}^{k} c_{j}^{2} \right\}^{1/2}} \right) v_{i} \right\|_{a} = \rho(x) f(\tilde{c})$$

where
$$ilde{c} = \sum_{i=1}^k \left(c_i \left/ \left\{ \sum_{j=1}^k c_j^2 \right\}^{1/2} \right) v_i$$
, so $ilde{c} \in \mathcal{C}$ since

$$ho(ilde{c}) = \sum_{i=1}^k \left| rac{c_i}{\left\{\sum_{j=1}^k c_j^2
ight\}^{1/2}}
ight|^2 = rac{1}{\sum_{j=1}^k c_j^2} \sum_{i=1}^k c_i^2 = 1.$$

Theory of Matrices

Theory of Matrices May 24, 2020 16 / 20 ()

May 24, 2020

Theorem 2.1.10 (continued 4)

Theorem 2.1.10. Every norm on (finite dimensional vector space) V is equivalent to the basis norm ρ for any given basis $\{v_1, v_2, \dots, v_k\}$. Therefore, any two norms on V are equivalent.

Proof (continued). Since $\tilde{r} \in C$ then $f(\tilde{c}) \geq \tilde{r}$, and so $||x||_a \geq \tilde{r}\rho(x)$ for all $x \in V$, $x \neq 0$. Of course $||x||_a \geq \tilde{r}\rho(x)$ for x = 0, so for all $x \in V$ we have $\tilde{r}\rho(x) \leq ||x||_a \leq \tilde{s}\rho(x)$. That is, $||\cdot||_a \cong \rho(\cdot)$. Since \cong is an equivalence relation for Theorem 2.1.9, we have that any two norms on Vare equivalent.

Theory of Matrices

Theorem 2.1.11 (continued)

Theorem 2.1.11. A set of nonzero vectors $\{v_1, v_2, \dots, v_k\}$ in a vector space with an inner product for which $\langle v_i, v_i \rangle = 0$ for $i \neq j$ (the vectors are said to be mutually orthogonal) is a linearly independent set.

Proof.

$$\langle v_i, v_i \rangle = (-a_1/a_i) \langle v_1, v_i \rangle + (-a_2/a_i) \langle v_2, v_i \rangle + \dots + (-a_{i-1}/a_i) \langle v_{i-1}, v_i \rangle$$
$$+ (-a_{i+1}/a_i) \langle v_{i+1}, v_i \rangle + \dots + (-a_k/a_i) \langle v_k, v_i \rangle = 0,$$

a CONTRADICTION to the fact that $v_i \neq 0$. So the assumption that the set is not linearly independent is false; that is, the set is linearly independent, as claimed.

Theory of Matrices

Theorem 2.1.11

Theorem 2.1.11. A set of nonzero vectors $\{v_1, v_2, \dots, v_k\}$ in a vector space with an inner product for which $\langle v_i, v_i \rangle = 0$ for $i \neq j$ (the vectors are said to be mutually orthogonal) is a linearly independent set.

Proof. Let $\{v_1, v_2, \dots, v_k\}$ be a set of mutually orthogonal nonzero vectors. ASSUME the set is not linearly independent. Then $a_1v_1 + a_2v_2 + \cdots + a_iv_i + \cdots + a_kv_k = 0$ is satisfied where some coefficient is nonzero, say $a_i \neq 0$. So

$$v_{i} = (-a_{1}/a_{i})v_{1} + (-a_{2}/a_{i})v_{2} + \dots + (-a_{i-1}/a_{i})v_{i-1}$$
$$+ (-a_{i+1}/a_{i})v_{i+1} + \dots + (-a_{k}/a_{i})v_{k}.$$

But then

$$\langle v_i, v_i \rangle = \langle (-a_1/a_i)v_1 + (-a_2/a_i)v_2 + \dots + (-a_{i-1}/a_i)v_{i-1} + (-a_{i+1}/a_i)v_{i+1} + \dots + (-a_k/a_i)v_k, v_i \rangle$$

Theory of Matrices May 24, 2020 19 / 20