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Theorem 2.1.1(Al)

Theorem 2.1.1. Properties of Vector Algebra in R".
Let x,y,z € R". Then:
Al. (x+y)+z=x+ (y + z) (Associativity of Vector Addition)
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Theorem 2.1.1(Al). Associativity of Vector Addition

Theorem 2.1.1(Al)

Theorem 2.1.1. Properties of Vector Algebra in R".
Let x,y,z € R". Then:

Al. (x+y)+z=x+ (y + z) (Associativity of Vector Addition)

Proof. Let x,y,z € R" be x = [x1, x2, .

s Xnl, ¥ = 1, Y25, ¥n], and
z=|z1,22,...,2p]. Then:

(X+y)—|—Z = ([X17X2>"'7Xn] + [y17y27"'7yn])+ [217227"'7Zn]

= ity x4+ Y2, ... Xa+ Yol + 21,22, .., Zn)
by the definition of vector addition

= [(x1 +y1) +z1,(x2 + y2) + 22, .. . (Xn + Yn) + z4]
by the definition of vector addition

= k+0i+z),x+ 02+ 2),...x0+ (¥n + 2n)]
since addition in R is associative
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Theorem 2.1.1(A1) (continued)

Theorem 2.1.1. Properties of Vector Algebra in R".
Let x,y,z € R". Then:

Al. (x+y)+z=x+(y + z) (Associativity of Vector Addition)

Proof (continued).

(x+y)+z = a+h+z)xet2tz),. X+ (Vnt+ 2]
since addition in R is associative
= [x1,x0,. ., x0) + 1+ z1,y2 + 20,0, Yo+ 2]
by the definition of vector addition
=[x, %2, X0l + ([y1, )2, - ¥nl + [21, 22, - - -, 21])
by the definition of vector addition
= x+(y+2).

[
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Theorem 2.1.2

Theorem 2.1.2. Let V4 and V5, be vector spaces of n-vectors. Then
Vi N V5 is a vector space.
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Theorem 2.1.2

Theorem 2.1.2

Theorem 2.1.2. Let V4 and V5, be vector spaces of n-vectors. Then
Vi N V5 is a vector space.

Proof. By our definition of “vector space,” we only need to prove that
Vi N Vs, is closed under linear combinations.
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Theorem 2.1.2

Theorem 2.1.2

Theorem 2.1.2. Let V4 and V5, be vector spaces of n-vectors. Then
Vi N V5 is a vector space.

Proof. By our definition of “vector space,” we only need to prove that
Vi N V5 is closed under linear combinations. Let x,y € V3 N V5, and
a,b € R. Since V; is a vector space then it is closed under linear

combinations and so ax + by € V;. Similarly, ax + by € V,. So
ax+ by € V1N Vs.

Theory of Matrices T

5/ 20



Theorem 2.1.2

Theorem 2.1.2. Let V4 and V5, be vector spaces of n-vectors. Then
Vi N V5 is a vector space.

Proof. By our definition of “vector space,” we only need to prove that

Vi N V5 is closed under linear combinations. Let x,y € V3 N V5, and

a,b € R. Since V; is a vector space then it is closed under linear
combinations and so ax + by € V;. Similarly, ax + by € V,. So

ax + by € V1N V4. Since x and y are arbitrary elements of V3 N V5 and
a, b € R are arbitrary scalars, then V4 N V5 is closed under linear
combinations. That is, V1 N V5, is a vector space. O
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Theorem 2.1.3

Theorem 2.1.3. If V; and V5, are vector spaces of n-vectors, then
Vi1 + V5 is a vector space.

Theory of Matrices Y ED



Theorem 2.1.3

Theorem 2.1.3. If V; and V5, are vector spaces of n-vectors, then
Vi1 + V5 is a vector space.

Proof. By our definition of “vector space,” we must show that V; + V5 is
closed under linear combinations. Let x,y € V1 4+ V5 and let a, b € R.
Then x = x3 + xp and y = y; + y» for some x1,y1 € V4 and xp, y» € V>,
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Theorem 2.1.3

Theorem 2.1.3. If V; and V5, are vector spaces of n-vectors, then
Vi1 + V5 is a vector space.

Proof. By our definition of “vector space,” we must show that V; + V5 is
closed under linear combinations. Let x,y € V1 4+ V5 and let a, b € R.
Then x = x3 + xp and y = y; + y» for some x1,y1 € V4 and xp, y» € V>,
Since V4 and V5, are vector spaces, then they are closed under linear
combinations and so ax; + by; € Vi and axy + by, € V5. Therefore

ax + by = a(x1 + X2) + b(yl + }’2) = (ax1 + by1) + (aX2 + byg) e Vi+ VW,

Since x and y are arbitrary vectors in Vi + V5 and a, b € R are arbitrary
scalars, then we have that Vj + V5 is closed under linear combinations.
That is, V1 4+ V5, is a vector space. ]

Theory of Matrices Y ED



Theorem 2.1.4

Theorem 2.1.4. If vector spaces V7 and V, are essentially disjoint then
every element of V; @& V, can be written as vi + v, where vy € V4 and
vo € Vo, in a unique way.
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Theorem 2.1.4

Theorem 2.1.4

Theorem 2.1.4. If vector spaces V7 and V, are essentially disjoint then
every element of V; @& V, can be written as vi + v, where vy € V4 and
vo € Vo, in a unique way.

Proof. Let V; and V5 be essentially disjoint vector spaces of n-vectors;
that is, Vi NV, = {0}. Suppose some v € V; @ V; is of the form
v=vi+ve=v] + v5 where vi,v5 € Vj and v, v} € V5. Then

! /
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Theorem 2.1.4

Theorem 2.1.4. If vector spaces V7 and V, are essentially disjoint then
every element of V; @& V, can be written as vi + v, where vy € V4 and
vo € Vo, in a unique way.

Proof. Let V; and V5 be essentially disjoint vector spaces of n-vectors;
that is, Vi NV, = {0}. Suppose some v € V; @ V; is of the form
v=vi+ve=v] + v5 where vi,v5 € Vj and v, v} € V5. Then
vi—Vvi=Vv,—wv. Sovi—v €Vjand vl — vy € Vasince V; and Vs are
vector space. But then vi — vj,vj — v, € V41NV, and so v; — v{ = 0 and
vy — v, = 0. Thatis, vi = v{ and v» = vj. So the representation of

v € V1 & V; as a sum of an element of V; and an element of V5 is unique,
as claimed. ]
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Theorem 2.1.5

Theorem 2.1.5. If {vy,vs,..., v} is a basis for a vector space V/, then
each element can be uniquely represented as a linear combination of the
basis vectors.
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Theorem 2.1.5

Theorem 2.1.5

Theorem 2.1.5. If {vy,vs,..., v} is a basis for a vector space V/, then

each element can be uniquely represented as a linear combination of the

basis vectors.

Proof. Suppose that

XxX=bivi + bovo + -+ bevik = civi + covo + - - - 4+ cxvk. Then
0=x—x=(bivi + bavo+ - - + brvi) — (cavi + cavo + - - - + cu k)

= (b1 —ca)vi + (b2 — 2)vo + -+ - + (bk — k) k-
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Theorem 2.1.5

Theorem 2.1.5. If {vy,vs,..., v} is a basis for a vector space V/, then
each element can be uniquely represented as a linear combination of the
basis vectors.

Proof. Suppose that
XxX=bivi + bovo + -+ bevik = civi + covo + - - - 4+ cxvk. Then

OZX—X:(blvl—|—b2V2—|—---—|—kak)—(C1V1+C2V2—|—-~~—|—Ckvk)

= (b1 —ca)vi + (b2 — 2)vo + -+ - + (bk — k) k-

Since the basis consists (by definition) of a linearly independent set of

vectors, then by — ¢y = by — ¢ = -+ - by — ¢, = 0; that is,
by = c1,bo = ¢, ..., by = ck. Therefore, the representation of x is
unique. Since x is an arbitrary vector in V/, the claim follows. O
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Theorem 2.1.6(3)

Theorem 2.1.6. Properties of Inner Products.
Let x,y € R" and let a € R. Then:
3. a(x,y) = (ax, y) (Factoring of Scalar Multiplication in Inner Products).
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Theorem 2.1.6(3)

Theorem 2.1.6. Properties of Inner Products.
Let x,y € R" and let a € R. Then:

3. a(x,y) = (ax, y) (Factoring of Scalar Multiplication in Inner Products).
Proof. Let x,y € R" be x = [x1,x2,...,%,] and y = [y1,¥2,...,¥n]- Then

alx,y) = a([xi,x2,...,xnl, [y, Y2, -, ¥n])
= a(xy1 + xey2 + -+ + Xxayn) by the definition of (x, y)
= alxay) +alxey2) + -+ + a(xnyn)
by distribution property of multiplication over addition in R
= (ax)y1 + (2x)y2 + -+ (axn)yn
by associativity for multiplication in R
= ([ax1,ax2, ..., axa], [v1, Y2, -« -5 Vnl)
by the definition of inner product
= (ax,y). O
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Theorem 2.1.7

Theorem 2.1.7. Schwarz Inequality.
For any x,y € R" we have |(x, y)| < (x,x)}2(y, y)1/2.
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Theorem 2.1.7. Schwarz Inequality

Theorem 2.1.7

Theorem 2.1.7. Schwarz Inequality.
For any x,y € R" we have |(x, y)| < (x,x)/?(y, y)1/2.
Proof. Let t € R. Then
0 < {((tx+y),(tx+y)) by Theorem 2.1.6(1)
= t(x,tx+y)+ (y,tx+ y) by linearity in the 1st entry
= t(t(x,x) + (x,¥)) + (t{y,x) + (y,y)) by linearity in the 2nd entry
= t%(x,x) + 2t(x,y) + {y,y) by Theorem 1.2.6(2)
= at’+bt+c

where a = (x, x), b =2(x,y), and ¢ = (y, y).
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Theorem 2.1.7

Theorem 2.1.7. Schwarz Inequality.
For any x,y € R" we have |(x, y)| < (x,x)}2(y, y)1/2.

Proof. Let t € R. Then

0 < ((tx+y),(tx+y)) by Theorem 2.1.6(1)
= t(x,tx+y)+ (y,tx+ y) by linearity in the 1st entry
= t(t(x,x) + (x,¥)) + (t{y,x) + (y,y)) by linearity in the 2nd entry
= t%(x,x) + 2t(x,y) + {y,y) by Theorem 1.2.6(2)
= at’+bt+c

where a = (x, x), b= 2(x,y), and ¢ = (y,y). As a quadratic in t,

at? + bt + ¢ cannot have two distinct roots or else we would have

at? + bt + ¢ < 0 for some t. This means that the discriminant b?> — 4ac in

the quadratic equation t = (—b + v/b% — 4ac)/(2a), must be

b? — 4ac < 0; that is, (b/2)? < ac. Hence, we have (b/2)? = (x,y)? < ac

= (x, )y, ) or /(x,¥)2 = [(x, y)| < (x, )2 (y, y) M2, D
Theory of Matrices May 24, 2020 10 / 20



Theorem 2.1.8

Theorem 2.1.8 The basis norm is indeed a norm for any basis
{v1,va,..., vk} of vector space V.
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Theorem 2.1.8

Theorem 2.1.8

Theorem 2.1.8 The basis norm is indeed a norm for any basis
{v1,va,..., vk} of vector space V.

Proof. Let x=cwvi+ v+ --+ckvkand y = divi +dovo + - - - + di vk.
If x # 0 then some ¢; # 0 and so p(x) > 0. Clearly p(0) = 0. So
“Nonnegativity and Mapping of the Identity” is satisfied.
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Theorem 2.1.8

Theorem 2.1.8 The basis norm is indeed a norm for any basis
{v1,va,..., vk} of vector space V.

Proof. Let x=cwvi+ v+ --+ckvkand y = divi +dovo + - - - + di vk.
If x # 0 then some ¢; # 0 and so p(x) > 0. Clearly p(0) = 0. So
“Nonnegativity and Mapping of the Identity” is satisfied.

Next

p(ax) = p(a(C1V1+C2V2+' . '+Ckvk)) = p((acl)v1+(acz)vz+~ : -+(ack)vk)

. 1/2 1/2

K
=) (ag) =lal¢> ¢ = la|p(x)
j=1

Jj=1

and “Relation of Scalar Multiplication to Real Multiplication” holds.
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Theorem 2.1.8 (continued 1)

Proof (continued). Finally,

p(x+y)* = p(lar+di)vi+ (c2+da)va+ - + (ck + di)vic)?
k k
= D (g+d) =D ( +2qd; +d})
j=1 j=1

k k k

= DG +2y qgd+) 4

j=1 j=1 j=1
. . 2 ¢, 2
dogF29> G (X tLd
j=1 j=1 j=1 j=1
by Theorem 2.1.7 (Schwarz's Inequality in R")
1/2 1/2\ 2

k
o> = (p(x) + p(y))>.

j=1
Theory of Matrices May 24, 2020 12 /20
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Theorem 2.1.8 (continued 2)

Theorem 2.1.8 The basis norm is indeed a norm for any basis
{v1,v2,..., vk} of vector space V.

Proof (continued). ...

p(x + y)? = (p(x) + p(¥))*.

Taking square roots, p(x + y) < p(x) 4+ p(y) and so the Triangle Inequality
holds. Therefore p is a metric on V. O
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Theorem 2.1.10

Theorem 2.1.10. Every norm on (finite dimensional vector space) V is
equivalent to the basis norm p for any given basis {vq, v2, ..., vk}.
Therefore, any two norms on V are equivalent.
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Theorem 2.1.10

Theorem 2.1.10. Every norm on (finite dimensional vector space) V is
equivalent to the basis norm p for any given basis {vq, v2, ..., vk}.
Therefore, any two norms on V are equivalent.

Proof. Let || - ||, be any norm on vector space V and let {v1, v2,..., vk}
be a basis for the space. Then for some unique scalars ¢1,¢,...,cxk € R
we have x = civ; + &vo + - - - + ¢k vk. Then, by the Triangle Inequality
and “Relation of Scalar Multiplication to Real Multiplication,”

k k
e =[S el <3 laillvila
i=1 a2 =l
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Theorem 2.1.10

Theorem 2.1.10. Every norm on (finite dimensional vector space) V is
equivalent to the basis norm p for any given basis {vi, vo,..., vk }.
Therefore, any two norms on V are equivalent.

Proof. Let || - ||, be any norm on vector space V and let {v1, v2,..., vk}
be a basis for the space. Then for some unique scalars ¢1,¢,...,cxk € R
we have x = civ; + &vo + - - - + ¢k vk. Then, by the Triangle Inequality
and “Relation of Scalar Multiplication to Real Multiplication,”

k k
ZCiVi < Z <illvilla-
i=1 a =1

Now with [|c1, |l -, [ckl], [IIvillas Ivallas - - -, [|Villa] € RX we have by
the Schwarz Inequality (Theorem 2.1.7) that

K P 12 , 1/2
Slellale < {Yole} {miz}
i=1 i=1 i=1

Theory of Matrices May 24,2020 14 / 20

Ixlla =




Theorem 2.1.10 (continued 1)

Proof (continued). Hence

K 1/2 K
Ixlla < {Z |Vi||§} p(x) = 3p(x) for § = {Z |!Vi||§}
i—1

i=1

1/2
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Theorem 2.1.10 (continued 1)

Proof (continued). Hence

K 1/2 K
Ixlla < {Z |Vi||§} p(x) = 3p(x) for § = {Z |!Vi||§}
i—1

1/2

i=1

Next, let C = {x = Zf'(:l ujvj € V‘ Zf-‘zl lui|?> = 1} . Gentle states that
set C is "obviously [topologically] closed” (page 20). Set C is the surface
of the unit sphere in V under p, C = {x € V | p(x) = 1}.
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Theorem 2.1.10 (continued 1)

Proof (continued). Hence

K 1/2 K
Ixlla < {Z |Vi||§} p(x) = 3p(x) for § = {Z |!Vi||§}
i—1

i=1

1/2

Next, let C = {x = Zf'(:l ujvj € V‘ Zf-‘zl lui|?> = 1} . Gentle states that
set C is "obviously [topologically] closed” (page 20). Set C is the surface
of the unit sphere in V under p, C = {x € V| p(x) = 1}. We give a proof
that C is a topologically closed set by showing that its complement,

V\ C,isopen. Let x € V\ C and let ¢ = |1 — p(x)| > 0. Then the open
ball {v € V| p(v — x) < £} contains no elements of C: for y € C,

. p(y) = p(x) _ [ 1-p(x) _ [ eifp(x)<1
p(y )Z{p(x)_p(y) —{p(x)_1 _{eifp(x)>1.
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Theorem 2.1.10 (continued 1)

Proof (continued). Hence

K 1/2 K
Ixlla < {Z |Vi||§} p(x) = 3p(x) for § = {Z |!Vi||§}
i—1

i=1

1/2

Next, let C = {x = Zf'(:l ujvj € V‘ Zf-‘zl lui|?> = 1} . Gentle states that
set C is "obviously [topologically] closed” (page 20). Set C is the surface
of the unit sphere in V under p, C = {x € V| p(x) = 1}. We give a proof
that C is a topologically closed set by showing that its complement,

V\ C,isopen. Let x € V\ C and let ¢ = |1 — p(x)| > 0. Then the open
ball {v € V| p(v — x) < £} contains no elements of C: for y € C,

p(y) = p(x) { 1—p(x) { eif p(x) <1
Ply =) 2 { p(x) = p(y) p(x) —1 eif p(x) > 1.
(Notice that the Triangle Inequality for norms implies for any x,y € V
that [[x|| = |lx —y + y|| < [lx = yll + [lyll or [Ix = yll = [Ix[| = l¥]-)
Theory of Matrices May 24,2020 15 /20



Theorem 2.1.10 (continued 2)

. Gentle

a

Proof (continued). Define f: C — R as f(u) = HZLI ui Vi

claims that f is continuous (page 20). Let's prove this.
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Theorem 2.1.10 (continued 2)

. Gentle
a

Proof (continued). Define f: C — R as f(u) = HZLI ui Vi
claims that f is continuous (page 20). Let's prove this. Let

y=SK uvieCandlete>0. Setd=c Foranyx=SK ulv,eC
with ||y — x|/, < 0 we have

_ Iylla = lIxlla— J 120y wivilla — 320 wlvilla
e=0>

Ixlla = llvlla | 1120y wvilla — [ 320 wivilla

:{ fly) —f(x) :{ [F(y) = FOIIif £(y) = F(x)
F(x) = f(y) [F(x) = F)if Fy) < F(x).

That is, |f(y) — f(x)| <e. So f: C — R is continuous.

16 / 20
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Theorem 2.1.10 (continued 3)

Proof (continued). By the Heine-Borel Theorem (since C is closed and
bounded and V is finite dimensional), C is compact and so continuous
function f attains a minimum value on C, say f(uy) < f(u) for all u € C.

Let 7 = f(u.) > 0.

17 / 20
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Theorem 2.1.10 (continued 3)

Proof (continued). By the Heine-Borel Theorem (since C is closed and
bounded and V is finite dimensional), C is compact and so continuous
function f attains a minimum value on C, say f(uy) < f(u) for all u € C.
Let F = f(u) > 0. If x =% | c;v; # 0 then

k V20
=29 > il =P (@)
a j=1 i=1

a

Ixlla =

k
g CiVvj
i=1

ci
{Zle 92}1/2

~ k k 2 1/2 ~ .
where ¢ =57, | ¢ {ijl ¢ } vi, so ¢ € C since
2

joi=

. . i 1 “
p(C):'E . }1/2 :Zklc2§lc,?:1.
= ._ . J: —
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Theorem 2.1.10 (continued 4)

Theorem 2.1.10. Every norm on (finite dimensional vector space) V is
equivalent to the basis norm p for any given basis {vi, vo, ..., vk}.
Therefore, any two norms on V are equivalent.

Proof (continued). Since ¥ € C then f(&) > ¥, and so ||x||s > Fp(x) for
all x € V, x # 0. Of course ||x||5 > Fp(x) for x =0, so for all x € V we

have Fp(x) < ||x|la < 3p(x). Thatis, || - ||a = p(+). Since X is an
equivalence relation for Theorem 2.1.9, we have that any two norms on V
are equivalent. ]

Theory of Matrices TR



Theorem 2.1.11

Theorem 2.1.11. A set of nonzero vectors {vi, va,..., vk} in a vector
space with an inner product for which (v;, vj) = 0 for i # j (the vectors are
said to be mutually orthogonal) is a linearly independent set.
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Theorem 2.1.11

Theorem 2.1.11. A set of nonzero vectors {vi, va,..., vk} in a vector
space with an inner product for which (v;, vj) = 0 for i # j (the vectors are
said to be mutually orthogonal) is a linearly independent set.

Proof. Let {v1,v2,..., vk} be a set of mutually orthogonal nonzero
vectors. ASSUME the set is not linearly independent. Then
aivi+avo+---+ajvi+---axvi = 0 is satisfied where some coefficient is
nonzero, say a; # 0.

Theory of Matrices RS



Theorem 2.1.11

Theorem 2.1.11. A set of nonzero vectors {vi, va,..., vk} in a vector
space with an inner product for which (v;, vj) = 0 for i # j (the vectors are
said to be mutually orthogonal) is a linearly independent set.

Proof. Let {v1,v2,..., vk} be a set of mutually orthogonal nonzero
vectors. ASSUME the set is not linearly independent. Then
aivi+avo+---+ajvi+---axvi = 0 is satisfied where some coefficient is
nonzero, say a; # 0. So

vi=(—a1/ai)vi + (—az/ai)va+ - -+ (—aj—1/ai)vi—1

+(—aiy1/ai)vigr + - + (—ak/ai) vk
But then

<V,', V,'> = <(—al/a,-)v1 + (—ag/a,-)V2 + 4 (—a,-,l/a,-)v,-,l

+(—air1/ai) Vi1 + -+ (—ak/ai) vk, vi)
Theory of Matrices May 24,2020 19 / 20



Theorem 2.1.11 (continued)

Theorem 2.1.11. A set of nonzero vectors {v1, va,..., vk} in a vector
space with an inner product for which (v;, v;) = 0 for i  j (the vectors are
said to be mutually orthogonal) is a linearly independent set.

Proof.
<V,', V,'> = (—al/a,-)<v1, V,'> + (—32/3,')<V2, V,'> + -+ (—a,-,l/a,-)<v,-,1, V,->

+(—ait1/ai)(Vig1, vi) + - + (—ak/ai){vk, vi) = 0,
a CONTRADICTION to the fact that v; # 0.
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Theorem 2.1.11 (continued)

Theorem 2.1.11. A set of nonzero vectors {v1, va,..., vk} in a vector
space with an inner product for which (v;, v;) = 0 for i  j (the vectors are
said to be mutually orthogonal) is a linearly independent set.

Proof.
<V,', V,'> = (—al/a,-)<v1, V,'> + (—32/3,')<V2, V,'> + -+ (—a,-,l/a,-)<v,-,1, V,->

+(—aiv1/ai)(Vit1, vi) + - + (—ak/ai){vk, vi) = 0,

a CONTRADICTION to the fact that v; # 0. So the assumption that the
set is not linearly independent is false; that is, the set is linearly
independent, as claimed. O
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