## Theory of Matrices

#### **Chapter 2. Vectors and Vector Spaces** 2.1. Operations on Vectors—Proofs of Theorems



## Table of contents

- 1 Theorem 2.1.1(A1). Associativity of Vector Addition
  - 2 Theorem 2.1.2
- 3 Theorem 2.1.3
  - 4 Theorem 2.1.4
- 5 Theorem 2.1.5
- 6 Theorem 2.1.6(3) Properties of Inner Products
- Theorem 2.1.7. Schwarz Inequality
- 8 Theorem 2.1.8
- 9 Theorem 2.1.10
- D Theorem 2.1.11

## Theorem 2.1.1(A1)

**Theorem 2.1.1. Properties of Vector Algebra in**  $\mathbb{R}^n$ . Let  $x, y, z \in \mathbb{R}^n$ . Then: **A1.** (x + y) + z = x + (y + z) (Associativity of Vector Addition)

**Proof.** Let  $x, y, z \in \mathbb{R}^n$  be  $x = [x_1, x_2, ..., x_n]$ ,  $y = [y_1, y_2, ..., y_n]$ , and  $z = [z_1, z_2, ..., z_n]$ . Then:

$$(x + y) + z = ([x_1, x_2, \dots, x_n] + [y_1, y_2, \dots, y_n]) + [z_1, z_2, \dots, z_n]$$
  
=  $[x_1 + y_1, x_2 + y_2, \dots, x_n + y_n] + [z_1, z_2, \dots, z_n]$   
by the definition of vector addition

$$= [(x_1 + y_1) + z_1, (x_2 + y_2) + z_2, \dots (x_n + y_n) + z_n]$$
  
by the definition of vector addition

$$= [x_1 + (y_1 + z_1), x_2 + (y_2 + z_2), \dots x_n + (y_n + z_n)]$$
  
since addition in  $\mathbb{R}$  is associative

## Theorem 2.1.1(A1)

**Theorem 2.1.1. Properties of Vector Algebra in**  $\mathbb{R}^n$ . Let  $x, y, z \in \mathbb{R}^n$ . Then: **A1.** (x + y) + z = x + (y + z) (Associativity of Vector Addition)

**Proof.** Let  $x, y, z \in \mathbb{R}^n$  be  $x = [x_1, x_2, ..., x_n]$ ,  $y = [y_1, y_2, ..., y_n]$ , and  $z = [z_1, z_2, ..., z_n]$ . Then:

$$(x + y) + z = ([x_1, x_2, ..., x_n] + [y_1, y_2, ..., y_n]) + [z_1, z_2, ..., z_n]$$
  
=  $[x_1 + y_1, x_2 + y_2, ..., x_n + y_n] + [z_1, z_2, ..., z_n]$   
by the definition of vector addition  
=  $[(x_1 + y_1) + z_1, (x_2 + y_2) + z_2, ..., (x_n + y_n) + z_n]$   
by the definition of vector addition

$$= [x_1 + (y_1 + z_1), x_2 + (y_2 + z_2), \dots x_n + (y_n + z_n)]$$
  
since addition in  $\mathbb{R}$  is associative

## Theorem 2.1.1(A1) (continued)

**Theorem 2.1.1. Properties of Vector Algebra in**  $\mathbb{R}^n$ . Let  $x, y, z \in \mathbb{R}^n$ . Then: **A1.** (x + y) + z = x + (y + z) (Associativity of Vector Addition) **Proof (continued).** 

$$(x + y) + z = [x_1 + (y_1 + z_1), x_2 + (y_2 + z_2), \dots x_n + (y_n + z_n)]$$
  
since addition in  $\mathbb{R}$  is associative  
$$= [x_1, x_2, \dots, x_n] + [y_1 + z_1, y_2 + z_2, \dots, y_n + z_n]$$
  
by the definition of vector addition

$$= [x_1, x_2, \dots, x_n] + ([y_1, y_2, \dots, y_n] + [z_1, z_2, \dots, z_n])$$
  
by the definition of vector addition

$$= x + (y + z).$$

# **Theorem 2.1.2.** Let $V_1$ and $V_2$ be vector spaces of *n*-vectors. Then $V_1 \cap V_2$ is a vector space.

**Proof.** By our definition of "vector space," we only need to prove that  $V_1 \cap V_2$  is closed under linear combinations.

**Theorem 2.1.2.** Let  $V_1$  and  $V_2$  be vector spaces of *n*-vectors. Then  $V_1 \cap V_2$  is a vector space.

**Proof.** By our definition of "vector space," we only need to prove that  $V_1 \cap V_2$  is closed under linear combinations. Let  $x, y \in V_1 \cap V_2$  and  $a, b \in \mathbb{R}$ . Since  $V_1$  is a vector space then it is closed under linear combinations and so  $ax + by \in V_1$ . Similarly,  $ax + by \in V_2$ . So  $ax + by \in V_1 \cap V_2$ .

**Theorem 2.1.2.** Let  $V_1$  and  $V_2$  be vector spaces of *n*-vectors. Then  $V_1 \cap V_2$  is a vector space.

**Proof.** By our definition of "vector space," we only need to prove that  $V_1 \cap V_2$  is closed under linear combinations. Let  $x, y \in V_1 \cap V_2$  and  $a, b \in \mathbb{R}$ . Since  $V_1$  is a vector space then it is closed under linear combinations and so  $ax + by \in V_1$ . Similarly,  $ax + by \in V_2$ . So  $ax + by \in V_1 \cap V_2$ . Since x and y are arbitrary elements of  $V_1 \cap V_2$  and  $a, b \in \mathbb{R}$  are arbitrary scalars, then  $V_1 \cap V_2$  is closed under linear combinations. That is,  $V_1 \cap V_2$  is a vector space.

**Theorem 2.1.2.** Let  $V_1$  and  $V_2$  be vector spaces of *n*-vectors. Then  $V_1 \cap V_2$  is a vector space.

**Proof.** By our definition of "vector space," we only need to prove that  $V_1 \cap V_2$  is closed under linear combinations. Let  $x, y \in V_1 \cap V_2$  and  $a, b \in \mathbb{R}$ . Since  $V_1$  is a vector space then it is closed under linear combinations and so  $ax + by \in V_1$ . Similarly,  $ax + by \in V_2$ . So  $ax + by \in V_1 \cap V_2$ . Since x and y are arbitrary elements of  $V_1 \cap V_2$  and  $a, b \in \mathbb{R}$  are arbitrary scalars, then  $V_1 \cap V_2$  is closed under linear combinations. That is,  $V_1 \cap V_2$  is a vector space.

# **Theorem 2.1.3.** If $V_1$ and $V_2$ are vector spaces of *n*-vectors, then $V_1 + V_2$ is a vector space.

**Proof.** By our definition of "vector space," we must show that  $V_1 + V_2$  is closed under linear combinations. Let  $x, y \in V_1 + V_2$  and let  $a, b \in \mathbb{R}$ . Then  $x = x_1 + x_2$  and  $y = y_1 + y_2$  for some  $x_1, y_1 \in V_1$  and  $x_2, y_2 \in V_2$ .

**Theorem 2.1.3.** If  $V_1$  and  $V_2$  are vector spaces of *n*-vectors, then  $V_1 + V_2$  is a vector space.

**Proof.** By our definition of "vector space," we must show that  $V_1 + V_2$  is closed under linear combinations. Let  $x, y \in V_1 + V_2$  and let  $a, b \in \mathbb{R}$ . Then  $x = x_1 + x_2$  and  $y = y_1 + y_2$  for some  $x_1, y_1 \in V_1$  and  $x_2, y_2 \in V_2$ . Since  $V_1$  and  $V_2$  are vector spaces, then they are closed under linear combinations and so  $ax_1 + by_1 \in V_1$  and  $ax_2 + by_2 \in V_2$ . Therefore

$$ax + by = a(x_1 + x_2) + b(y_1 + y_2) = (ax_1 + by_1) + (ax_2 + by_2) \in V_1 + V_2.$$

Since x and y are arbitrary vectors in  $V_1 + V_2$  and  $a, b \in \mathbb{R}$  are arbitrary scalars, then we have that  $V_1 + V_2$  is closed under linear combinations. That is,  $V_1 + V_2$  is a vector space. **Theorem 2.1.3.** If  $V_1$  and  $V_2$  are vector spaces of *n*-vectors, then  $V_1 + V_2$  is a vector space.

**Proof.** By our definition of "vector space," we must show that  $V_1 + V_2$  is closed under linear combinations. Let  $x, y \in V_1 + V_2$  and let  $a, b \in \mathbb{R}$ . Then  $x = x_1 + x_2$  and  $y = y_1 + y_2$  for some  $x_1, y_1 \in V_1$  and  $x_2, y_2 \in V_2$ . Since  $V_1$  and  $V_2$  are vector spaces, then they are closed under linear combinations and so  $ax_1 + by_1 \in V_1$  and  $ax_2 + by_2 \in V_2$ . Therefore

$$ax + by = a(x_1 + x_2) + b(y_1 + y_2) = (ax_1 + by_1) + (ax_2 + by_2) \in V_1 + V_2.$$

Since x and y are arbitrary vectors in  $V_1 + V_2$  and  $a, b \in \mathbb{R}$  are arbitrary scalars, then we have that  $V_1 + V_2$  is closed under linear combinations. That is,  $V_1 + V_2$  is a vector space.

**Theorem 2.1.4.** If vector spaces  $V_1$  and  $V_2$  are essentially disjoint then every element of  $V_1 \oplus V_2$  can be written as  $v_1 + v_2$ , where  $v_1 \in V_1$  and  $v_2 \in V_2$ , in a unique way.

**Proof.** Let  $V_1$  and  $V_2$  be essentially disjoint vector spaces of *n*-vectors; that is,  $V_1 \cap V_2 = \{0\}$ . Suppose some  $v \in V_1 \oplus V_2$  is of the form  $v = v_1 + v_2 = v'_1 + v'_2$  where  $v_1, v'_2 \in V_1$  and  $v_2, v'_2 \in V_2$ . Then  $v_1 - v'_1 = v'_2 - v_2$ .

**Theorem 2.1.4.** If vector spaces  $V_1$  and  $V_2$  are essentially disjoint then every element of  $V_1 \oplus V_2$  can be written as  $v_1 + v_2$ , where  $v_1 \in V_1$  and  $v_2 \in V_2$ , in a unique way.

**Proof.** Let  $V_1$  and  $V_2$  be essentially disjoint vector spaces of *n*-vectors; that is,  $V_1 \cap V_2 = \{0\}$ . Suppose some  $v \in V_1 \oplus V_2$  is of the form  $v = v_1 + v_2 = v'_1 + v'_2$  where  $v_1, v'_2 \in V_1$  and  $v_2, v'_2 \in V_2$ . Then  $v_1 - v'_1 = v'_2 - v_2$ . So  $v_1 - v'_1 \in V_1$  and  $v'_2 - v_2 \in V_2$  since  $V_1$  and  $V_2$  are vector space. But then  $v_1 - v'_1, v'_2 - v_2 \in V_1 \cap V_2$  and so  $v_1 - v'_1 = 0$  and  $v'_2 - v_2 = 0$ . That is,  $v_1 = v'_1$  and  $v_2 = v'_2$ . So the representation of  $v \in V_1 \oplus V_2$  as a sum of an element of  $V_1$  and an element of  $V_2$  is unique, as claimed. **Theorem 2.1.4.** If vector spaces  $V_1$  and  $V_2$  are essentially disjoint then every element of  $V_1 \oplus V_2$  can be written as  $v_1 + v_2$ , where  $v_1 \in V_1$  and  $v_2 \in V_2$ , in a unique way.

**Proof.** Let  $V_1$  and  $V_2$  be essentially disjoint vector spaces of *n*-vectors; that is,  $V_1 \cap V_2 = \{0\}$ . Suppose some  $v \in V_1 \oplus V_2$  is of the form  $v = v_1 + v_2 = v'_1 + v'_2$  where  $v_1, v'_2 \in V_1$  and  $v_2, v'_2 \in V_2$ . Then  $v_1 - v'_1 = v'_2 - v_2$ . So  $v_1 - v'_1 \in V_1$  and  $v'_2 - v_2 \in V_2$  since  $V_1$  and  $V_2$  are vector space. But then  $v_1 - v'_1, v'_2 - v_2 \in V_1 \cap V_2$  and so  $v_1 - v'_1 = 0$  and  $v'_2 - v_2 = 0$ . That is,  $v_1 = v'_1$  and  $v_2 = v'_2$ . So the representation of  $v \in V_1 \oplus V_2$  as a sum of an element of  $V_1$  and an element of  $V_2$  is unique, as claimed.

**Theorem 2.1.5.** If  $\{v_1, v_2, \ldots, v_k\}$  is a basis for a vector space V, then each element can be uniquely represented as a linear combination of the basis vectors.

**Proof.** Suppose that  $x = b_1v_1 + b_2v_2 + \dots + b_kv_k = c_1v_1 + c_2v_2 + \dots + c_kv_k.$  Then  $0 = x - x = (b_1v_1 + b_2v_2 + \dots + b_kv_k) - (c_1v_1 + c_2v_2 + \dots + c_kv_k)$   $= (b_1 - c_1)v_1 + (b_2 - c_2)v_2 + \dots + (b_k - c_k)v_k.$ 

**Theorem 2.1.5.** If  $\{v_1, v_2, \ldots, v_k\}$  is a basis for a vector space V, then each element can be uniquely represented as a linear combination of the basis vectors.

**Proof.** Suppose that  $x = b_1v_1 + b_2v_2 + \dots + b_kv_k = c_1v_1 + c_2v_2 + \dots + c_kv_k.$  Then  $0 = x - x = (b_1v_1 + b_2v_2 + \dots + b_kv_k) - (c_1v_1 + c_2v_2 + \dots + c_kv_k)$   $= (b_1 - c_1)v_1 + (b_2 - c_2)v_2 + \dots + (b_k - c_k)v_k.$ Since the basis consists (by definition) of a linearly independent set of vectors, then  $b_1 - c_1 = b_2 - c_2 = \dots + b_k - c_k = 0$ ; that is,  $b_1 = c_1, b_2 = c_2, \dots, b_k = c_k.$  Therefore, the representation of x is unique. Since x is an arbitrary vector in V, the claim follows.

**Theorem 2.1.5.** If  $\{v_1, v_2, \ldots, v_k\}$  is a basis for a vector space V, then each element can be uniquely represented as a linear combination of the basis vectors.

**Proof.** Suppose that  $x = b_1v_1 + b_2v_2 + \dots + b_kv_k = c_1v_1 + c_2v_2 + \dots + c_kv_k.$  Then  $0 = x - x = (b_1v_1 + b_2v_2 + \dots + b_kv_k) - (c_1v_1 + c_2v_2 + \dots + c_kv_k)$   $= (b_1 - c_1)v_1 + (b_2 - c_2)v_2 + \dots + (b_k - c_k)v_k.$ Since the basis consists (by definition) of a linearly independent set of vectors, then  $b_1 - c_1 = b_2 - c_2 = \dots + b_k - c_k = 0$ ; that is,  $b_1 = c_1, b_2 = c_2, \dots, b_k = c_k.$  Therefore, the representation of x is unique. Since x is an arbitrary vector in V, the claim follows.

## Theorem 2.1.6(3)

**Theorem 2.1.6. Properties of Inner Products.** Let  $x, y \in \mathbb{R}^n$  and let  $a \in \mathbb{R}$ . Then: **3.**  $a\langle x, y \rangle = \langle ax, y \rangle$  (Factoring of Scalar Multiplication in Inner Products). **Proof.** Let  $x, y \in \mathbb{R}^n$  be  $x = [x_1, x_2, \dots, x_n]$  and  $y = [y_1, y_2, \dots, y_n]$ . Then

$$\begin{aligned} a\langle x, y \rangle &= a\langle [x_1, x_2, \dots, x_n], [y_1, y_2, \dots, y_n] \rangle \\ &= a(x_1y_1 + x_2y_2 + \dots + x_ny_n) \text{ by the definition of } \langle x, y \rangle \\ &= a(x_1y_1) + a(x_2y_2) + \dots + a(x_ny_n) \\ &\qquad \text{by distribution property of multiplication over addition in } \mathbb{R} \\ &= (ax_1)y_1 + (ax_2)y_2 + \dots + (ax_n)y_n \end{aligned}$$

- by associativity for multiplication in  ${\mathbb R}$
- $= \langle [ax_1, ax_2, \dots, ax_n], [y_1, y_2, \dots, y_n] \rangle$ by the definition of inner product

$$= \langle ax, y \rangle. \square$$

## Theorem 2.1.6(3)

**Theorem 2.1.6. Properties of Inner Products.** Let  $x, y \in \mathbb{R}^n$  and let  $a \in \mathbb{R}$ . Then: **3.**  $a\langle x, y \rangle = \langle ax, y \rangle$  (Factoring of Scalar Multiplication in Inner Products). **Proof.** Let  $x, y \in \mathbb{R}^n$  be  $x = [x_1, x_2, \dots, x_n]$  and  $y = [y_1, y_2, \dots, y_n]$ . Then

$$\begin{aligned} a\langle x, y \rangle &= a\langle [x_1, x_2, \dots, x_n], [y_1, y_2, \dots, y_n] \rangle \\ &= a(x_1y_1 + x_2y_2 + \dots + x_ny_n) \text{ by the definition of } \langle x, y \rangle \\ &= a(x_1y_1) + a(x_2y_2) + \dots + a(x_ny_n) \\ &\quad \text{by distribution property of multiplication over addition in } \mathbb{R} \\ &= (ax_1)y_1 + (ax_2)y_2 + \dots + (ax_n)y_n \\ &\quad \text{by associativity for multiplication in } \mathbb{R} \\ &= \langle [ax_1, ax_2, \dots, ax_n], [y_1, y_2, \dots, y_n] \rangle \end{aligned}$$

by the definition of inner product

$$= \langle ax, y \rangle. \square$$

**Theorem 2.1.7. Schwarz Inequality.** For any  $x, y \in \mathbb{R}^n$  we have  $|\langle x, y \rangle| \leq \langle x, x \rangle^{1/2} \langle y, y \rangle^{1/2}$ . **Proof.** Let  $t \in \mathbb{R}$ . Then

 $0 \leq \langle (tx + y), (tx + y) \rangle$  by Theorem 2.1.6(1)

 $= t\langle x, tx + y \rangle + \langle y, tx + y \rangle$  by linearity in the 1st entry

 $= t(t\langle x, x \rangle + \langle x, y \rangle) + (t\langle y, x \rangle + \langle y, y \rangle)$ by linearity in the 2nd entry

 $= t^2 \langle x, x \rangle + 2t \langle x, y \rangle + \langle y, y \rangle$  by Theorem 1.2.6(2)

 $= at^2 + bt + c$ 

where  $a = \langle x, x \rangle$ ,  $b = 2 \langle x, y \rangle$ , and  $c = \langle y, y \rangle$ .

**Theorem 2.1.7. Schwarz Inequality.** For any  $x, y \in \mathbb{R}^n$  we have  $|\langle x, y \rangle| \le \langle x, x \rangle^{1/2} \langle y, y \rangle^{1/2}$ . **Proof.** Let  $t \in \mathbb{R}$ . Then

$$0 \leq \langle (tx + y), (tx + y) \rangle \text{ by Theorem 2.1.6(1)} \\ = t \langle x, tx + y \rangle + \langle y, tx + y \rangle \text{ by linearity in the 1st entry} \\ = t(t \langle x, x \rangle + \langle x, y \rangle) + (t \langle y, x \rangle + \langle y, y \rangle) \text{ by linearity in the 2nd entry} \\ = t^2 \langle x, x \rangle + 2t \langle x, y \rangle + \langle y, y \rangle \text{ by Theorem 1.2.6(2)} \\ = at^2 + bt + c$$

where  $a = \langle x, x \rangle$ ,  $b = 2\langle x, y \rangle$ , and  $c = \langle y, y \rangle$ . As a quadratic in t,  $at^2 + bt + c$  cannot have two distinct roots or else we would have  $at^2 + bt + c < 0$  for some t. This means that the discriminant  $b^2 - 4ac$  in the quadratic equation  $t = (-b \pm \sqrt{b^2 - 4ac})/(2a)$ , must be  $b^2 - 4ac \le 0$ ; that is,  $(b/2)^2 \le ac$ . Hence, we have  $(b/2)^2 = \langle x, y \rangle^2 \le ac$  $= \langle x, x \rangle \langle y, y \rangle$  or  $\sqrt{\langle x, y \rangle^2} = |\langle x, y \rangle| \le \langle x, x \rangle^{1/2} \langle y, y \rangle^{1/2}$ .

**Theorem 2.1.7. Schwarz Inequality.** For any  $x, y \in \mathbb{R}^n$  we have  $|\langle x, y \rangle| \le \langle x, x \rangle^{1/2} \langle y, y \rangle^{1/2}$ . **Proof.** Let  $t \in \mathbb{R}$ . Then

$$0 \leq \langle (tx + y), (tx + y) \rangle \text{ by Theorem 2.1.6(1)} \\ = t \langle x, tx + y \rangle + \langle y, tx + y \rangle \text{ by linearity in the 1st entry} \\ = t(t \langle x, x \rangle + \langle x, y \rangle) + (t \langle y, x \rangle + \langle y, y \rangle) \text{ by linearity in the 2nd entry} \\ = t^2 \langle x, x \rangle + 2t \langle x, y \rangle + \langle y, y \rangle \text{ by Theorem 1.2.6(2)} \\ = at^2 + bt + c$$

where  $a = \langle x, x \rangle$ ,  $b = 2\langle x, y \rangle$ , and  $c = \langle y, y \rangle$ . As a quadratic in t,  $at^2 + bt + c$  cannot have two distinct roots or else we would have  $at^2 + bt + c < 0$  for some t. This means that the discriminant  $b^2 - 4ac$  in the quadratic equation  $t = (-b \pm \sqrt{b^2 - 4ac})/(2a)$ , must be  $b^2 - 4ac \le 0$ ; that is,  $(b/2)^2 \le ac$ . Hence, we have  $(b/2)^2 = \langle x, y \rangle^2 \le ac$  $= \langle x, x \rangle \langle y, y \rangle$  or  $\sqrt{\langle x, y \rangle^2} = |\langle x, y \rangle| \le \langle x, x \rangle^{1/2} \langle y, y \rangle^{1/2}$ .

**Theorem 2.1.8** The basis norm is indeed a norm for any basis  $\{v_1, v_2, \ldots, v_k\}$  of vector space V.

**Proof.** Let  $x = c_1v_1 + c_2v_2 + \cdots + c_kv_k$  and  $y = d_1v_1 + d_2v_2 + \cdots + d_kv_k$ . If  $x \neq 0$  then some  $c_i \neq 0$  and so  $\rho(x) > 0$ . Clearly  $\rho(0) = 0$ . So "Nonnegativity and Mapping of the Identity" is satisfied.

**Theorem 2.1.8** The basis norm is indeed a norm for any basis  $\{v_1, v_2, \ldots, v_k\}$  of vector space V.

**Proof.** Let  $x = c_1v_1 + c_2v_2 + \cdots + c_kv_k$  and  $y = d_1v_1 + d_2v_2 + \cdots + d_kv_k$ . If  $x \neq 0$  then some  $c_i \neq 0$  and so  $\rho(x) > 0$ . Clearly  $\rho(0) = 0$ . So "Nonnegativity and Mapping of the Identity" is satisfied. Next

$$\rho(ax) = \rho(a(c_1v_1 + c_2v_2 + \dots + c_kv_k)) = \rho((ac_1)v_1 + (ac_2)v_2 + \dots + (ac_k)v_k)$$

$$=\left\{\sum_{j=1}^{k} (ac_j)^2\right\}^{1/2} = |a| \left\{\sum_{j=1}^{k} c_j^2\right\}^{1/2} = |a|\rho(x)$$

and "Relation of Scalar Multiplication to Real Multiplication" holds.

**Theorem 2.1.8** The basis norm is indeed a norm for any basis  $\{v_1, v_2, \ldots, v_k\}$  of vector space V.

**Proof.** Let  $x = c_1v_1 + c_2v_2 + \cdots + c_kv_k$  and  $y = d_1v_1 + d_2v_2 + \cdots + d_kv_k$ . If  $x \neq 0$  then some  $c_i \neq 0$  and so  $\rho(x) > 0$ . Clearly  $\rho(0) = 0$ . So "Nonnegativity and Mapping of the Identity" is satisfied. Next

$$\rho(ax) = \rho(a(c_1v_1 + c_2v_2 + \dots + c_kv_k)) = \rho((ac_1)v_1 + (ac_2)v_2 + \dots + (ac_k)v_k)$$

$$=\left\{\sum_{j=1}^{k} (ac_j)^2\right\}^{1/2} = |a| \left\{\sum_{j=1}^{k} c_j^2\right\}^{1/2} = |a|\rho(x)$$

and "Relation of Scalar Multiplication to Real Multiplication" holds.

Proof (continued). Finally,

$$\rho(x+y)^{2} = \rho((c_{1}+d_{1})v_{1}+(c_{2}+d_{2})v_{2}+\dots+(c_{k}+d_{k})v_{k})^{2}$$

$$= \sum_{j=1}^{k} (c_{j}+d_{j})^{2} = \sum_{j=1}^{k} (c_{j}^{2}+2c_{j}d_{j}+d_{j}^{2})$$

$$= \sum_{j=1}^{k} c_{j}^{2}+2\sum_{j=1}^{k} c_{j}d_{j}+\sum_{j=1}^{k} d_{j}^{2}$$

$$\leq \sum_{j=1}^{k} c_{j}^{2}+2\left\{\sum_{j=1}^{k} c_{j}^{2}\right\}^{1/2}\left\{\sum_{j=1}^{k} d_{j}^{2}\right\}^{1/2}+\sum_{j=1}^{k} d_{j}^{2}$$
by Theorem 2.1.7 (Schwarz's Inequality in  $\mathbb{R}^{n}$ )
$$= \left(\left\{\sum_{j=1}^{k} c_{j}^{2}\right\}^{1/2}+\left\{\sum_{j=1}^{k} d_{j}^{2}\right\}^{1/2}\right)^{2}=(\rho(x)+\rho(y))^{2}.$$
() Here of Matrice May 24, 202 12/20

**Theorem 2.1.8** The basis norm is indeed a norm for any basis  $\{v_1, v_2, \ldots, v_k\}$  of vector space V.

Proof (continued). ...

$$\rho(x+y)^2 = (\rho(x) + \rho(y))^2.$$

Taking square roots,  $\rho(x + y) \le \rho(x) + \rho(y)$  and so the Triangle Inequality holds. Therefore  $\rho$  is a metric on V.

**Theorem 2.1.10.** Every norm on (finite dimensional vector space) V is equivalent to the basis norm  $\rho$  for any given basis  $\{v_1, v_2, \ldots, v_k\}$ . Therefore, any two norms on V are equivalent.

**Proof.** Let  $\|\cdot\|_a$  be any norm on vector space V and let  $\{v_1, v_2, \ldots, v_k\}$  be a basis for the space. Then for some unique scalars  $c_1, c_2, \ldots, c_k \in \mathbb{R}$  we have  $x = c_1v_1 + c_2v_2 + \cdots + c_kv_k$ . Then, by the Triangle Inequality and "Relation of Scalar Multiplication to Real Multiplication,"

$$\|x\|_{a} = \left\|\sum_{i=1}^{k} c_{i} v_{i}\right\|_{a} \le \sum_{i=1}^{k} |c_{i}| \|v_{i}\|_{a}.$$

**Theorem 2.1.10.** Every norm on (finite dimensional vector space) V is equivalent to the basis norm  $\rho$  for any given basis  $\{v_1, v_2, \ldots, v_k\}$ . Therefore, any two norms on V are equivalent.

**Proof.** Let  $\|\cdot\|_a$  be any norm on vector space V and let  $\{v_1, v_2, \ldots, v_k\}$  be a basis for the space. Then for some unique scalars  $c_1, c_2, \ldots, c_k \in \mathbb{R}$  we have  $x = c_1v_1 + c_2v_2 + \cdots + c_kv_k$ . Then, by the Triangle Inequality and "Relation of Scalar Multiplication to Real Multiplication,"

$$\|x\|_{a} = \left\|\sum_{i=1}^{k} c_{i} v_{i}\right\|_{a} \le \sum_{i=1}^{k} |c_{i}| \|v_{i}\|_{a}.$$

Now with  $[|c_1|, |c_2|, ..., |c_k|], [||v_1||_a, ||v_2||_a, ..., ||v_k||_a] \in \mathbb{R}^k$  we have by the Schwarz Inequality (Theorem 2.1.7) that

$$\sum_{i=1}^{k} |c_i| \|v_i\|_a \le \left\{ \sum_{i=1}^{k} |c_i|^2 \right\}^{1/2} \left\{ \sum_{i=1}^{k} \|v_i\|_a^2 \right\}^{1/2}$$

**Theorem 2.1.10.** Every norm on (finite dimensional vector space) V is equivalent to the basis norm  $\rho$  for any given basis  $\{v_1, v_2, \ldots, v_k\}$ . Therefore, any two norms on V are equivalent.

**Proof.** Let  $\|\cdot\|_a$  be any norm on vector space V and let  $\{v_1, v_2, \ldots, v_k\}$  be a basis for the space. Then for some unique scalars  $c_1, c_2, \ldots, c_k \in \mathbb{R}$  we have  $x = c_1v_1 + c_2v_2 + \cdots + c_kv_k$ . Then, by the Triangle Inequality and "Relation of Scalar Multiplication to Real Multiplication,"

$$\|x\|_{a} = \left\|\sum_{i=1}^{k} c_{i} v_{i}\right\|_{a} \leq \sum_{i=1}^{k} \|c_{i}\|\|v_{i}\|_{a}.$$

Now with  $[|c_1|, |c_2|, \ldots, |c_k|], [||v_1||_a, ||v_2||_a, \ldots, ||v_k||_a] \in \mathbb{R}^k$  we have by the Schwarz Inequality (Theorem 2.1.7) that

$$\sum_{i=1}^{k} |c_i| \|v_i\|_{a} \leq \left\{ \sum_{i=1}^{k} |c_i|^2 \right\}^{1/2} \left\{ \sum_{i=1}^{k} \|v_i\|_{a}^2 \right\}^{1/2}.$$

#### Proof (continued). Hence

$$\|x\|_{a} \leq \left\{\sum_{i=1}^{k} \|v_{i}\|_{a}^{2}\right\}^{1/2} \rho(x) = \tilde{s}\rho(x) \text{ for } \tilde{s} = \left\{\sum_{i=1}^{k} \|v_{i}\|_{a}^{2}\right\}^{1/2}$$

Next, let  $C = \left\{ x = \sum_{i=1}^{k} u_i v_i \in V \middle| \sum_{i=1}^{k} |u_i|^2 = 1 \right\}$ . Gentle states that set *C* is "obviously [topologically] closed" (page 20). Set *C* is the surface of the unit sphere in *V* under  $\rho$ ,  $C = \{x \in V \mid \rho(x) = 1\}$ .

Theory of Matrices

#### Proof (continued). Hence

$$\|x\|_{a} \leq \left\{\sum_{i=1}^{k} \|v_{i}\|_{a}^{2}\right\}^{1/2} \rho(x) = \tilde{s}\rho(x) \text{ for } \tilde{s} = \left\{\sum_{i=1}^{k} \|v_{i}\|_{a}^{2}\right\}^{1/2}$$

Next, let  $C = \left\{ x = \sum_{i=1}^{k} u_i v_i \in V \middle| \sum_{i=1}^{k} |u_i|^2 = 1 \right\}$ . Gentle states that set *C* is "obviously [topologically] closed" (page 20). Set *C* is the surface of the unit sphere in *V* under  $\rho$ ,  $C = \{x \in V \mid \rho(x) = 1\}$ . We give a proof that *C* is a topologically closed set by showing that its complement,  $V \setminus C$ , is open. Let  $x \in V \setminus C$  and let  $\varepsilon = |1 - \rho(x)| > 0$ . Then the open ball  $\{v \in V \mid \rho(v - x) < \varepsilon\}$  contains no elements of *C*: for  $y \in C$ ,

$$\rho(y-x) \ge \begin{cases} \rho(y) - \rho(x) \\ \rho(x) - \rho(y) \end{cases} = \begin{cases} 1 - \rho(x) \\ \rho(x) - 1 \end{cases} = \begin{cases} \varepsilon \text{ if } \rho(x) < 1 \\ \varepsilon \text{ if } \rho(x) > 1. \end{cases}$$

#### Proof (continued). Hence

$$\|x\|_{a} \leq \left\{\sum_{i=1}^{k} \|v_{i}\|_{a}^{2}\right\}^{1/2} \rho(x) = \tilde{s}\rho(x) \text{ for } \tilde{s} = \left\{\sum_{i=1}^{k} \|v_{i}\|_{a}^{2}\right\}^{1/2}$$

Next, let  $C = \left\{ x = \sum_{i=1}^{k} u_i v_i \in V \middle| \sum_{i=1}^{k} |u_i|^2 = 1 \right\}$ . Gentle states that set *C* is "obviously [topologically] closed" (page 20). Set *C* is the surface of the unit sphere in *V* under  $\rho$ ,  $C = \{x \in V \mid \rho(x) = 1\}$ . We give a proof that *C* is a topologically closed set by showing that its complement,  $V \setminus C$ , is open. Let  $x \in V \setminus C$  and let  $\varepsilon = |1 - \rho(x)| > 0$ . Then the open ball  $\{v \in V \mid \rho(v - x) < \varepsilon\}$  contains no elements of *C*: for  $y \in C$ ,

$$ho(y-x) \geq \left\{ egin{array}{ll} 
ho(y)-
ho(x) \ 
ho(x)-
ho(y) \end{array} = \left\{ egin{array}{ll} 1-
ho(x) \ 
ho(x)-1 \end{array} 
ight. = \left\{ egin{array}{ll} arepsilon ext{ if } 
ho(x) < 1 \ arepsilon ext{ if } 
ho(x) > 1. \end{array} 
ight.$$

(Notice that the Triangle Inequality for norms implies for any  $x, y \in V$  that  $||x|| = ||x - y + y|| \le ||x - y|| + ||y||$  or  $||x - y|| \ge ||x|| - ||y||$ .)

#### Proof (continued). Hence

$$\|x\|_{a} \leq \left\{\sum_{i=1}^{k} \|v_{i}\|_{a}^{2}\right\}^{1/2} \rho(x) = \tilde{s}\rho(x) \text{ for } \tilde{s} = \left\{\sum_{i=1}^{k} \|v_{i}\|_{a}^{2}\right\}^{1/2}$$

Next, let  $C = \left\{ x = \sum_{i=1}^{k} u_i v_i \in V \middle| \sum_{i=1}^{k} |u_i|^2 = 1 \right\}$ . Gentle states that set *C* is "obviously [topologically] closed" (page 20). Set *C* is the surface of the unit sphere in *V* under  $\rho$ ,  $C = \{x \in V \mid \rho(x) = 1\}$ . We give a proof that *C* is a topologically closed set by showing that its complement,  $V \setminus C$ , is open. Let  $x \in V \setminus C$  and let  $\varepsilon = |1 - \rho(x)| > 0$ . Then the open ball  $\{v \in V \mid \rho(v - x) < \varepsilon\}$  contains no elements of *C*: for  $y \in C$ ,

$$ho(y-x) \geq \left\{ egin{array}{ll} 
ho(y)-
ho(x) \ 
ho(x)-
ho(y) \end{array} = \left\{ egin{array}{ll} 1-
ho(x) \ 
ho(x)-1 \end{array} 
ight. = \left\{ egin{array}{ll} arepsilon ext{ if } 
ho(x) < 1 \ arepsilon ext{ if } 
ho(x) > 1. \end{array} 
ight.$$

(Notice that the Triangle Inequality for norms implies for any  $x, y \in V$ that  $||x|| = ||x - y + y|| \le ||x - y|| + ||y||$  or  $||x - y|| \ge ||x|| - ||y||$ .)

**Proof (continued).** Define  $f : C \to \mathbb{R}$  as  $f(u) = \left\| \sum_{i=1}^{k} u_i v_i \right\|_a$ . Gentle claims that f is continuous (page 20). Let's prove this. Let  $y = \sum_{i=1}^{k} u_i v_i \in C$  and let  $\varepsilon > 0$ . Set  $\delta = \varepsilon$ . For any  $x = \sum_{i=1}^{k} u'_i v_i \in C$  with  $\|y - x\|_a < \delta$  we have

$$\varepsilon = \delta > \begin{cases} \|y\|_{a} - \|x\|_{a} \\ \|x\|_{a} - \|y\|_{a} \end{cases} = \begin{cases} \|\sum_{i=1}^{k} u_{i}v_{i}\|_{a} - \|\sum_{i=1}^{k} u_{i}'v_{i}\|_{a} \\ \|\sum_{i=1}^{k} u_{i}'v_{i}\|_{a} - \|\sum_{i=1}^{k} u_{i}v_{i}\|_{a} \end{cases}$$
$$= \begin{cases} f(y) - f(x) \\ f(x) - f(y) \end{cases} = \begin{cases} |f(y) - f(x)| \text{ if } f(y) \ge f(x) \\ |f(x) - f(y)| \text{ if } f(y) < f(x). \end{cases}$$
That is,  $|f(y) - f(x)| < \varepsilon$ . So  $f : C \to \mathbb{R}$  is continuous.

**Proof (continued).** Define  $f : C \to \mathbb{R}$  as  $f(u) = \left\|\sum_{i=1}^{k} u_i v_i\right\|_a$ . Gentle claims that f is continuous (page 20). Let's prove this. Let  $y = \sum_{i=1}^{k} u_i v_i \in C$  and let  $\varepsilon > 0$ . Set  $\delta = \varepsilon$ . For any  $x = \sum_{i=1}^{k} u'_i v_i \in C$  with  $\|y - x\|_a < \delta$  we have

$$\varepsilon = \delta > \begin{cases} \|y\|_{a} - \|x\|_{a} \\ \|x\|_{a} - \|y\|_{a} \end{cases} = \begin{cases} \|\sum_{i=1}^{k} u_{i}v_{i}\|_{a} - \|\sum_{i=1}^{k} u_{i}'v_{i}\|_{a} \\ \|\sum_{i=1}^{k} u_{i}'v_{i}\|_{a} - \|\sum_{i=1}^{k} u_{i}v_{i}\|_{a} \end{cases}$$
$$= \begin{cases} f(y) - f(x) \\ f(x) - f(y) \end{cases} = \begin{cases} |f(y) - f(x)| \text{ if } f(y) \ge f(x) \\ |f(x) - f(y)| \text{ if } f(y) < f(x). \end{cases}$$

That is,  $|f(y) - f(x)| < \varepsilon$ . So  $f : C \to \mathbb{R}$  is continuous.

**Proof (continued).** By the Heine-Borel Theorem (since C is closed and bounded and V is finite dimensional), C is compact and so continuous function f attains a minimum value on C, say  $f(u_*) \le f(u)$  for all  $u \in C$ . Let  $\tilde{r} = f(u_*) > 0$ . If  $x = \sum_{i=1}^{k} c_i v_i \neq 0$  then

$$\|x\|_{a} = \left\|\sum_{i=1}^{k} c_{i} v_{i}\right\|_{a} = \left\{\sum_{j=1}^{k} c_{j}^{2}\right\}^{1/2} \left\|\sum_{i=1}^{k} \left(\frac{c_{i}}{\left\{\sum_{j=1}^{k} c_{j}^{2}\right\}^{1/2}}\right) v_{i}\right\|_{a} = \rho(x) f(\tilde{c})$$

where 
$$\tilde{c} = \sum_{i=1}^{k} \left( c_i \left/ \left\{ \sum_{j=1}^{k} c_j^2 \right\}^{1/2} \right) v_i$$
, so  $\tilde{c} \in C$  since

$$\rho(\tilde{c}) = \sum_{i=1}^{k} \left| \frac{c_i}{\left\{ \sum_{j=1}^{k} c_j^2 \right\}^{1/2}} \right|^2 = \frac{1}{\sum_{j=1}^{k} c_j^2} \sum_{i=1}^{k} c_i^2 = 1.$$

**Proof (continued).** By the Heine-Borel Theorem (since C is closed and bounded and V is finite dimensional), C is compact and so continuous function f attains a minimum value on C, say  $f(u_*) \le f(u)$  for all  $u \in C$ . Let  $\tilde{r} = f(u_*) > 0$ . If  $x = \sum_{i=1}^{k} c_i v_i \neq 0$  then

$$\|x\|_{a} = \left\|\sum_{i=1}^{k} c_{i} v_{i}\right\|_{a} = \left\{\sum_{j=1}^{k} c_{j}^{2}\right\}^{1/2} \left\|\sum_{i=1}^{k} \left(\frac{c_{i}}{\left\{\sum_{j=1}^{k} c_{j}^{2}\right\}^{1/2}}\right) v_{i}\right\|_{a} = \rho(x) f(\tilde{c})$$
  
where  $\tilde{c} = \sum_{i=1}^{k} \left(c_{i} \left/\left\{\sum_{j=1}^{k} c_{j}^{2}\right\}^{1/2}\right\} v_{i}$ , so  $\tilde{c} \in C$  since

$$ho( ilde{c}) = \sum_{i=1}^{k} \left| rac{c_i}{\left\{ \sum_{j=1}^{k} c_j^2 
ight\}^{1/2}} 
ight|^2 = rac{1}{\sum_{j=1}^{k} c_j^2} \sum_{i=1}^{k} c_i^2 = 1.$$

**Theorem 2.1.10.** Every norm on (finite dimensional vector space) V is equivalent to the basis norm  $\rho$  for any given basis  $\{v_1, v_2, \ldots, v_k\}$ . Therefore, any two norms on V are equivalent.

**Proof (continued).** Since  $\tilde{r} \in C$  then  $f(\tilde{c}) \geq \tilde{r}$ , and so  $||x||_a \geq \tilde{r}\rho(x)$  for all  $x \in V$ ,  $x \neq 0$ . Of course  $||x||_a \geq \tilde{r}\rho(x)$  for x = 0, so for all  $x \in V$  we have  $\tilde{r}\rho(x) \leq ||x||_a \leq \tilde{s}\rho(x)$ . That is,  $||\cdot||_a \cong \rho(\cdot)$ . Since  $\cong$  is an equivalence relation for Theorem 2.1.9, we have that any two norms on V are equivalent.

**Theorem 2.1.11.** A set of nonzero vectors  $\{v_1, v_2, ..., v_k\}$  in a vector space with an inner product for which  $\langle v_i, v_j \rangle = 0$  for  $i \neq j$  (the vectors are said to be *mutually orthogonal*) is a linearly independent set.

**Proof.** Let  $\{v_1, v_2, \ldots, v_k\}$  be a set of mutually orthogonal nonzero vectors. ASSUME the set is not linearly independent. Then  $a_1v_1 + a_2v_2 + \cdots + a_iv_i + \cdots + a_kv_k = 0$  is satisfied where some coefficient is nonzero, say  $a_i \neq 0$ .

Theory of Matrices

**Theorem 2.1.11.** A set of nonzero vectors  $\{v_1, v_2, \ldots, v_k\}$  in a vector space with an inner product for which  $\langle v_i, v_j \rangle = 0$  for  $i \neq j$  (the vectors are said to be *mutually orthogonal*) is a linearly independent set.

**Proof.** Let  $\{v_1, v_2, \ldots, v_k\}$  be a set of mutually orthogonal nonzero vectors. ASSUME the set is not linearly independent. Then  $a_1v_1 + a_2v_2 + \cdots + a_iv_i + \cdots + a_kv_k = 0$  is satisfied where some coefficient is nonzero, say  $a_i \neq 0$ . So

$$v_i = (-a_1/a_i)v_1 + (-a_2/a_i)v_2 + \dots + (-a_{i-1}/a_i)v_{i-1}$$
$$+ (-a_{i+1}/a_i)v_{i+1} + \dots + (-a_k/a_i)v_k.$$

But then

$$\langle v_i, v_i \rangle = \langle (-a_1/a_i)v_1 + (-a_2/a_i)v_2 + \dots + (-a_{i-1}/a_i)v_{i-1} \\ + (-a_{i+1}/a_i)v_{i+1} + \dots + (-a_k/a_i)v_k, v_i \rangle$$

**Theorem 2.1.11.** A set of nonzero vectors  $\{v_1, v_2, \ldots, v_k\}$  in a vector space with an inner product for which  $\langle v_i, v_j \rangle = 0$  for  $i \neq j$  (the vectors are said to be *mutually orthogonal*) is a linearly independent set.

**Proof.** Let  $\{v_1, v_2, \ldots, v_k\}$  be a set of mutually orthogonal nonzero vectors. ASSUME the set is not linearly independent. Then  $a_1v_1 + a_2v_2 + \cdots + a_iv_i + \cdots + a_kv_k = 0$  is satisfied where some coefficient is nonzero, say  $a_i \neq 0$ . So

$$egin{aligned} v_i &= (-a_1/a_i)v_1 + (-a_2/a_i)v_2 + \dots + (-a_{i-1}/a_i)v_{i-1} \ &+ (-a_{i+1}/a_i)v_{i+1} + \dots + (-a_k/a_i)v_k. \end{aligned}$$

But then

$$\langle v_i, v_i \rangle = \langle (-a_1/a_i)v_1 + (-a_2/a_i)v_2 + \dots + (-a_{i-1}/a_i)v_{i-1} + (-a_{i+1}/a_i)v_{i+1} + \dots + (-a_k/a_i)v_k, v_i \rangle$$

**Theorem 2.1.11.** A set of nonzero vectors  $\{v_1, v_2, \ldots, v_k\}$  in a vector space with an inner product for which  $\langle v_i, v_j \rangle = 0$  for  $i \neq j$  (the vectors are said to be *mutually orthogonal*) is a linearly independent set.

#### Proof.

$$\begin{aligned} \langle v_i, v_i \rangle &= (-a_1/a_i) \langle v_1, v_i \rangle + (-a_2/a_i) \langle v_2, v_i \rangle + \dots + (-a_{i-1}/a_i) \langle v_{i-1}, v_i \rangle \\ &+ (-a_{i+1}/a_i) \langle v_{i+1}, v_i \rangle + \dots + (-a_k/a_i) \langle v_k, v_i \rangle = 0, \end{aligned}$$

a CONTRADICTION to the fact that  $v_i \neq 0$ . So the assumption that the set is not linearly independent is false; that is, the set is linearly independent, as claimed.

**Theorem 2.1.11.** A set of nonzero vectors  $\{v_1, v_2, \ldots, v_k\}$  in a vector space with an inner product for which  $\langle v_i, v_j \rangle = 0$  for  $i \neq j$  (the vectors are said to be *mutually orthogonal*) is a linearly independent set.

#### Proof.

$$\begin{split} \langle v_i, v_i \rangle &= (-a_1/a_i) \langle v_1, v_i \rangle + (-a_2/a_i) \langle v_2, v_i \rangle + \dots + (-a_{i-1}/a_i) \langle v_{i-1}, v_i \rangle \\ &+ (-a_{i+1}/a_i) \langle v_{i+1}, v_i \rangle + \dots + (-a_k/a_i) \langle v_k, v_i \rangle = 0, \end{split}$$

a CONTRADICTION to the fact that  $v_i \neq 0$ . So the assumption that the set is not linearly independent is false; that is, the set is linearly independent, as claimed.