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Theorem 2.1.1(A1). Associativity of Vector Addition

Theorem 2.1.1(A1)

Theorem 2.1.1. Properties of Vector Algebra in Rn.
Let x , y , z ∈ Rn. Then:
A1. (x + y) + z = x + (y + z) (Associativity of Vector Addition)

Proof. Let x , y , z ∈ Rn be x = [x1, x2, . . . , xn], y = [y1, y2, . . . , yn], and
z = [z1, z2, . . . , zn]. Then:

(x + y) + z = ([x1, x2, . . . , xn] + [y1, y2, . . . , yn]) + [z1, z2, . . . , zn]

= [x1 + y1, x2 + y2, . . . xn + yn] + [z1, z2, . . . , zn]

by the definition of vector addition

= [(x1 + y1) + z1, (x2 + y2) + z2, . . . (xn + yn) + zn]

by the definition of vector addition

= [x1 + (y1 + z1), x2 + (y2 + z2), . . . xn + (yn + zn)]

since addition in R is associative
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Theorem 2.1.1(A1). Associativity of Vector Addition

Theorem 2.1.1(A1) (continued)

Theorem 2.1.1. Properties of Vector Algebra in Rn.
Let x , y , z ∈ Rn. Then:
A1. (x + y) + z = x + (y + z) (Associativity of Vector Addition)

Proof (continued).

(x + y) + z = [x1 + (y1 + z1), x2 + (y2 + z2), . . . xn + (yn + zn)]

since addition in R is associative

= [x1, x2, . . . , xn] + [y1 + z1, y2 + z2, . . . , yn + zn]

by the definition of vector addition

= [x1, x2, . . . , xn] + ([y1, y2, . . . , yn] + [z1, z2, . . . , zn])

by the definition of vector addition

= x + (y + z).
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Theorem 2.1.2

Theorem 2.1.2

Theorem 2.1.2. Let V1 and V2 be vector spaces of n-vectors. Then
V1 ∩ V2 is a vector space.

Proof. By our definition of “vector space,” we only need to prove that
V1 ∩ V2 is closed under linear combinations.

Let x , y ∈ V1 ∩ V2 and
a, b ∈ R. Since V1 is a vector space then it is closed under linear
combinations and so ax + by ∈ V1. Similarly, ax + by ∈ V2. So
ax + by ∈ V1 ∩ V2. Since x and y are arbitrary elements of V1 ∩ V2 and
a, b ∈ R are arbitrary scalars, then V1 ∩ V2 is closed under linear
combinations. That is, V1 ∩ V2 is a vector space.
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Theorem 2.1.3

Theorem 2.1.3

Theorem 2.1.3. If V1 and V2 are vector spaces of n-vectors, then
V1 + V2 is a vector space.

Proof. By our definition of “vector space,” we must show that V1 + V2 is
closed under linear combinations. Let x , y ∈ V1 + V2 and let a, b ∈ R.
Then x = x1 + x2 and y = y1 + y2 for some x1, y1 ∈ V1 and x2, y2 ∈ V2.

Since V1 and V2 are vector spaces, then they are closed under linear
combinations and so ax1 + by1 ∈ V1 and ax2 + by2 ∈ V2. Therefore

ax + by = a(x1 + x2) + b(y1 + y2) = (ax1 + by1) + (ax2 + by2) ∈ V1 + V2.

Since x and y are arbitrary vectors in V1 + V2 and a, b ∈ R are arbitrary
scalars, then we have that V1 + V2 is closed under linear combinations.
That is, V1 + V2 is a vector space.
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Theorem 2.1.4

Theorem 2.1.4

Theorem 2.1.4. If vector spaces V1 and V2 are essentially disjoint then
every element of V1 ⊕ V2 can be written as v1 + v2, where v1 ∈ V1 and
v2 ∈ V2, in a unique way.

Proof. Let V1 and V2 be essentially disjoint vector spaces of n-vectors;
that is, V1 ∩ V2 = {0}. Suppose some v ∈ V1 ⊕ V2 is of the form
v = v1 + v2 = v ′1 + v ′2 where v1, v

′
2 ∈ V1 and v2, v

′
2 ∈ V2. Then

v1 − v ′1 = v ′2 − v2.

So v1 − v ′1 ∈ V1 and v ′2 − v2 ∈ V2 since V1 and V2 are
vector space. But then v1 − v ′1, v

′
2 − v2 ∈ V1 ∩ V2 and so v1 − v ′1 = 0 and

v ′2 − v2 = 0. That is, v1 = v ′1 and v2 = v ′2. So the representation of
v ∈ V1 ⊕V2 as a sum of an element of V1 and an element of V2 is unique,
as claimed.
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Theorem 2.1.5

Theorem 2.1.5

Theorem 2.1.5. If {v1, v2, . . . , vk} is a basis for a vector space V , then
each element can be uniquely represented as a linear combination of the
basis vectors.

Proof. Suppose that
x = b1v1 + b2v2 + · · ·+ bkvk = c1v1 + c2v2 + · · ·+ ckvk . Then

0 = x − x = (b1v1 + b2v2 + · · ·+ bkvk)− (c1v1 + c2v2 + · · ·+ ckvk)

= (b1 − c1)v1 + (b2 − c2)v2 + · · ·+ (bk − ck)vk .

Since the basis consists (by definition) of a linearly independent set of
vectors, then b1 − c1 = b2 − c2 = · · · bk − ck = 0; that is,
b1 = c1, b2 = c2, . . . , bk = ck . Therefore, the representation of x is
unique. Since x is an arbitrary vector in V , the claim follows.
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Theorem 2.1.6(3) Properties of Inner Products

Theorem 2.1.6(3)

Theorem 2.1.6. Properties of Inner Products.
Let x , y ∈ Rn and let a ∈ R. Then:
3. a〈x , y〉 = 〈ax , y〉 (Factoring of Scalar Multiplication in Inner Products).
Proof. Let x , y ∈ Rn be x = [x1, x2, . . . , xn] and y = [y1, y2, . . . , yn]. Then

a〈x , y〉 = a〈[x1, x2, . . . , xn], [y1, y2, . . . , yn]〉
= a (x1y1 + x2y2 + · · ·+ xnyn) by the definition of 〈x , y〉
= a(x1y1) + a(x2y2) + · · ·+ a(xnyn)

by distribution property of multiplication over addition in R
= (ax1)y1 + (ax2)y2 + · · ·+ (axn)yn

by associativity for multiplication in R
= 〈[ax1, ax2, . . . , axn], [y1, y2, . . . , yn]〉

by the definition of inner product

= 〈ax , y〉.
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Theorem 2.1.7. Schwarz Inequality

Theorem 2.1.7

Theorem 2.1.7. Schwarz Inequality.
For any x , y ∈ Rn we have |〈x , y〉| ≤ 〈x , x〉1/2〈y , y〉1/2.

Proof. Let t ∈ R. Then

0 ≤ 〈(tx + y), (tx + y)〉 by Theorem 2.1.6(1)

= t〈x , tx + y〉+ 〈y , tx + y〉 by linearity in the 1st entry

= t(t〈x , x〉+ 〈x , y〉) + (t〈y , x〉+ 〈y , y〉) by linearity in the 2nd entry

= t2〈x , x〉+ 2t〈x , y〉+ 〈y , y〉 by Theorem 1.2.6(2)

= at2 + bt + c

where a = 〈x , x〉, b = 2〈x , y〉, and c = 〈y , y〉.

As a quadratic in t,
at2 + bt + c cannot have two distinct roots or else we would have
at2 + bt + c < 0 for some t. This means that the discriminant b2 − 4ac in
the quadratic equation t = (−b ±

√
b2 − 4ac)/(2a), must be

b2 − 4ac ≤ 0; that is, (b/2)2 ≤ ac. Hence, we have (b/2)2 = 〈x , y〉2 ≤ ac
= 〈x , x〉〈y , y〉 or

√
〈x , y〉2 = |〈x , y〉| ≤ 〈x , x〉1/2〈y , y〉1/2.
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Theorem 2.1.8

Theorem 2.1.8

Theorem 2.1.8 The basis norm is indeed a norm for any basis
{v1, v2, . . . , vk} of vector space V .

Proof. Let x = c1v1 + c2v2 + · · ·+ ckvk and y = d1v1 + d2v2 + · · ·+ dkvk .
If x 6= 0 then some ci 6= 0 and so ρ(x) > 0. Clearly ρ(0) = 0. So
“Nonnegativity and Mapping of the Identity” is satisfied.

Next

ρ(ax) = ρ(a(c1v1+c2v2+· · ·+ckvk)) = ρ((ac1)v1+(ac2)v2+· · ·+(ack)vk)

=


k∑

j=1

(acj)
2


1/2

= |a|


k∑

j=1

c2
j


1/2

= |a|ρ(x)

and “Relation of Scalar Multiplication to Real Multiplication” holds.
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Theorem 2.1.8

Theorem 2.1.8 (continued 1)

Proof (continued). Finally,

ρ(x + y)2 = ρ((c1 + d1)v1 + (c2 + d2)v2 + · · ·+ (ck + dk)vk)2

=
k∑

j=1

(cj + dj)
2 =

k∑
j=1

(c2
j + 2cjdj + d2

j )

=
k∑

j=1

c2
j + 2

k∑
j=1

cjdj +
k∑

j=1

d2
j

≤
k∑

j=1

c2
j + 2


k∑

j=1

c2
j


1/2 

k∑
j=1

d2
j


1/2

+
k∑

j=1

d2
j

by Theorem 2.1.7 (Schwarz’s Inequality in Rn)

=




k∑
j=1

c2
j


1/2

+


k∑

j=1

d2
j


1/2


2

= (ρ(x) + ρ(y))2.
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Theorem 2.1.8

Theorem 2.1.8 (continued 2)

Theorem 2.1.8 The basis norm is indeed a norm for any basis
{v1, v2, . . . , vk} of vector space V .

Proof (continued). . . .

ρ(x + y)2 = (ρ(x) + ρ(y))2.

Taking square roots, ρ(x + y) ≤ ρ(x) + ρ(y) and so the Triangle Inequality
holds. Therefore ρ is a metric on V .
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Theorem 2.1.10

Theorem 2.1.10

Theorem 2.1.10. Every norm on (finite dimensional vector space) V is
equivalent to the basis norm ρ for any given basis {v1, v2, . . . , vk}.
Therefore, any two norms on V are equivalent.

Proof. Let ‖ · ‖a be any norm on vector space V and let {v1, v2, . . . , vk}
be a basis for the space. Then for some unique scalars c1, c2, . . . , ck ∈ R
we have x = c1v1 + c2v2 + · · ·+ ckvk . Then, by the Triangle Inequality
and “Relation of Scalar Multiplication to Real Multiplication,”

‖x‖a =

∥∥∥∥∥
k∑

i=1

civi

∥∥∥∥∥
a

≤
k∑

i=1

|ci |‖vi‖a.

Now with [|c1|, |c2|, . . . , |ck |], [‖v1‖a, ‖v2‖a, . . . , ‖vk‖a] ∈ Rk we have by
the Schwarz Inequality (Theorem 2.1.7) that

k∑
i=1

|ci |‖vi‖a ≤

{
k∑

i=1

|ci |2
}1/2 {

k∑
i=1

‖vi‖2
a

}1/2

.
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Theorem 2.1.10

Theorem 2.1.10 (continued 1)

Proof (continued). Hence

‖x‖a ≤

{
k∑

i=1

‖vi‖2
a

}1/2

ρ(x) = s̃ρ(x) for s̃ =

{
k∑

i=1

‖vi‖2
a

}1/2

.

Next, let C =
{

x =
∑k

i=1 uivi ∈ V
∣∣∣ ∑k

i=1 |ui |2 = 1
}

. Gentle states that

set C is “obviously [topologically] closed” (page 20). Set C is the surface
of the unit sphere in V under ρ, C = {x ∈ V | ρ(x) = 1}.

We give a proof
that C is a topologically closed set by showing that its complement,
V \ C , is open. Let x ∈ V \ C and let ε = |1− ρ(x)| > 0. Then the open
ball {v ∈ V | ρ(v − x) < ε} contains no elements of C : for y ∈ C ,

ρ(y − x) ≥
{

ρ(y)− ρ(x)
ρ(x)− ρ(y)

=

{
1− ρ(x)
ρ(x)− 1

=

{
ε if ρ(x) < 1
ε if ρ(x) > 1.

(Notice that the Triangle Inequality for norms implies for any x , y ∈ V
that ‖x‖ = ‖x − y + y‖ ≤ ‖x − y‖+ ‖y‖ or ‖x − y‖ ≥ ‖x‖ − ‖y‖.)
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Theorem 2.1.10 (continued 1)
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Theorem 2.1.10

Theorem 2.1.10 (continued 2)

Proof (continued). Define f : C → R as f (u) =
∥∥∥∑k

i=1 uivi

∥∥∥
a
. Gentle

claims that f is continuous (page 20). Let’s prove this. Let
y =

∑k
i=1 uivi ∈ C and let ε > 0. Set δ = ε. For any x =

∑k
i=1 u′ivi ∈ C

with ‖y − x‖a < δ we have

ε = δ >

{
‖y‖a − ‖x‖a

‖x‖a − ‖y‖a
=

{
‖

∑k
i=1 uivi‖a − ‖

∑k
i=1 u′ivi‖a

‖
∑k

i=1 u′ivi‖a − ‖
∑k

i=1 uivi‖a

=

{
f (y)− f (x)
f (x)− f (y)

=

{
|f (y)− f (x)| if f (y) ≥ f (x)
|f (x)− f (y)| if f (y) < f (x).

That is, |f (y)− f (x)| < ε. So f : C → R is continuous.
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Theorem 2.1.10

Theorem 2.1.10 (continued 3)

Proof (continued). By the Heine-Borel Theorem (since C is closed and
bounded and V is finite dimensional), C is compact and so continuous
function f attains a minimum value on C , say f (u∗) ≤ f (u) for all u ∈ C .
Let r̃ = f (u∗) > 0. If x =

∑k
i=1 civi 6= 0 then

‖x‖a =

∥∥∥∥∥
k∑

i=1

civi

∥∥∥∥∥
a

=


k∑

j=1

c2
j


1/2

∥∥∥∥∥∥∥
k∑

i=1

 ci{∑k
j=1 c2

j

}1/2

 vi

∥∥∥∥∥∥∥
a

= ρ(x)f (c̃)

where c̃ =
∑k

i=1

(
ci

/{∑k
j=1 c2

j

}1/2
)

vi , so c̃ ∈ C since

ρ(c̃) =
k∑

i=1

∣∣∣∣∣∣∣
ci{∑k

j=1 c2
j

}1/2

∣∣∣∣∣∣∣
2

=
1∑k

j=1 c2
j

k∑
i=1

c2
i = 1.
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Theorem 2.1.10 (continued 3)
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Theorem 2.1.10

Theorem 2.1.10 (continued 4)

Theorem 2.1.10. Every norm on (finite dimensional vector space) V is
equivalent to the basis norm ρ for any given basis {v1, v2, . . . , vk}.
Therefore, any two norms on V are equivalent.

Proof (continued). Since r̃ ∈ C then f (c̃) ≥ r̃ , and so ‖x‖a ≥ r̃ρ(x) for
all x ∈ V , x 6= 0. Of course ‖x‖a ≥ r̃ρ(x) for x = 0, so for all x ∈ V we
have r̃ρ(x) ≤ ‖x‖a ≤ s̃ρ(x). That is, ‖ · ‖a

∼= ρ(·). Since ∼= is an
equivalence relation for Theorem 2.1.9, we have that any two norms on V
are equivalent.
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Theorem 2.1.11

Theorem 2.1.11

Theorem 2.1.11. A set of nonzero vectors {v1, v2, . . . , vk} in a vector
space with an inner product for which 〈vi , vj〉 = 0 for i 6= j (the vectors are
said to be mutually orthogonal) is a linearly independent set.

Proof. Let {v1, v2, . . . , vk} be a set of mutually orthogonal nonzero
vectors. ASSUME the set is not linearly independent. Then
a1v1 + a2v2 + · · ·+ aivi + · · · akvk = 0 is satisfied where some coefficient is
nonzero, say ai 6= 0.

So

vi = (−a1/ai )v1 + (−a2/ai )v2 + · · ·+ (−ai−1/ai )vi−1

+(−ai+1/ai )vi+1 + · · ·+ (−ak/ai )vk .

But then

〈vi , vi 〉 = 〈(−a1/ai )v1 + (−a2/ai )v2 + · · ·+ (−ai−1/ai )vi−1

+(−ai+1/ai )vi+1 + · · ·+ (−ak/ai )vk , vi 〉
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Theorem 2.1.11

Theorem 2.1.11 (continued)

Theorem 2.1.11. A set of nonzero vectors {v1, v2, . . . , vk} in a vector
space with an inner product for which 〈vi , vj〉 = 0 for i 6= j (the vectors are
said to be mutually orthogonal) is a linearly independent set.

Proof.

〈vi , vi 〉 = (−a1/ai )〈v1, vi 〉+ (−a2/ai )〈v2, vi 〉+ · · ·+ (−ai−1/ai )〈vi−1, vi 〉

+(−ai+1/ai )〈vi+1, vi 〉+ · · ·+ (−ak/ai )〈vk , vi 〉 = 0,

a CONTRADICTION to the fact that vi 6= 0. So the assumption that the
set is not linearly independent is false; that is, the set is linearly
independent, as claimed.
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