Theory of Matrices

Chapter 2. Vectors and Vector Spaces

2.2. Cartesian Coordinates and Geometrical Properties of Vectors —Proofs of Theorems

June 1, 2018 1 / 5

Theory of Matrices

Theorem 2.2.2

Theorem 2.2.2. The solutions to a homogeneous system of equations form a subspace of \mathbb{R}^n .

Proof. We need only show that the set of solutions to a homogeneous system is closed under linear combinations. Let x_1 and x_2 be solutions and

$$c_1^T x_1 = 0 c_1^T x_2 = 0 c_2^T x_1 = 0 c_2^T x_2 = 0 \vdots \vdots$$

let $a,b\in\mathbb{R}$ be scalars. Then

 $c_m^T x_1 = 0$ $c_m^T x_2 = 0$.

Hence

$$c_1^T(ax_1 + bx_2) = ac_1^Tx_1 + bc_1^Tx_2 = a(0) + b(0) = 0$$

$$c_2^T(ax_1 + bx_2) = ac_2^Tx_1 + bc_2^Tx_2 = a(0) + b(0) = 0$$

$$\vdots \quad \vdots \quad \vdots$$

$$c_m^T(ax_1 + bx_2) = ac_m^Tx_1 + bc_m^Tx_2 = a(0) + b(0) = 0.$$

So $ax_1 + bx_2$ is a solution and the set of solutions is a subspace of \mathbb{R}^n . \square

Theorem 2.2.1

Theorem 2.2.1. Let $\{v_1, v_2, \dots, v_k\}$ be a basis for vector space V of *n*-vectors where the basis vectors are mutually orthogonal. Then $x \in V$ we have

$$x = \frac{\langle x, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 + \frac{\langle x, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 + \cdots + \frac{\langle x, v_k \rangle}{\langle v_k, v_k \rangle} v_k.$$

Proof. Suppose $\{v_1, v_2, \dots, v_k\}$ is a basis for V, then $x = c_1 v_1 + c_2 v_2 + \cdots + c_k v_k$ for some (unique) scalars $c_1, c_2, \ldots, c_k \in \mathbb{R}$. Then for any i = 1, 2, ..., k we have

Hence, $c_i = \frac{\langle x, v_i \rangle}{\langle v_i, v_i \rangle}$ and the claim follows.

Theorem 2.2.3(2)

Theorem 2.2.3(2). Properties of Cross Product.

Let $x, y, z \in \mathbb{R}^3$ and $a \in \mathbb{R}$. Then:

$$x \times y = -y \times x$$
 (Anti-commutivity).

Proof. Recall that $x \times y = [x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1]$. So

$$y \times x = [y_2x_3 - y_3x_2, y_3x_1 - y_1x_3, y_1x_2 - y_2x_1]$$

$$= [x_3y_2 - x_2y_3, x_1y_3 - x_3y_1, x_2y_1 - x_1y_2]$$

$$= [-(x_2y_3 - x_3y_2), -(x_3y_1 - x_1y_3), -(x_1y_2 - x_2y_1)]$$

$$= -[(x_2y_3 - x_3y_2), (x_3y_1 - x_1y_3), (x_1y_2 - x_2y_1)]$$

$$= -x \times y.$$