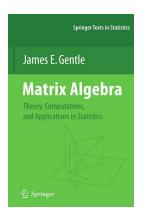
Theory of Matrices

Chapter 2. Vectors and Vector Spaces 2.2. Cartesian Coordinates and Geometrical Properties of Vectors —Proofs of Theorems



3 Theorem 2.2.3(2) Anti-Commutivity of Cross Product

Theorem 2.2.1

Theorem 2.2.1. Let $\{v_1, v_2, ..., v_k\}$ be a basis for vector space V of *n*-vectors where the basis vectors are mutually orthogonal. Then $x \in V$ we have

$$x = \frac{\langle x, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 + \frac{\langle x, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 + \cdots \frac{\langle x, v_k \rangle}{\langle v_k, v_k \rangle} v_k.$$

Proof. Suppose $\{v_1, v_2, \ldots, v_k\}$ is a basis for *V*, then $x = c_1v_1 + c_2v_2 + \cdots + c_kv_k$ for some (unique) scalars $c_1, c_2, \ldots, c_k \in \mathbb{R}$.

Theory of Matrices

Theorem 2.2.1. Let $\{v_1, v_2, \ldots, v_k\}$ be a basis for vector space V of *n*-vectors where the basis vectors are mutually orthogonal. Then $x \in V$ we have

$$x = \frac{\langle x, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 + \frac{\langle x, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 + \cdots \frac{\langle x, v_k \rangle}{\langle v_k, v_k \rangle} v_k.$$

Proof. Suppose $\{v_1, v_2, \ldots, v_k\}$ is a basis for V, then $x = c_1v_1 + c_2v_2 + \cdots + c_kv_k$ for some (unique) scalars $c_1, c_2, \ldots, c_k \in \mathbb{R}$. Then for any $i = 1, 2, \ldots, k$ we have

$$\begin{aligned} \langle x, v_i \rangle &= \langle c_1 v_1 + c_2 v_2 + \dots + c_k v_k, v_i \rangle \\ &= c_1 \langle v_1, v_i \rangle + c_2 \langle v_2, v_i \rangle + \dots + c_i \langle v_i, v_i \rangle + \dots + c_k \langle v_k, v_i \rangle \\ &= c_i \langle v_i, v_i \rangle \text{ since the basis is an orthogonal set.} \end{aligned}$$

Hence,
$$c_i = \frac{\langle x, v_i \rangle}{\langle v_i, v_i \rangle}$$
 and the claim follows.

Theorem 2.2.1. Let $\{v_1, v_2, \ldots, v_k\}$ be a basis for vector space V of *n*-vectors where the basis vectors are mutually orthogonal. Then $x \in V$ we have

$$x = \frac{\langle x, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 + \frac{\langle x, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 + \cdots \frac{\langle x, v_k \rangle}{\langle v_k, v_k \rangle} v_k.$$

Proof. Suppose $\{v_1, v_2, \ldots, v_k\}$ is a basis for *V*, then $x = c_1v_1 + c_2v_2 + \cdots + c_kv_k$ for some (unique) scalars $c_1, c_2, \ldots, c_k \in \mathbb{R}$. Then for any $i = 1, 2, \ldots, k$ we have

$$\begin{array}{lll} \langle x, v_i \rangle & = & \langle c_1 v_1 + c_2 v_2 + \dots + c_k v_k, v_i \rangle \\ & = & c_1 \langle v_1, v_i \rangle + c_2 \langle v_2, v_i \rangle + \dots + c_i \langle v_i, v_i \rangle + \dots + c_k \langle v_k, v_i \rangle \\ & = & c_i \langle v_i, v_i \rangle \text{ since the basis is an orthogonal set.} \end{array}$$

Hence,
$$c_i = \frac{\langle x, v_i \rangle}{\langle v_i, v_i \rangle}$$
 and the claim follows.

Theorem 2.2.2. The solutions to a homogeneous system of equations form a subspace of \mathbb{R}^n .

Proof. We need only show that the set of solutions to a homogeneous system is closed under linear combinations. Let x_1 and x_2 be solutions and

Theory of Matrices

let $a, b \in \mathbb{R}$ be scalars. Then

 $c_m^T x_1 = 0$ $c_m^T x_2 = 0.$

 $\begin{array}{c} c_1^T x_1 = 0 & c_1^T x_2 = 0 \\ c_2^T x_1 = 0 & c_2^T x_2 = 0 \end{array}$

Theorem 2.2.2. The solutions to a homogeneous system of equations form a subspace of \mathbb{R}^n .

Proof. We need only show that the set of solutions to a homogeneous system is closed under linear combinations. Let x_1 and x_2 be solutions and

et
$$a, b \in \mathbb{R}$$
 be scalars. Then
 $c_1' x_1 = 0 \quad c_1' x_2 = 0$
 $c_2^T x_1 = 0 \quad c_2^T x_2 = 0$
 $\vdots \qquad \vdots$
 $c_m^T x_1 = 0 \quad c_m^T x_2 = 0.$

Hence

 $c_{1}^{T}(ax_{1} + bx_{2}) = ac_{1}^{T}x_{1} + bc_{1}^{T}x_{2} = a(0) + b(0) = 0$ $c_{2}^{T}(ax_{1} + bx_{2}) = ac_{2}^{T}x_{1} + bc_{2}^{T}x_{2} = a(0) + b(0) = 0$ $\vdots \quad \vdots \quad \vdots$ $c_{m}^{T}(ax_{1} + bx_{2}) = ac_{m}^{T}x_{1} + bc_{m}^{T}x_{2} = a(0) + b(0) = 0.$ So $ax_{1} + bx_{2}$ is a solution and the set of solutions is a subspace of \mathbb{R}^{n} .

()

Theorem 2.2.2. The solutions to a homogeneous system of equations form a subspace of \mathbb{R}^n .

T

Proof. We need only show that the set of solutions to a homogeneous system is closed under linear combinations. Let x_1 and x_2 be solutions and

et
$$a, b \in \mathbb{R}$$
 be scalars. Then
 $c_1' x_1 = 0 \quad c_1' x_2 = 0$
 $c_2^T x_1 = 0 \quad c_2^T x_2 = 0$
 $\vdots \qquad \vdots$
 $c_m^T x_1 = 0 \quad c_m^T x_2 = 0.$

Hence

So ax₁

$$c_{1}^{T}(ax_{1} + bx_{2}) = ac_{1}^{T}x_{1} + bc_{1}^{T}x_{2} = a(0) + b(0) = 0$$

$$c_{2}^{T}(ax_{1} + bx_{2}) = ac_{2}^{T}x_{1} + bc_{2}^{T}x_{2} = a(0) + b(0) = 0$$

$$\vdots \vdots \vdots$$

$$c_{m}^{T}(ax_{1} + bx_{2}) = ac_{m}^{T}x_{1} + bc_{m}^{T}x_{2} = a(0) + b(0) = 0.$$

$$+ bx_{2} \text{ is a solution and the set of solutions is a subspace of } \mathbb{R}^{n}.$$

Theorem 2.2.3(2)

Theorem 2.2.3(2). Properties of Cross Product. Let $x, y, z \in \mathbb{R}^3$ and $a \in \mathbb{R}$. Then:

 $x \times y = -y \times x$ (Anti-commutivity).

Proof. Recall that $x \times y = [x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1]$.

Theorem 2.2.3(2)

Theorem 2.2.3(2). Properties of Cross Product. Let $x, y, z \in \mathbb{R}^3$ and $a \in \mathbb{R}$. Then:

 $x \times y = -y \times x$ (Anti-commutivity).

Proof. Recall that $x \times y = [x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1]$. So

$$y \times x = [y_2x_3 - y_3x_2, y_3x_1 - y_1x_3, y_1x_2 - y_2x_1]$$

= $[x_3y_2 - x_2y_3, x_1y_3 - x_3y_1, x_2y_1 - x_1y_2]$
= $[-(x_2y_3 - x_3y_2), -(x_3y_1 - x_1y_3), -(x_1y_2 - x_2y_1)]$
= $-[(x_2y_3 - x_3y_2), (x_3y_1 - x_1y_3), (x_1y_2 - x_2y_1)]$
= $-x \times y.$

Theorem 2.2.3(2)

Theorem 2.2.3(2). Properties of Cross Product. Let $x, y, z \in \mathbb{R}^3$ and $a \in \mathbb{R}$. Then:

 $x \times y = -y \times x$ (Anti-commutivity).

Proof. Recall that $x \times y = [x_2y_3 - x_3y_2, x_3y_1 - x_1y_3, x_1y_2 - x_2y_1]$. So

$$y \times x = [y_2 x_3 - y_3 x_2, y_3 x_1 - y_1 x_3, y_1 x_2 - y_2 x_1]$$

= $[x_3 y_2 - x_2 y_3, x_1 y_3 - x_3 y_1, x_2 y_1 - x_1 y_2]$
= $[-(x_2 y_3 - x_3 y_2), -(x_3 y_1 - x_1 y_3), -(x_1 y_2 - x_2 y_1)]$
= $-[(x_2 y_3 - x_3 y_2), (x_3 y_1 - x_1 y_3), (x_1 y_2 - x_2 y_1)]$
= $-x \times y.$