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Chapter 2. Vectors and Vector Spaces
2.2. Cartesian Coordinates and Geometrical Properties of Vectors
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Theorem 2.2.1

Theorem 2.2.1

Theorem 2.2.1. Let {v1, v2, . . . , vk} be a basis for vector space V of
n-vectors where the basis vectors are mutually orthogonal. Then x ∈ V we
have

x =
〈x , v1〉
〈v1, v1〉

v1 +
〈x , v2〉
〈v2, v2〉

v2 + · · · 〈x , vk〉
〈vk , vk〉

vk .

Proof. Suppose {v1, v2, . . . , vk} is a basis for V , then
x = c1v1 + c2v2 + · · · + ckvk for some (unique) scalars c1, c2, . . . , ck ∈ R.

Then for any i = 1, 2, . . . , k we have

〈x , vi 〉 = 〈c1v1 + c2v2 + · · · + ckvk , vi 〉
= c1〈v1, vi 〉 + c2〈v2, vi 〉 + · · · + ci 〈vi , vi 〉 + · · · + ck〈vk , vi 〉
= ci 〈vi , vi 〉 since the basis is an orthogonal set.

Hence, ci =
〈x , vi 〉
〈vi , vi 〉

and the claim follows.
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Theorem 2.2.2

Theorem 2.2.2

Theorem 2.2.2. The solutions to a homogeneous system of equations
form a subspace of Rn.

Proof. We need only show that the set of solutions to a homogeneous
system is closed under linear combinations. Let x1 and x2 be solutions and

let a, b ∈ R be scalars. Then

cT
1 x1 = 0 cT

1 x2 = 0
cT
2 x1 = 0 cT

2 x2 = 0
...

...
cT
m x1 = 0 cT

m x2 = 0.

Hence

cT
1 (ax1 + bx2) = acT

1 x1 + bcT
1 x2 = a(0) + b(0) = 0

cT
2 (ax1 + bx2) = acT

2 x1 + bcT
2 x2 = a(0) + b(0) = 0

...
...

...

cT
m (ax1 + bx2) = acT

m x1 + bcT
m x2 = a(0) + b(0) = 0.

So ax1 + bx2 is a solution and the set of solutions is a subspace of Rn.
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Theorem 2.2.3(2) Anti-Commutivity of Cross Product

Theorem 2.2.3(2)

Theorem 2.2.3(2). Properties of Cross Product.
Let x , y , z ∈ R3 and a ∈ R. Then:

x × y = −y × x (Anti-commutivity).

Proof. Recall that x × y = [x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1].

So

y × x = [y2x3 − y3x2, y3x1 − y1x3, y1x2 − y2x1]

= [x3y2 − x2y3, x1y3 − x3y1, x2y1 − x1y2]

= [−(x2y3 − x3y2),−(x3y1 − x1y3),−(x1y2 − x2y1)]

= −[(x2y3 − x3y2), (x3y1 − x1y3), (x1y2 − x2y1)]

= −x × y .
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