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Theorem 2.2.1

Theorem 2.2.1. Let {vi,vs,..., v} be a basis for vector space V of
n-vectors where the basis vectors are mutually orthogonal. Then x € V we

have
<X7 V1> + <X7 V2> +... <X7 Vk> v

X = %1 V2
(v1,v1) (vo, vo) (Vie, Vi)
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Theorem 2.2.1

Theorem 2.2.1. Let {vi,vs,..., v} be a basis for vector space V of
n-vectors where the basis vectors are mutually orthogonal. Then x € V we

have

(x,v1) - (x, v2) L (x, vk) ,

X = V2

(vi,v1) (va, v2) (Vs Vi)
Proof. Suppose {vi,va,..., vk} is a basis for V, then
x=cvi + cava+ -+ + ckvk for some (unique) scalars ci, ¢, ..., cx € R.
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Theorem 2.2.1

Theorem 2.2.1. Let {vi,vs,..., v} be a basis for vector space V of
n-vectors where the basis vectors are mutually orthogonal. Then x € V we
have

x — <X7V1> V]_+ <X7V2> V2—|—"' <X7Vk> y
(vi,v1) (va, v2) (Vs Vi)
Proof. Suppose {vi,va,..., vk} is a basis for V, then
x=cvi + cava+ -+ + ckvk for some (unique) scalars ci, ¢, ..., cx € R.

Then for any i =1,2,..., k we have

(x,vi) = (avi+ v+ + v, V)
= a(vi,v)) + (v, v) + -+ ci(vi,vi) + - + cr(vk, vi)
= ¢i(vj, v;) since the basis is an orthogonal set.
Hence, ¢; = X, i) and the claim follows. ]
<Vf7 Vi>
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Theorem 2.2.2

Theorem 2.2.2. The solutions to a homogeneous system of equations
form a subspace of R".
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Theorem 2.2.2

Theorem 2.2.2. The solutions to a homogeneous system of equations
form a subspace of R".

Proof. We need only show that the set of solutions to a homogeneous

system is closed under linear combinations. Let x; and x» be solutions and
ox1=0 ¢x=0
C2TX1 =0 C2TX2 =0

let a, b € R be scalars. Then .

T

Cm

x1=0 ¢lx;=0.
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Theorem 2.2.2

Theorem 2.2.2. The solutions to a homogeneous system of equations
form a subspace of R".

Proof. We need only show that the set of solutions to a homogeneous

system is closed under linear combinations. Let x; and x» be solutions and
ox1=0 ¢x=0
C2TX1 =0 C2TX2 =0

let a, b € R be scalars. Then ) )

C,;I;Xl =0 C,;I.,—XQ =0.
Hence
o (ax1 + bxa) = ac] x1 + bc] xo = a(0) + b(0) =0
o) (ax1 + bxa) = acy x1 + bc) xo = a(0) + b(0) =0
¢l (axy + bxo) = ac]x + bc!xo = a(0) + b(0) = 0.

So ax; + bxy is a solution and the set of solutions is a subspace of R". [
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Theorem 2.2.3(2)

Theorem 2.2.3(2). Properties of Cross Product.
Let x,y,z € R3 and a € R. Then:

x X y = —y X x (Anti-commutivity).
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Theorem 2.2.3(2)

Theorem 2.2.3(2). Properties of Cross Product.
Let x,y,z € R3 and a € R. Then:

x X y = —y X x (Anti-commutivity).

Proof. Recall that x X y = [xay3 — Xx3y2, X3y1 — X1¥3, X1Y2 — X2Yi].
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Theorem 2.2.3(2) Anti-Commutivity of Cross Product
Theorem 2.2.3(2)

Theorem 2.2.3(2). Properties of Cross Product.
Let x,y,z € R3 and a € R. Then:

x X y = —y X x (Anti-commutivity).

Proof. Recall that x X y = [xoy3 — Xx3y2, X3y1 — X1y3, X1Y2 — X2y1]. So

yXx = [yax3 — y3x2,¥3X1 — y1X3, y1X2 — yax1]

[x3y2 — x2y3, x1y3 — X3y1, X2y1 — X1Y2]

[—(xeys — x3y2), —(x3y1 — x1y3), —(x1y2 — Xay1)]
—[(x2y3 = x3y2), (x3y1 — x1¥3), (x1y2 — x2y1)]

= —XXy.

O
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