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Theorem 2.3.1. Properties of Covariance

Theorem 2.3.1 (continued)

Proof (continued). We use the definition of covariance,
Cov(x,y) = (x =X,y —=y)/(n—1).

. _ T ax; "X _
2. Notice that ax = E'—nl L = 32,771 ! = ax, so
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Cov(ax,y) = P = n—1
_ (a(x =X),y —¥) _ aAx =X,y —¥) by Thm 2.1.6(3)
n—1 n—1
= aCov(x,y).

3. The proof of this is in the class notes before the statement of the
theorem.
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Theorem 2.3.1. Properties of Covariance

Theorem 2.3.1

Theorem 2.3.1. Properties of Covariance.
Let x, y,z be n-vectors and let a € R. Then:

1. Cov(alp,y) =0,
2. Cov(ax,y) = aCov(x,y),
3. Cov(y,y) = V(y).

Proof. We use the definition of covariance,
COV(X7y) = <X - 77}/ - }7>/(n - 1)

1. We have:
Cov(al,,y) = (ol _nain’ly =) since al, = al,
= % = 0 by Theorem 2.1.6(1).
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