Theory of Matrices

Chapter 2. Vectors and Vector Spaces

2.3. Centered Vectors and Variances and Covariances of Vectors—Proofs of Theorems

1 / 4

Table of contents

1 Theorem 2.3.1. Properties of Covariance

Theory of Matrices May 27, 2020 2 / 4

Theorem 2.3.1

Theorem 2.3.1. Properties of Covariance.

Let x, y, z be *n*-vectors and let $a \in \mathbb{R}$. Then:

- 1. $Cov(a1_n, y) = 0$,
- 2. Cov(ax, v) = aCov(x, v).
- 3. Cov(y, y) = V(y).

Proof. We use the definition of covariance.

$$Cov(x, y) = \langle x - \overline{x}, y - \overline{y} \rangle / (n - 1).$$

1. We have:

$$Cov(a1_n, y) = \frac{\langle a1_n - a1_n, y - \overline{y} \rangle}{n - 1} \text{ since } \overline{a1_n} = a1_n$$
$$= \frac{\langle 0, y - \overline{y} \rangle}{n - 1} = 0 \text{ by Theorem 2.1.6(1)}.$$

3 / 4

Theorem 2.3.1

Theorem 2.3.1. Properties of Covariance.

Let x, y, z be *n*-vectors and let $a \in \mathbb{R}$. Then:

- 1. $Cov(a1_n, y) = 0$,
- 2. Cov(ax, y) = aCov(x, y),
- 3. Cov(y, y) = V(y).

Proof. We use the definition of covariance,

$$Cov(x, y) = \langle x - \overline{x}, y - \overline{y} \rangle / (n - 1).$$

1. We have:

$$Cov(a1_n, y) = \frac{\langle a1_n - a1_n, y - \overline{y} \rangle}{n - 1} \text{ since } \overline{a1_n} = a1_n$$
$$= \frac{\langle 0, y - \overline{y} \rangle}{n - 1} = 0 \text{ by Theorem } 2.1.6(1).$$

3 / 4

Theorem 2.3.1 (continued)

Proof (continued). We use the definition of covariance, $Cov(x, y) = \langle x - \overline{x}, y - \overline{y} \rangle / (n - 1)$.

2. Notice that
$$\overline{ax} = \frac{\sum_{i=1}^{n} ax_i}{n} = a\frac{\sum_{i=1}^{n} x_i}{n} = a\overline{x}$$
, so

$$\operatorname{Cov}(ax, y) = \frac{\langle ax - \overline{ax}, y - \overline{y} \rangle}{n-1} = \frac{\langle ax - \overline{ax}, y - \overline{y} \rangle}{n-1} \\
= \frac{\langle a(x - \overline{x}), y - \overline{y} \rangle}{n-1} = \frac{a\langle x - \overline{x}, y - \overline{y} \rangle}{n-1} \text{ by Thm 2.1.6(3)} \\
= a\operatorname{Cov}(x, y).$$

Theory of Matrices May 27, 2020 4 / 4

Theorem 2.3.1 (continued)

Proof (continued). We use the definition of covariance, $Cov(x, y) = \langle x - \overline{x}, y - \overline{y} \rangle / (n - 1)$.

2. Notice that
$$\overline{ax} = \frac{\sum_{i=1}^{n} ax_i}{n} = a \frac{\sum_{i=1}^{n} x_i}{n} = a \overline{x}$$
, so

$$Cov(ax,y) = \frac{\langle ax - \overline{ax}, y - \overline{y} \rangle}{n-1} = \frac{\langle ax - a\overline{x}, y - \overline{y} \rangle}{n-1}$$

$$= \frac{\langle a(x - \overline{x}), y - \overline{y} \rangle}{n-1} = \frac{a\langle x - \overline{x}, y - \overline{y} \rangle}{n-1} \text{ by Thm } 2.1.6(3)$$

$$= aCov(x,y).$$

3. The proof of this is in the class notes before the statement of the theorem.

Theory of Matrices May 27, 2020 4 / 4

Theorem 2.3.1 (continued)

Proof (continued). We use the definition of covariance,

$$Cov(x, y) = \langle x - \overline{x}, y - \overline{y} \rangle / (n - 1).$$

2. Notice that
$$\overline{ax} = \frac{\sum_{i=1}^{n} ax_i}{n} = a \frac{\sum_{i=1}^{n} x_i}{n} = a \overline{x}$$
, so

$$Cov(ax,y) = \frac{\langle ax - \overline{ax}, y - \overline{y} \rangle}{n-1} = \frac{\langle ax - a\overline{x}, y - \overline{y} \rangle}{n-1}$$

$$= \frac{\langle a(x - \overline{x}), y - \overline{y} \rangle}{n-1} = \frac{a\langle x - \overline{x}, y - \overline{y} \rangle}{n-1} \text{ by Thm } 2.1.6(3)$$

$$= aCov(x,y).$$

3. The proof of this is in the class notes before the statement of the theorem.

> May 27, 2020 4 / 4