Theorem 3.1.1

Theory of Matrices }
Theorem 3.1.1. Suppose matrix A is diagonally dominant (that is, A is

symmetric and row and column diagonally dominant). If B is a principal
submatrix of A then B is also diagonally dominant.

Chapter 3. Basic Properties of Matrices
3.1. Basic Definitions and Notation—Proofs of Theorems

o —— Proof. Let A = [a;;] be symmetric and diagonally dominant. Let B = [by/]
be a principal submatrix of A. We need to show that B is symmetric and
James E. Gentle row diagonally dominant. Consider entry by in B. Then by, = aj; for

some i, j. Now by, and by, are on the diagonal of B and we have by, = aj;
and by = ajj. So in producing submatrix B, neither row j nor column i of

Theory, Computations, matrix A was eliminated and aj; = by,. Since A is symmetric then aj; = aj;
UL e IR i and so by = by and B is symmetric. For every by in B we have
— bix = aji for some aj; in A, and since A is row diagonally dominant then
m/
- |brk| = |aii| > Z laj| > Z |bie| where m’ is the number of
J=1,j#i (=1,0£k
columns in B. So B is row diagonally dominant, as claimed. O
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Theorem 3.1.A Theorem 3.1.A(continued)
Theorem 3.1.A. Let A = [aj;] be an n x n matrix. Then
det(A) = det(AT).
Proof. Let AT = [b;] so that b;; = aj;. For 7 € S, consider []/_ 1 ai n(i)- Theorem 3-1-AT- Let A= [a;] be an n x n matrix. Then
Since 7 is a permutation of {1,2,...,n} then each index 1,2, ..., det(A) = det(A").
appears as the second index in the product (the index representing the ) _ _ _ _
column of the entry) so that []7_; () = HJ 1 ay(j)j Where ~ is some Proof (continued). Summing over all permutations in S, gives
element of S,. Notice that if i = v(j) then j = w(i). So in the group S, n
_ -1
Y= Now the even permutations in S, form the subg.rou;.) A, (the det(A) = Z o () Haiw(i) = Z H i) = det(AT).
alternating group) and so the inverse of an even permutation is an even o i1 ~ESh
permutation. The n!/2 odd permutations in S, \ A, must include all
inverses in this set and so the inverse of an odd permutation is an odd (Notice that the sums are the same since m and 7 range over all elements
permutation. Hence o(v) = (7). Therefore of S,. Equation (x) does not claim m = = but instead, as we say,
_ -1

o(m) T2 ainy = (V) TT21 34(j)j- In terms of by, T=5"") O

7T)l_Iaiw(i) :U(W)Hbjw(j)- (*)
1 X -

i= j=1



Theorem 3.1.B Theorem 3.1.C

Theorem 3.1.B Theorem 3.1.C

Theorem 3.1.B. If an n x n matrix B is formed from a n x n matrix A by Theorem 3.1.C. If a n x n matrix B = [b;] is formed from an n x n
multiplying all of the elements of one row or one column of A by the same matrix A = [a;;] by interchanging two rows (or columns) of A then
scalar k (and leaving the elements of the other n — 1 row or columns det(B) = —det(A).

unchanged) then det(B) = kdet(A).
ged) (B) A Proof. Suppose B is found by interchanging the ith and kth rows of A

Proof. By definition, for A = [a;] we have where k > i. We have det(B) =[] s o(7) HJ’-’ZI bj (jy where

det(A) = 3" cs o(m) 11 ain(i)- In the product T[T, aj (i) there is

exactly one element from each row (since i ranges over 1,2,...,n) and

exactly one element from each column (since (/) ranges over 1,2,...,n). H bix(y = bix@ban(2) * bli-1)x(i-1)bin(i) D(it1) m(it1) -

So if B satisfies the hypotheses, then for given m € S,, we have /

[Ty bix(iy = kTj=1 aix(i) since exactly one bj () equals kaj(;y and for bk—1) m(k—1) Pk (k) Blk+1) w(k+1) = * Prr(n)

the other n — 1 values of /, bjr(jy = aj(jy- So det(B) = = A17(1)32x(2) " A>i-1) n(i-1) @k w(i)A(i+1) w(i+1) "
- _ - A(k—1) w(k—1) i w(k)A(k+1) w(k+1) * " " n7(n)

S om [ biny=>_ ¢ 7T)kl_[anr( =k > o(m) [ a0 (

ies, o1 o res,  io1 since bj(jy = akx(i) and bir(k) = 3jx(k)-

= kdet(A). O
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Theorem 3.1.C (continued 1) Theorem 3.1.C (continued 2)

Proof. To swap indices i and k we define v € S, as
x(j) ifj# ik

v() =4 m(k) ifj=i  Theny=mo(i,k)andso~y can be written Theorem 3.1.C. If a n x n matrix B = [b;] is formed from an n x n
m(i) ifj =k matrix A = [a;;] by interchanging two rows (or columns) of A then

with one more transposition ( “two cycle”) than 7; that is, the parity (even det(B) = —det(A).

or odd) of = is opposite of the parity of w. Therefore o(7w) = —o (7). But

as  ranges over S, then v = 7o (i, k) ranges over S, (such y's make up a Proof. If B is formed by interchanging two columns of A then

row of the multiplication table [“Cayley table”] of S,). So
det(B) = det(B") by Theorem 3.1.A

det(B) Z H Z —o(7) Hajv(j) —det(AT) by above
TS €S J=1 —  _det(A) by Theorem 3.1.A.
where v = 7 o (i, k). Hence

det(B) = > —o(M) [[aj40)=— D ol H = —det(A).

YESH j=1 YESy



Theorem 3.1.E

Theorem 3.1.E. Let B represent a matrix formed from n x n matrix A by
adding to any row (or column) of A, scalar multiples of one or more other
rows (or columns). Then det(B) = det(A).

Proof. Let a; and b; be the ith rows of matrices A and B, respectively,
where a; = [aj1, a2, . .., ain] and b; = [bj1, bj2, . .., bin] (remember, we
don't notationally distinguish between representations of scalars and
vectors). Then for some s € N, 1 < s < n and some scalars

ki, ko, ..., ks—1,Kkst1,-..,kn (possibly 0) we have that the sth row of B is
bs = as + Z}’Zl’j# kia; and the ith row of B, where i # s, is b; = a;.
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Theorem 3.1.F

Theorem 3.1.F. Let A=
cofactor of a;;. Then

[ajj] be an n x n matrix and let a;; represent the

n
det(A) = Y ajaj fori=1,2,...,n, (5.1)

j=1

and .,
det(A) = ajoyj for j=1,2,...,. (5.2)

i=1

Proof. Let Ajj be the (n — 1) x (n — 1) matrix that is formed by
eliminating the ith row and jth column of matrix A. Consider equation
(5.1) for the case i = 1. Denote by a(é) the (t, s)th element of Ajj (so t
and s range over the set {1,2,...,n—1}). Then

det(A) = 3" cs o(m) 11 aix(;)- When i =1 and 7 ranges over S, the
value of 7(i) ranges over the set {1,2,...,n}.
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Theorem 3.1.E (continued)

Proof (continued). So

det(B) = Z Hblﬂ'( Z ()bSﬂ'(S) H biW(i)
weS, TES, i=1,i#s
= as7r(5 Z kJaJﬂ'(J) H i (i)
71'65,, j=1j#s i=1,its
= Z H Ajn(i) t Z ZC’(”)/‘J’QJWU) H i m(i)
€S, i—1 j=1j#s \7€S, i=1,i#s

= det(A)+ > det(B))
j=Li#s
where B; is the matrix formed from A by replacing the sth row of A with
kjaj (notice j # s). By Corollary 3.1.D, det(B;j) = 0 for j # s and so
det(B) = det(A) as claimed. By Theorem 3.1.A, the result also holds if we
replace “row” with “column”. O]
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Theorem 3.1.F (continued 1)

Proof (continued). Let S} C S, denote all 7 € Sy such that 7(1) = j (so
for given j € {1,2,..., n}, the permutations in S} all map 1 to j and map
the remaining n — 1 values 2,3,...,nto 1,2,...,j—1,j+1,j+2,...,n,
so that [Sp| = (n — 1)! for each j € {1,2,...,n}). We have S, = U, S)
and so

det(A) = Z ﬂ)[[ain(i)

reSs)
n
= Z W)alea,-,,(,-) since (1) =j
j=1 WESJ i=2
n
Z aij ZU(W)H‘?:‘W(,’) - (%)
J=1 resh =2
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Theorem 3.1.F Theorem 3.1.F

Theorem 3.1.F (continued 2) Theorem 3.1.F (continued 3)
Proof (continued). We can relate 4/ and 7 with the following mapping:

Proof (continued). Now in (x), as permutation 7w ranges over Sl and as Y1) A'(@2) - A(h=1)  A(n)
i ranges over {2,3, ..., n}, the elements a; () ranges over all entries of ! U ! |
Ayj. Since we denote the (t,s) entry of Ay; as ag), then we can re-index m(2) w(3) - m(n) m(1) = .
the product and inner summation in (x) from i € {2,3,...,n} and 7 € Sl We will need to “move the jth term to the right end” and do so using the
tote{1,2,...,n—1} and v € S,_1, respectively. We do so by defining mapping 7"
t=i—1fori€{2,3,...,n} and v € 5,1 as 1 2 j—=1 j j4+1 -+ n=1 n

m(t+1) ifr(t+1)<j [ A R 1 1

t) = . forte{l,2,...,n—1}. We

(®) {W(Hl)—l if m(t+1) > { J 1 2 j—1n j -+ n=2 n-1
then have that v : {1,2,...,n—1} - {1,2,...,n—1} andso v € S,_1. So fi ) - dices by 1 q b th ]
Also, v(t) = (i) if ©(i) < j, and 7(t) = 7r( ) —1if 7(i) > j. Now extend o first we increase indices by 1 (mod n) with the permutation
v € Sp_1 to 7 € Sy, be defining 7/(t) = (t) for t € {1,2,...,n— 1} and , (1 2 -~ n=1 nY\ _ s
,y/(n) = n. Then O,(,Yl) — O.(,.Y) T = 2 3 ... n 1 - (273)(374) (n ]-7 n)(na 1)7

second we apply permutation 7, and third we perform the second mapping
above using the permutation 7 where . ..
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Theorem 3.1.F (continued 4) Theorem 3.1.F (continued 5)

Proof (continued). Proof (continued)

7T,,_<1 2 - j—=1j j+1 -+ n=1 n )
\12 .- j-1n 4§ -+ n=2 n-1 n
det(4) = D ay| ) (Yo Hama
=(n-2,n—1)(n-3,n—=2)---(j,j + 1), n). j=1 YESn—1
Then 7' = 77w’ Notice o(n') = (—=1)"1 and o(7”) = (—1)"7, so that where o/ = 7"’ and 7 is

the restriction of 7/ to {1,2,...,n—1}
o(v) =o(v) = o(n"n7’)

n n—1 )
= o(x")o(r)o () = (1) T Lo(x) = (1) +1o(x), = ;au(—l)"*1 > ff(ﬂ/)]:[a%m

. 'Yesn 1
or o(r) = (=1Y*1o(y). So (*) becomes

) ) = Za]_ J+ det A]_ Zaljalp
det(A) = > ay [ Y o(m[[aini | by (*)
j=1

€S} =2 and the claim holds for i = 1.



Theorem 3.1.F

Theorem 3.1.F (continued 6)

Proof (continued). Consider now equation (5.1) for i > 1. Let B be the
n X n matrix formed from A by interchanging the (i — 1)th and ith rows,
then the (i — 2)th and (i — 1)th rows, ..., then the 1st and 2nd rows (so
that the first row of B is the ith row of A and the 2nd through ith row of
B is the 1st through (i — 1)th row of A, respectively). By Theorem 3.1.C,
det(A) = (—1)'"ldet(B). Let By; be the (n—1) x (n — 1) matrix obtained
by eliminating the 1st row and the jth column of B, and let by be the jth
element of the first row of B. Then By; = Aj; and so

)= (-1)" 12131

by the first part of the proof
/ 1 Z aji

det(A) = (—1)"'det(B 1) det(By;)

+Jdet A,j) since Blj = A,'J'
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Theorem 3.1.F

Theorem 3.1.F (continued 8)

Theorem 3.1.F. Let A = [a;] be an n X n matrix and let oj represent the
cofactor of aj;. Then

det(A) =Y ajoyj for j=1,2,...,. (5.2)
i=1

Proof (continued).

det(A) = Z a;j(—1y " det(A]) = Z aj(—1)"*det(A;)
— Y
i=1
and equation 5.2 holds. ]
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Theorem 3.1.F

Theorem 3.1.F (continued 7)

Proof (continued).

det(A Z a;j(—1)"det(A

So equation (5.1) holds for alli=1,2,...,n

Finally, consider equation (5.2). Notice that the matrix formed by
eliminating the jth row and ith column of AT is AZ- So the cofactor of
the (j, i)th element of AT is (—1)j+idet(A,-JT-) = (—1y*det(A;) = a; by
Theorem 3.1.A. Since the (j, i)th element of AT is the (i,j)th element of
A, then by equation (5.1) and Theorem 3.1.A,

Z ajjor; where aj; = aji and af; = (—1)"+jdet(AZ-—)
j=1

E :auo‘u

det(A) = det(AT) =

= Za a interchanging / and j

() Theory of Matrices June 2, 2020 19 /27

Theorem 3.1.3

Theorem 3.1.3

Theorem 3.1.3. Let A be an n x n matrix with adjoint adj(A) = [a;]".
Then Aadj(A) = adj(A)A = det(A)l,.

Proof. With A = [ajj] we have the (i,/) entry of Aadj(A) as > }_; ajkcjk.
By Theorem 3.1.F, for i = j this is det(A).

If i # j, consider the matrix B = [b;;] where B is n x n and has the same
rows as A, except that its jth row is the same as the ith row of A. Then
the cofactors aj, of A are the same as the cofactors 3, of B for

1 < k < n. Also, since the jth row of B is the same as the ith of A then
bjx = aji for 1 < k < n. Since the ith row and the jth row are the same in
B then, by Note 3.1.C, det(B) = 0. So for i # j the (i, j) entry of
Aadj(A) is

Z ajkjk = Z bjxBjx = det(B) = 0 by Theorem 3.1.F.

k=1
So the (i,j) entry of Aadj(A) is det(A) for i = j and 0 for i # j; that is
Aadj(A) = det(A)l,, as claimed. Similarly, adj(A)A = det(A)/,. O
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Theorem 3.1.G Theorem 3.1.G

Theorem 3.1.G Theorem 3.1.G (continued 1)
Theorem 3.1.G. Let T be an m x m matrix, V an n x m matrix, W an Proof (continued). Such m € S/, can be written as the product of two
n X n matrix, and let ‘0’ represent the m x n matrix of all entries as 0. permutations, 7, and m,, in Sm+n where 7, fixes
Then the determinant of the partitioned matrix is {m+1,m+2,....,m+ n} and 7, fixes {1,2,...,m}; that is, 7 = T,
det [ T o0 ] — det [ w v ] — det(T)det(W). and o(m) = 0‘(71',,-,)0'(71',,). .Now if we restrict 7, to {1,2,...,m} and_
vV w o T denote the resulting function as 7/, then we have 7/, € Sp,. If we define
T 0 ﬂ;,(i—m)—w,,() mforie{m+1,m+2, ..., m+ n}, then
Proof. Let A= [ vV W ] = [ajj] be a partitioned (m + n) x (m+ n) m o {1,2,...,n} = {1,2,...,n} and 7, € S,. We have o(mm) = o)
matrix. Let T = [t;] and W = [wy], so that t; = a;; for and o(mn) = 0( n). So from (*) we have
i,j€{1,2,...,m} and wjj = agiym)(i+m) for i,j € {1,2,...,n}. By m+n
m+n det(A) = Y o(m) [] aixei
definition: det(A) = > o(n) [] aix(i)- (%) e, i1
TESm+n i=1 m-+n
Now the only time the product in (x) might be nonzero is when 7 is a — Z o(mn 1‘[‘917T H 3o
permutation mapping {1,2,..., m} to itself (otherwise a;(;y = 0 for some T € SL, l [ ol

i €{1,2,...,m}), and hence also mapping {m+1,m+2,....,m+ n} to

where each m € §/ is written as ™ = T, T,

itself. Denote all such permutations as S/, . mn
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Theorem 3.1.G (continued 2) Theorem 3.1.G (continued 3)
Proof (continued).
m m—+n .
det(A) = Z o (7 m)o () H ER H T Proof (continued).
7Tm77rn65m+n i=1 i=m+1 m n
, - n det(A) = > olmo (@) [ timniy [T wim
= > o(w)e(m) H 3i (i) H 3(i4-m) m(i+-m) €S hESn i=1 i—1

T ESm,mhESh

= o(mm) | | tin i o(my) | | Win(i
- Z m)U H aj () H a(H—m)ﬂ' (7) w;ﬂ%;&'m ,]:[1 ( )71':126;" ,]:[1 ©

w{nesm,w;esn = det(T)det(W).

sincew;(i—m)—ﬂn() mfor1€{m+1 m+2,...,m+ n}

or mp(i) + m=my(i + m) for i € {1,2,....n} The proof that det [ ‘E)V ¥ ] = det( T)det(W) is similar. O
= Z o(mm)o(my,) H tixr (i) H Wj (i)

70 € SmyThE S i=1 i=1



Theorem 3.1.H

Theorem 3.1.H

Theorem 3.1.H. Let Abe nx nand let T be an n X n upper or lower
triangular matrix with entries of 1 along the diagonal. Then
det(AT) = det(TA) = det(A).

Proof. Consider the case AT where T is lower triangular. Define T; to be
an n x n matrix formed from /, by replacing the ith column of /, with the
ith column of T (for 1 <i<n). Then T = T1T--- T,, as shown in
Exercise 3.1.C, so AT = AT, T>--- T,. Define By = A and

Bi =AT1T,---T; (for 1 < i< n). Consider B;_1 T; for 1 < i < n. Since
all columns of T;, except for the ith column, are the same as /, then the
columns of B;_1 T; are the same as the columns of B;_1, except for the ith
column. Let ty;, tp;, ..., ty; be the entries in the ith column of T; (so
t=tbi=---= t(i—l)i =0and t; = ].). Let by, by, ..., b, be the
columns of B;_;.
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Theorem 3.1.H

Theorem 3.1.H (continued)

Theorem 3.1.H. Let Abe nx nand let T be an n x n upper or lower
triangular matrix with entries of 1 along the diagonal. Then
det(AT) = det(TA) = det(A).

Proof (continued). Then the entries of the ith column of B;_1 T; are

n n
ijktki = bj,' + Z bjktk,- for1<j<n
k=1 k=i+1

where the entries of b; are by;, bs;, ..., b,;. So the ith column of B;_1T; is
b; + ZZZI-H by tki, which is the ith column of B;_1 plus a series of scalar

multiples of the columns bj;1, bj12,. .., b, of Bi_1. So by Theorem 3.1.E,
det(B;) = det(B;j_1T;) = det(B;j_1). This holds for 1 < < n, so

det(A) = det(Bp) = det(By) = det(B) = - - - = det(B,,) = det(AT).
The result holds similarly for T upper triangular and for TA. O
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