Theory of Matrices

Chapter 3. Basic Properties of Matrices 3.1. Basic Definitions and Notation—Proofs of Theorems

Table of contents

- [Theorem 3.1.1](#page-2-0)
- 2 [Theorem 3.1.A](#page-6-0)
- 3 [Theorem 3.1.B](#page-11-0)
- [Theorem 3.1.C](#page-15-0)
- 5 [Theorem 3.1.E](#page-22-0)
- 6 [Theorem 3.1.F](#page-26-0)
	- [Theorem 3.1.3](#page-45-0)
- 8 [Theorem 3.1.G](#page-49-0)
	- [Theorem 3.1.H](#page-58-0)

Theorem 3.1.1. Suppose matrix A is diagonally dominant (that is, A is symmetric and row and column diagonally dominant). If B is a principal submatrix of A then B is also diagonally dominant.

Proof. Let $A = [a_{ij}]$ be symmetric and diagonally dominant. Let $B = [b_{k\ell}]$ be a principal submatrix of A. We need to show that B is symmetric and row diagonally dominant.

Theorem 3.1.1. Suppose matrix A is diagonally dominant (that is, A is symmetric and row and column diagonally dominant). If B is a principal submatrix of A then B is also diagonally dominant.

Proof. Let $A = [a_{ij}]$ be symmetric and diagonally dominant. Let $B = [b_{k\ell}]$ be a principal submatrix of A. We need to show that B is symmetric and **row diagonally dominant**. Consider entry $b_{k\ell}$ in B . Then $b_{k\ell} = a_{ij}$ for some *i*, *j*. Now b_{kk} and $b_{\ell\ell}$ are on the diagonal of B and we have $b_{kk} = a_{ii}$ and $b_{\ell\ell} = a_{ii}$. So in producing submatrix B, neither row j nor column i of matrix A was eliminated and $a_{ii} = b_{\ell k}$.

Theorem 3.1.1. Suppose matrix A is diagonally dominant (that is, A is symmetric and row and column diagonally dominant). If B is a principal submatrix of A then B is also diagonally dominant.

Proof. Let $A = [a_{ij}]$ be symmetric and diagonally dominant. Let $B = [b_{k\ell}]$ be a principal submatrix of A. We need to show that B is symmetric and row diagonally dominant. Consider entry $b_{k\ell}$ in B . Then $b_{k\ell} = a_{ij}$ for some *i*, *j*. Now b_{kk} and $b_{\ell\ell}$ are on the diagonal of B and we have $b_{kk} = a_{ii}$ and $b_{\ell\ell} = a_{ii}$. So in producing submatrix B, neither row j nor column i of **matrix A was eliminated and** $a_{ii} = b_{\ell k}$ **.** Since A is symmetric then $a_{ii} = a_{ii}$ and so $b_{k\ell} = b_{\ell k}$ and B is symmetric. For every b_{kk} in B we have $b_{kk} = a_{ii}$ for some a_{ii} in A, and since A is row diagonally dominant then $|b_{kk}| = |a_{ii}| > \sum |a_{ij}| \geq \sum''_{n}$ $|b_{k\ell}|$ where m' is the number of $j=1, j\neq i$ $\ell=1, \ell\neq k$

columns in B . So B is row diagonally dominant, as claimed.

Theorem 3.1.1. Suppose matrix A is diagonally dominant (that is, A is symmetric and row and column diagonally dominant). If B is a principal submatrix of A then B is also diagonally dominant.

Proof. Let $A = [a_{ij}]$ be symmetric and diagonally dominant. Let $B = [b_{k\ell}]$ be a principal submatrix of A. We need to show that B is symmetric and row diagonally dominant. Consider entry $b_{k\ell}$ in B . Then $b_{k\ell} = a_{ij}$ for some *i*, *j*. Now b_{kk} and $b_{\ell\ell}$ are on the diagonal of B and we have $b_{kk} = a_{ii}$ and $b_{\ell\ell} = a_{ij}$. So in producing submatrix B, neither row j nor column i of matrix A was eliminated and $a_{ii} = b_{\ell k}$. Since A is symmetric then $a_{ii} = a_{ii}$ and so $b_{k\ell} = b_{\ell k}$ and B is symmetric. For every $b_{k\ell}$ in B we have $b_{kk} = a_{ii}$ for some a_{ii} in A, and since A is row diagonally dominant then $|b_{kk}| = |a_{ii}| > \sum \hspace{.2cm} |a_{ij}| \geq \hspace{.2cm} \sum' \hspace{.2cm} |b_{k\ell}|$ where m' is the number of j=1,j \neq i ℓ =1, ℓ \neq k

columns in B . So B is row diagonally dominant, as claimed.

Theorem 3.1.A. Let $A = [a_{ii}]$ be an $n \times n$ matrix. Then $\det(A)=\det(A^{\mathcal{T}}).$

Proof. Let $A^T = [b_{ij}]$ so that $b_{ij} = a_{ji}$. For $\pi \in S_n$, consider $\prod_{i=1}^n a_{i \pi(i)}$. Since π is a permutation of $\{1, 2, \ldots, n\}$ then each index $1, 2, \ldots, n$ appears as the second index in the product (the index representing the column of the entry) so that $\prod_{i=1}^n a_{i\,\pi(i)} = \prod_{j=1}^n a_{\gamma(j)j}$ where γ is some element of S_n .

Theorem 3.1.A

Theorem 3.1.A. Let $A = [a_{ii}]$ be an $n \times n$ matrix. Then $\det(A)=\det(A^{\mathcal{T}}).$

Proof. Let $A^{\mathcal{T}} = [b_{ij}]$ so that $b_{ij} = a_{ji}$. For $\pi \in S_n$, consider $\prod_{i=1}^n a_{i \pi(i)}$. Since π is a permutation of $\{1, 2, \ldots, n\}$ then each index $1, 2, \ldots, n$ appears as the second index in the product (the index representing the column of the entry) so that $\prod_{i=1}^n a_{i\,\pi(i)} = \prod_{j=1}^n a_{\gamma(j)j}$ where γ is some **element of S_n**. Notice that if $i = \gamma(i)$ then $j = \pi(i)$. So in the group S_n , $\gamma=\pi^{-1}.$ Now the even permutations in \mathcal{S}_n form the subgroup \mathcal{A}_n (the alternating group) and so the inverse of an even permutation is an even permutation. The n!/2 odd permutations in $S_n \setminus A_n$ must include all inverses in this set and so the inverse of an odd permutation is an odd permutation.

Theorem 3.1.A

Theorem 3.1.A. Let $A = [a_{ij}]$ be an $n \times n$ matrix. Then $\det(A)=\det(A^{\mathcal{T}}).$

Proof. Let $A^{\mathcal{T}} = [b_{ij}]$ so that $b_{ij} = a_{ji}$. For $\pi \in S_n$, consider $\prod_{i=1}^n a_{i \pi(i)}$. Since π is a permutation of $\{1, 2, \ldots, n\}$ then each index $1, 2, \ldots, n$ appears as the second index in the product (the index representing the column of the entry) so that $\prod_{i=1}^n a_{i\,\pi(i)} = \prod_{j=1}^n a_{\gamma(j)j}$ where γ is some element of S_n . Notice that if $i = \gamma(j)$ then $j = \pi(i)$. So in the group S_n , $\gamma=\pi^{-1}.$ Now the even permutations in \mathcal{S}_n form the subgroup \mathcal{A}_n (the alternating group) and so the inverse of an even permutation is an even permutation. The n!/2 odd permutations in $S_n \setminus A_n$ must include all inverses in this set and so the inverse of an odd permutation is an odd **permutation.** Hence $\sigma(\gamma) = \sigma(\pi)$. Therefore $\sigma(\pi)\prod_{i=1}^n a_i{}_{\pi(i)} = \sigma(\gamma)\prod_{j=1}^n a_{\gamma(j)j}.$ In terms of $b_{ij},$

$$
\sigma(\pi) \prod_{i=1}^n a_{i \pi(i)} = \sigma(\gamma) \prod_{j=1}^n b_{j \gamma(j)}.
$$
 (*)

Theorem 3.1.A

Theorem 3.1.A. Let $A = [a_{ij}]$ be an $n \times n$ matrix. Then $\det(A)=\det(A^{\mathcal{T}}).$

Proof. Let $A^{\mathcal{T}} = [b_{ij}]$ so that $b_{ij} = a_{ji}$. For $\pi \in S_n$, consider $\prod_{i=1}^n a_{i \pi(i)}$. Since π is a permutation of $\{1, 2, \ldots, n\}$ then each index $1, 2, \ldots, n$ appears as the second index in the product (the index representing the column of the entry) so that $\prod_{i=1}^n a_{i\,\pi(i)} = \prod_{j=1}^n a_{\gamma(j)j}$ where γ is some element of S_n . Notice that if $i = \gamma(j)$ then $j = \pi(i)$. So in the group S_n , $\gamma=\pi^{-1}.$ Now the even permutations in \mathcal{S}_n form the subgroup \mathcal{A}_n (the alternating group) and so the inverse of an even permutation is an even permutation. The $n!/2$ odd permutations in $S_n \setminus A_n$ must include all inverses in this set and so the inverse of an odd permutation is an odd permutation. Hence $\sigma(\gamma) = \sigma(\pi)$. Therefore $\sigma(\pi)\prod_{i=1}^n a_i{}_{\pi(i)} = \sigma(\gamma)\prod_{j=1}^n a_{\gamma(j)j}.$ In terms of $b_{ij},$

$$
\sigma(\pi) \prod_{i=1}^{n} a_{i \pi(i)} = \sigma(\gamma) \prod_{j=1}^{n} b_{j \gamma(j)}.
$$
 (*)
(1)
Theory of Matrices
June 2, 2020 4/27

Theorem 3.1.A(continued)

Theorem 3.1.A. Let $A = [a_{ii}]$ be an $n \times n$ matrix. Then $\det(A)=\det(A^{\mathcal{T}}).$

Proof (continued). Summing over all permutations in S_n gives

$$
\det(A) = \sum_{\pi \in S_n} \sigma(\pi) \prod_{i=1}^n a_{i \pi(i)} = \sum_{\gamma \in S_n} \sigma(\gamma) \prod_{j=1}^n b_{j \gamma(j)} = \det(A^{\mathcal{T}}).
$$

(Notice that the sums are the same since π and γ range over all elements of S_n . Equation (*) does not claim $\pi = \gamma$ but instead, as we say, $\pi=\gamma^{-1}.$)

Theorem 3.1.B. If an $n \times n$ matrix B is formed from a $n \times n$ matrix A by multiplying all of the elements of one row or one column of A by the same scalar k (and leaving the elements of the other $n-1$ row or columns unchanged) then $det(B) = k det(A)$.

Proof. By definition, for $A = [a_{ii}]$ we have $\det(A)=\sum_{\pi\in S_n}\sigma(\pi)\prod_{i=1}^n a_i{}_{\pi(i)}.$ In the product $\prod_{i=1}^n a_i{}_{\pi(i)}$ there is exactly one element from each row (since *i* ranges over $1, 2, \ldots, n$) and exactly one element from each column (since $\pi(i)$ ranges over $1, 2, \ldots, n$).

Theorem 3.1.B. If an $n \times n$ matrix B is formed from a $n \times n$ matrix A by multiplying all of the elements of one row or one column of A by the same scalar k (and leaving the elements of the other $n-1$ row or columns unchanged) then det(B) = k det(A).

Proof. By definition, for $A = [a_{ii}]$ we have $\det(A)=\sum_{\pi\in S_n}\sigma(\pi)\prod_{i=1}^n a_i{}_{\pi(i)}.$ In the product $\prod_{i=1}^n a_i{}_{\pi(i)}$ there is exactly one element from each row (since *i* ranges over $1, 2, \ldots, n$) and exactly one element from each column (since $\pi(i)$ ranges over $1, 2, \ldots, n$). So if B satisfies the hypotheses, then for given $\pi \in S_n$, we have $\prod_{i=1}^n b_i{}_{\pi(i)}=k\prod_{i=1}^n a_i{}_{\pi(i)}$ since exactly one $b_i{}_{\pi(i)}$ equals $ka_i{}_{\pi(i)}$ and for the other $n-1$ values of $i,~b_{i\,\pi(i)}=a_{i\,\pi(i)}.$

Theorem 3.1.B. If an $n \times n$ matrix B is formed from a $n \times n$ matrix A by multiplying all of the elements of one row or one column of A by the same scalar k (and leaving the elements of the other $n-1$ row or columns unchanged) then det(B) = k det(A).

Proof. By definition, for $A = [a_{ii}]$ we have $\det(A)=\sum_{\pi\in S_n}\sigma(\pi)\prod_{i=1}^n a_i{}_{\pi(i)}.$ In the product $\prod_{i=1}^n a_i{}_{\pi(i)}$ there is exactly one element from each row (since *i* ranges over $1, 2, \ldots, n$) and exactly one element from each column (since $\pi(i)$ ranges over $1, 2, \ldots, n$). So if B satisfies the hypotheses, then for given $\pi \in S_n$, we have $\prod_{i=1}^n b_i{}_{\pi(i)}=k\prod_{i=1}^n a_i{}_{\pi(i)}$ since exactly one $b_i{}_{\pi(i)}$ equals $ka_i{}_{\pi(i)}$ and for the other $n-1$ values of $i,~b_{i\,\pi(i)}=a_{i\,\pi(i)}$. So det $(B)=$ $\sum \sigma(\pi) \prod^{n} b_{i \pi(i)} = \sum \sigma(\pi) k \prod^{n} a_{i \pi(i)} = k \sum \sigma(\pi) \prod^{n} a_{i \pi(i)}$ $\pi \in S_n$ i=1 $\pi \in S_n$ i=1 $\pi \in S_n$ i=1

 $= k \det(A).$

Theorem 3.1.B. If an $n \times n$ matrix B is formed from a $n \times n$ matrix A by multiplying all of the elements of one row or one column of A by the same scalar k (and leaving the elements of the other $n-1$ row or columns unchanged) then det(B) = k det(A).

Proof. By definition, for $A = [a_{ii}]$ we have $\det(A)=\sum_{\pi\in S_n}\sigma(\pi)\prod_{i=1}^n a_i{}_{\pi(i)}.$ In the product $\prod_{i=1}^n a_i{}_{\pi(i)}$ there is exactly one element from each row (since *i* ranges over $1, 2, \ldots, n$) and exactly one element from each column (since $\pi(i)$ ranges over $1, 2, \ldots, n$). So if B satisfies the hypotheses, then for given $\pi \in S_n$, we have $\prod_{i=1}^n b_i{}_{\pi(i)}=k\prod_{i=1}^n a_i{}_{\pi(i)}$ since exactly one $b_i{}_{\pi(i)}$ equals $ka_i{}_{\pi(i)}$ and for the other $n-1$ values of $i,~b_{i\,\pi(i)}=a_{i\,\pi(i)}.$ So $\det(B)=$ \sum $\pi{\in}\mathsf{S}_n$ $\sigma(\pi) \prod^{n}$ $i=1$ $b_{i \pi(i)} = \sum$ $\pi \in S_n$ $\sigma(\pi)$ k $\prod_{n=1}^{\infty}$ $i=1$ $a_{i\pi(i)}=k\sum$ $\pi \in S_n$ $\sigma(\pi) \prod^{n}$ $i=1$ $a_{i \pi(i)}$ $= k \det(A).$

Theorem 3.1.C. If a $n \times n$ matrix $B = [b_{ii}]$ is formed from an $n \times n$ matrix $A = [a_{ii}]$ by interchanging two rows (or columns) of A then $det(B) = -det(A).$

Proof. Suppose B is found by interchanging the *i*th and *k*th rows of A where $k > i$.

Theorem 3.1.C. If a $n \times n$ matrix $B = [b_{ii}]$ is formed from an $n \times n$ matrix $A = [a_{ii}]$ by interchanging two rows (or columns) of A then $det(B) = -det(A).$

Proof. Suppose B is found by interchanging the *i*th and *k*th rows of A **where** $k > i$. We have $\det(B) = \prod_{\pi \in S_n} \sigma(\pi) \prod_{j=1}^n b_{j \pi(j)}$ where

$$
\prod_{j=1}^{n} b_{j\pi(j)} = b_{1\pi(1)} b_{2\pi(2)} \cdots b_{(i-1)\pi(i-1)} b_{i\pi(i)} b_{(i+1)\pi(i+1)} \cdots
$$
\n
$$
b_{(k-1)\pi(k-1)} b_{k\pi(k)} b_{(k+1)\pi(k+1)} \cdots b_{n\pi(n)}
$$
\n
$$
= a_{1\pi(1)} a_{2\pi(2)} \cdots a_{(i-1)\pi(i-1)} a_{k\pi(i)} a_{(i+1)\pi(i+1)} \cdots
$$
\n
$$
a_{(k-1)\pi(k-1)} a_{i\pi(k)} a_{(k+1)\pi(k+1)} \cdots a_{n\pi(n)}
$$
\nsince $b_{i\pi(i)} = a_{k\pi(i)}$ and $b_{k\pi(k)} = a_{i\pi(k)}$.

Theorem 3.1.C. If a $n \times n$ matrix $B = [b_{ii}]$ is formed from an $n \times n$ matrix $A = [a_{ii}]$ by interchanging two rows (or columns) of A then $det(B) = -det(A).$

Proof. Suppose B is found by interchanging the *i*th and *k*th rows of A where $k>i$. We have $\det(B)=\prod_{\pi\in S_n}\sigma(\pi)\prod_{j=1}^n b_{j\,\pi(j)}$ where

$$
\prod_{j=1}^{n} b_{j\pi(j)} = b_{1\pi(1)}b_{2\pi(2)}\cdots b_{(i-1)\pi(i-1)}b_{i\pi(i)}b_{(i+1)\pi(i+1)}\cdots \n= b_{(k-1)\pi(k-1)}b_{k\pi(k)}b_{(k+1)\pi(k+1)}\cdots b_{n\pi(n)} \n= a_{1\pi(1)}a_{2\pi(2)}\cdots a_{(i-1)\pi(i-1)}a_{k\pi(i)}a_{(i+1)\pi(i+1)}\cdots \na_{(k-1)\pi(k-1)}a_{i\pi(k)}a_{(k+1)\pi(k+1)}\cdots a_{n\pi(n)} \nsince $b_{i\pi(i)} = a_{k\pi(i)}$ and $b_{k\pi(k)} = a_{i\pi(k)}$.
$$

Theorem 3.1.C (continued 1)

Proof. To swap indices *i* and *k* we define $\gamma \in S_n$ as $\gamma(j) =$ $\sqrt{ }$ $\left\{\right\}$ \mathcal{L} $\pi(j)$ if $j \neq i, k$ $\pi(k)$ if $j = k$ $\pi(i)$ if $j = k$. Then $\gamma=\pi\circ (i,k)$ and so γ can be written

with one more transposition ("two cycle") than π ; that is, the parity (even or odd) of γ is opposite of the parity of π . Therefore $\sigma(\pi) = -\sigma(\gamma)$. But as π ranges over S_n then $\gamma = \pi \circ (i, k)$ ranges over S_n (such γ 's make up a row of the multiplication table \lceil "Cayley table" of S_n). So

$$
\det(B) = \sum_{\pi \in S_n} \sigma(\pi) \prod_{j=1}^n b_{j \pi(j)} = \sum_{\gamma \in S_n} -\sigma(\gamma) \prod_{j=1}^n a_{j \gamma(j)}
$$

where $\gamma = \pi \circ (i, k)$.

Theorem 3.1.C (continued 1)

Proof. To swap indices *i* and *k* we define $\gamma \in S_n$ as $\gamma(j) =$ $\sqrt{ }$ $\left\{\right\}$ \mathcal{L} $\pi(j)$ if $j \neq i, k$ $\pi(k)$ if $j = k$ $\pi(i)$ if $j = k$. Then $\gamma=\pi\circ (i,k)$ and so γ can be written

with one more transposition ("two cycle") than π ; that is, the parity (even or odd) of γ is opposite of the parity of π . Therefore $\sigma(\pi) = -\sigma(\gamma)$. But as π ranges over S_n then $\gamma = \pi \circ (i, k)$ ranges over S_n (such γ 's make up a row of the multiplication table ["Cayley table"] of S_n). So

$$
\det(B) = \sum_{\pi \in S_n} \sigma(\pi) \prod_{j=1}^n b_{j \pi(j)} = \sum_{\gamma \in S_n} -\sigma(\gamma) \prod_{j=1}^n a_{j \gamma(j)}
$$

where $\gamma = \pi \circ (i, k)$. Hence

$$
\det(B) = \sum_{\gamma \in S_n} -\sigma(\gamma) \prod_{j=1}^n a_{j\gamma(j)} = -\sum_{\gamma \in S_n} \sigma(\gamma) \prod_{j=1}^n a_{j\gamma(j)} = -\det(A).
$$

Theorem 3.1.C (continued 1)

Proof. To swap indices *i* and *k* we define $\gamma \in S_n$ as $\gamma(j) =$ $\sqrt{ }$ $\left\{\right\}$ \mathcal{L} $\pi(j)$ if $j \neq i, k$ $\pi(k)$ if $j = k$ $\pi(i)$ if $j = k$. Then $\gamma=\pi\circ (i,k)$ and so γ can be written

with one more transposition ("two cycle") than π ; that is, the parity (even or odd) of γ is opposite of the parity of π . Therefore $\sigma(\pi) = -\sigma(\gamma)$. But as π ranges over S_n then $\gamma = \pi \circ (i, k)$ ranges over S_n (such γ 's make up a row of the multiplication table ["Cayley table"] of S_n). So

$$
\det(B) = \sum_{\pi \in S_n} \sigma(\pi) \prod_{j=1}^n b_{j \pi(j)} = \sum_{\gamma \in S_n} -\sigma(\gamma) \prod_{j=1}^n a_{j \gamma(j)}
$$

where $\gamma = \pi \circ (i, k)$. Hence

$$
\det(B) = \sum_{\gamma \in S_n} -\sigma(\gamma) \prod_{j=1}^n a_{j\gamma(j)} = -\sum_{\gamma \in S_n} \sigma(\gamma) \prod_{j=1}^n a_{j\gamma(j)} = -\det(A).
$$

Theorem 3.1.C (continued 2)

Theorem 3.1.C. If a $n \times n$ matrix $B = [b_{ij}]$ is formed from an $n \times n$ matrix $A = [a_{ij}]$ by interchanging two rows (or columns) of A then $det(B) = -det(A)$.

Proof. If B is formed by interchanging two columns of A then

$$
det(B) = det(BT)
$$
 by Theorem 3.1.A
= $-det(AT)$ by above
= $-det(A)$ by Theorem 3.1.A.

Theorem 3.1.E. Let B represent a matrix formed from $n \times n$ matrix A by adding to any row (or column) of A, scalar multiples of one or more other rows (or columns). Then $\det(B) = \det(A)$.

Proof. Let a_i and b_i be the *i*th rows of matrices A and B, respectively, where $a_i = [a_{i1}, a_{i2}, \ldots, a_{in}]$ and $b_i = [b_{i1}, b_{i2}, \ldots, b_{in}]$ (remember, we don't notationally distinguish between representations of scalars and vectors). Then for some $s \in \mathbb{N}$, $1 \leq s \leq n$ and some scalars $k_1, k_2, \ldots, k_{s-1}, k_{s+1}, \ldots, k_n$ (possibly 0) we have that the sth row of B is $b_s = a_s + \sum_{j=1, j \neq s}^{n} k_j a_j$ and the *i*th row of *B*, where $i \neq s$, is $b_i = a_i$.

Theorem 3.1.E. Let B represent a matrix formed from $n \times n$ matrix A by adding to any row (or column) of A, scalar multiples of one or more other rows (or columns). Then $\det(B) = \det(A)$.

Proof. Let a_i and b_i be the *i*th rows of matrices A and B, respectively, where $a_i = [a_{i1}, a_{i2}, \ldots, a_{in}]$ and $b_i = [b_{i1}, b_{i2}, \ldots, b_{in}]$ (remember, we don't notationally distinguish between representations of scalars and vectors). Then for some $s \in \mathbb{N}$, $1 \leq s \leq n$ and some scalars $k_1, k_2, \ldots, k_{s-1}, k_{s+1}, \ldots, k_n$ (possibly 0) we have that the sth row of B is $b_s = a_s + \sum_{j=1, j \neq s}^{n} k_j a_j$ and the *i*th row of *B*, where $i \neq s$, is $b_i = a_i$.

Theorem 3.1.E (continued) Proof (continued). So $\det(B) = \sum$ $\pi{\in}\mathsf{S}_n$ $\sigma(\pi) \prod^{n}$ $i=1$ $b_{i \pi(i)} = \sum$ $\pi{\in}\mathsf{S}_n$ $\sigma(\pi) b_{s \pi(s)} \prod$ $_{i=1,i\neq s}$ $b_{i \pi(i)}$ $=$ \sum $\pi{\in}\mathsf{S}_n$ $\sigma(\pi)$ $\sqrt{ }$ $a_{s\pi(s)} +$ $\sum_{n=1}^{n}$ j $=$ 1,j \neq s $k_j a_{j\pi(j)}$ \setminus $\overline{1}$ \prod^n $i=1, i\neq s$ $a_{i \pi(i)}$ $=$ \sum $\pi{\in}\mathsf{S}_n$ $\sigma(\pi) \prod^{n}$ $i=1$ $a_{i \pi(i)} + \sum$ j $=$ 1,j \neq s $\sqrt{ }$ \mathcal{L} \sum $\pi{\in}\mathsf{S}_n$ $\sigma(\pi)$ kjaj $\pi(j)$ \prod $i=1,i\neq s$ $a_{i \pi(i)}$ \setminus $\overline{1}$ $\hspace{0.1 cm} = \hspace{0.1 cm} \mathsf{det}(A) + \hspace{0.1 cm} \sum \hspace{0.1 cm} \mathsf{det}(B_j)$ $i=1$ $i \neq s$

where B_j is the matrix formed from A by replacing the s th row of A with $k_i a_i$ (notice $j \neq s$). By Corollary 3.1.D, $\det(B_i) = 0$ for $j \neq s$ and so $det(B) = det(A)$ as claimed. By Theorem 3.1.A, the result also holds if we replace "row" with "column".

Theorem 3.1.E (continued) Proof (continued). So $\det(B) = \sum$ $\pi{\in}\mathsf{S}_n$ $\sigma(\pi) \prod^{n}$ $i=1$ $b_{i \pi(i)} = \sum$ $\pi{\in}\mathsf{S}_n$ $\sigma(\pi) b_{s \pi(s)} \prod$ $_{i=1,i\neq s}$ $b_{i \pi(i)}$ $=$ \sum $\pi{\in}\mathsf{S}_n$ $\sigma(\pi)$ $\sqrt{ }$ $a_{s\pi(s)} +$ $\sum_{n=1}^{n}$ j $=$ 1,j \neq s $k_j a_{j\pi(j)}$ \setminus $\overline{1}$ \prod^n $i=1, i\neq s$ $a_{i \pi(i)}$ $=$ \sum $\pi{\in}\mathsf{S}_n$ $\sigma(\pi) \prod^{n}$ $i=1$ $a_{i \pi(i)} + \sum$ j $=$ 1,j \neq s $\sqrt{ }$ \mathcal{L} \sum $\pi{\in}\mathsf{S}_n$ $\sigma(\pi)$ kjaj $\pi(j)$ \prod $i=1,i\neq s$ $a_{i \pi(i)}$ \setminus $\overline{1}$ $\hspace{0.1 cm} = \hspace{0.1 cm} \mathsf{det}(A) + \hspace{0.1 cm} \sum \hspace{0.1 cm} \mathsf{det}(B_j)$ $i=1$ $i \neq s$

where B_j is the matrix formed from A by replacing the s th row of A with $k_i a_j$ (notice $j \neq s$). By Corollary 3.1.D, $\det(B_i) = 0$ for $j \neq s$ and so $det(B) = det(A)$ as claimed. By Theorem 3.1.A, the result also holds if we replace "row" with "column".

Theorem 3.1.F. Let $A = [a_{ii}]$ be an $n \times n$ matrix and let α_{ii} represent the cofactor of a_{ii} . Then

$$
\det(A) = \sum_{j=1}^{n} a_{ij} \alpha_{ij} \text{ for } i = 1, 2, ..., n,
$$
 (5.1)

and

$$
\det(A) = \sum_{i=1}^{n} a_{ij} \alpha_{ij} \text{ for } j = 1, 2, ..., \qquad (5.2)
$$

Proof. Let A_{ii} be the $(n-1) \times (n-1)$ matrix that is formed by eliminating the ith row and jth column of matrix A. Consider equation (5.1) for the case $i=1$. Denote by $a_{ts}^{(j)}$ the (t,s) th element of A_{1j} (so t and s range over the set $\{1, 2, \ldots, n-1\}$.

Theorem 3.1.F. Let $A = [a_{ii}]$ be an $n \times n$ matrix and let α_{ii} represent the cofactor of a_{ij} . Then

$$
\det(A) = \sum_{j=1}^{n} a_{ij} \alpha_{ij} \text{ for } i = 1, 2, ..., n,
$$
 (5.1)

and

$$
\det(A) = \sum_{i=1}^{n} a_{ij} \alpha_{ij} \text{ for } j = 1, 2, ..., \qquad (5.2)
$$

Proof. Let A_{ii} be the $(n-1) \times (n-1)$ matrix that is formed by eliminating the ith row and jth column of matrix A. Consider equation (5.1) for the case $i=1$. Denote by $a_{ts}^{(j)}$ the (t,s) th element of A_{1j} (so t and s range over the set $\{1, 2, \ldots, n-1\}$. Then $\det(A)=\sum_{\pi\in S_n}\sigma(\pi)\prod_{i=1}^n a_{i\,\pi(i)}.$ When $i=1$ and π ranges over $S_n,$ the value of $\pi(i)$ ranges over the set $\{1, 2, \ldots, n\}$.

Theorem 3.1.F. Let $A = [a_{ii}]$ be an $n \times n$ matrix and let α_{ii} represent the cofactor of a_{ii} . Then

$$
\det(A) = \sum_{j=1}^{n} a_{ij} \alpha_{ij} \text{ for } i = 1, 2, ..., n,
$$
 (5.1)

and

$$
\det(A) = \sum_{i=1}^{n} a_{ij} \alpha_{ij} \text{ for } j = 1, 2, ..., \qquad (5.2)
$$

Proof. Let A_{ii} be the $(n-1) \times (n-1)$ matrix that is formed by eliminating the ith row and jth column of matrix A. Consider equation (5.1) for the case $i=1$. Denote by $a_{ts}^{(j)}$ the (t,s) th element of A_{1j} (so t and s range over the set $\{1, 2, \ldots, n-1\}$. Then $\det(A)=\sum_{\pi\in S_n}\sigma(\pi)\prod_{i=1}^n a_{i\,\pi(i)}.$ When $i=1$ and π ranges over $S_n,$ the value of $\pi(i)$ ranges over the set $\{1, 2, \ldots, n\}$.

Theorem 3.1.F (continued 1)

Proof (continued). Let $S_n^j \subset S_n$ denote all $\pi \in S_n$ such that $\pi(1) = j$ (so for given $j\in\{1,2,\ldots,n\}$, the permutations in S_n^j all map 1 to j and map the remaining $n - 1$ values $2, 3, ..., n$ to $1, 2, ..., j - 1, j + 1, j + 2, ..., n$, so that $|\pmb{S}^{\pmb{j}}_{\pmb{n}}|=(\pmb{n}-\pmb{1})!$ for each $\pmb{j}\in\{1,2,\ldots,\pmb{n}\}).$ We have $S_n=\cup_{j=1}^n S^j_n$ and so

$$
\det(A) = \sum_{j=1}^{n} \left(\sum_{\pi \in S_n^j} \sigma(\pi) \prod_{i=1}^n a_{i \pi(i)} \right)
$$

\n
$$
= \sum_{j=1}^{n} \left(\sum_{\pi \in S_n^j} \sigma(\pi) a_{1j} \prod_{i=2}^n a_{i \pi(i)} \right) \text{ since } \pi(1) = j
$$

\n
$$
= \sum_{j=1}^{n} a_{1j} \left(\sum_{\pi \in S_n^j} \sigma(\pi) \prod_{i=2}^n a_{i \pi(i)} \right) . \quad (*)
$$

Theorem 3.1.F (continued 1)

Proof (continued). Let $S_n^j \subset S_n$ denote all $\pi \in S_n$ such that $\pi(1) = j$ (so for given $j\in\{1,2,\ldots,n\}$, the permutations in S_n^j all map 1 to j and map the remaining $n - 1$ values $2, 3, ..., n$ to $1, 2, ..., j - 1, j + 1, j + 2, ..., n$, so that $|S_n^j| = (n-1)!$ for each $j \in \{1,2,\ldots,n\}).$ We have $S_n = \cup_{j=1}^n S_n^j$ and so

$$
\det(A) = \sum_{j=1}^{n} \left(\sum_{\pi \in S_n^j} \sigma(\pi) \prod_{i=1}^n a_{i \pi(i)} \right)
$$

\n
$$
= \sum_{j=1}^{n} \left(\sum_{\pi \in S_n^j} \sigma(\pi) a_{1j} \prod_{i=2}^n a_{i \pi(i)} \right) \text{ since } \pi(1) = j
$$

\n
$$
= \sum_{j=1}^{n} a_{1j} \left(\sum_{\pi \in S_n^j} \sigma(\pi) \prod_{i=2}^n a_{i \pi(i)} \right) . \quad (*)
$$

Theorem 3.1.F (continued 2)

Proof (continued). Now in ($*$), as permutation π ranges over S_n^j and as i ranges over $\{2,3,\ldots,n\},$ the elements $a_{i\,\pi(i)}$ ranges over all entries of A_{1j} . Since we denote the (t,s) entry of A_{1j} as $a^{(j)}_{ts}$, then we can re-index the product and inner summation in $(*)$ from $i\in\{2,3,\ldots,n\}$ and $\pi\in S_n^j$ to $t \in \{1, 2, \ldots, n-1\}$ and $\gamma \in S_{n-1}$, respectively. We do so by defining $t = i - 1$ for $i \in \{2, 3, \ldots, n\}$ and $\gamma \in S_{n-1}$ as $\gamma(t) = \begin{cases} \pi(t+1) & \text{if } \pi(t+1) < j \\ -(t+1) & \text{if } -(t+1) > j \end{cases}$ $\pi(t+1) - 1$ if $\pi(t+1) > j$ for $t \in \{1, 2, ..., n-1\}$. We then have that $\gamma : \{1, 2, \ldots, n-1\} \rightarrow \{1, 2, \ldots, n-1\}$ and so $\gamma \in S_{n-1}$. Also, $\gamma(t) = \pi(i)$ if $\pi(i) < j$, and $\gamma(t) = \pi(i) - 1$ if $\pi(i) > j$.

Theorem 3.1.F (continued 2)

Proof (continued). Now in ($*$), as permutation π ranges over S_n^j and as i ranges over $\{2,3,\ldots,n\},$ the elements $a_{i\,\pi(i)}$ ranges over all entries of A_{1j} . Since we denote the (t,s) entry of A_{1j} as $a^{(j)}_{ts}$, then we can re-index the product and inner summation in $(*)$ from $i\in\{2,3,\ldots,n\}$ and $\pi\in S_n^j$ to $t \in \{1, 2, \ldots, n-1\}$ and $\gamma \in S_{n-1}$, respectively. We do so by defining $t = i - 1$ for $i \in \{2, 3, \ldots, n\}$ and $\gamma \in S_{n-1}$ as $\gamma(t) = \begin{cases} \pi(t+1) & \text{if } \pi(t+1) < j \\ -(t+1) & \text{if } -(t+1) > j \end{cases}$ $\pi(t+1) - 1$ if $\pi(t+1) > j$ for $t \in \{1, 2, ..., n-1\}$. We then have that $\gamma : \{1, 2, \ldots, n-1\} \to \{1, 2, \ldots, n-1\}$ and so $\gamma \in S_{n-1}$. Also, $\gamma(t) = \pi(i)$ if $\pi(i) < j$, and $\gamma(t) = \pi(i) - 1$ if $\pi(i) > j$. Now extend $\gamma\in\mathcal{S}_{n-1}$ to $\gamma'\in\mathcal{S}_n$, be defining $\gamma'(t)=\gamma(t)$ for $t\in\{1,2,\ldots,n-1\}$ and $\gamma'(n) = n$. Then $\sigma(\gamma') = \sigma(\gamma)$.

Theorem 3.1.F (continued 2)

Proof (continued). Now in ($*$), as permutation π ranges over S_n^j and as i ranges over $\{2,3,\ldots,n\},$ the elements $a_{i\,\pi(i)}$ ranges over all entries of A_{1j} . Since we denote the (t,s) entry of A_{1j} as $a^{(j)}_{ts}$, then we can re-index the product and inner summation in $(*)$ from $i\in\{2,3,\ldots,n\}$ and $\pi\in S_n^j$ to $t \in \{1, 2, \ldots, n-1\}$ and $\gamma \in S_{n-1}$, respectively. We do so by defining $t = i - 1$ for $i \in \{2, 3, \ldots, n\}$ and $\gamma \in S_{n-1}$ as $\gamma(t) = \begin{cases} \pi(t+1) & \text{if } \pi(t+1) < j \\ -(t+1) & \text{if } -(t+1) > j \end{cases}$ $\pi(t+1) - 1$ if $\pi(t+1) > j$ for $t \in \{1, 2, ..., n-1\}$. We then have that $\gamma : \{1, 2, \ldots, n-1\} \to \{1, 2, \ldots, n-1\}$ and so $\gamma \in S_{n-1}$. Also, $\gamma(t) = \pi(i)$ if $\pi(i) < j$, and $\gamma(t) = \pi(i) - 1$ if $\pi(i) > j$. Now extend $\gamma\in\mathcal{S}_{n-1}$ to $\gamma'\in\mathcal{S}_n$, be defining $\gamma'(t)=\gamma(t)$ for $t\in\{1,2,\ldots,n-1\}$ and $\gamma'(n) = n$. Then $\sigma(\gamma') = \sigma(\gamma)$.

Theorem 3.1.F (continued 3)

Proof (continued). We can relate γ' and π with the following mapping:

$$
\begin{array}{ccccccccc}\n\gamma'(1) & \gamma'(2) & \cdots & \gamma'(n-1) & \gamma'(n) \\
\downarrow & \downarrow & \cdots & \downarrow & \downarrow \\
\pi(2) & \pi(3) & \cdots & \pi(n) & \pi(1) = j.\n\end{array}
$$

We will need to "move the jth term to the right end" and do so using the mapping π'' :

$$
\begin{array}{ccccccccccc}\n1 & 2 & \cdots & j-1 & j & j+1 & \cdots & n-1 & n \\
\downarrow & \downarrow & \cdots & \downarrow & \downarrow & \downarrow & \cdots & \downarrow & \downarrow \\
1 & 2 & \cdots & j-1 & n & j & \cdots & n-2 & n-1\n\end{array}
$$

So first we increase indices by 1 (mod n) with the permutation

$$
\pi' = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ 2 & 3 & \cdots & n & 1 \end{pmatrix} = (2,3)(3,4)\cdots (n-1,n)(n,1),
$$

second we apply permutation π , and third we perform the second mapping above using the permutation π'' where \ldots

.

Theorem 3.1.F (continued 3)

Proof (continued). We can relate γ' and π with the following mapping:

$$
\begin{array}{cccc}\n\gamma'(1) & \gamma'(2) & \cdots & \gamma'(n-1) & \gamma'(n) \\
\downarrow & \downarrow & \cdots & \downarrow & \downarrow \\
\pi(2) & \pi(3) & \cdots & \pi(n) & \pi(1) = j.\n\end{array}
$$

We will need to "move the jth term to the right end" and do so using the mapping π'' :

$$
\begin{array}{ccccccccccc}\n1 & 2 & \cdots & j-1 & j & j+1 & \cdots & n-1 & n \\
\downarrow & \downarrow & \cdots & \downarrow & \downarrow & \downarrow & \cdots & \downarrow & \downarrow \\
1 & 2 & \cdots & j-1 & n & j & \cdots & n-2 & n-1\n\end{array}
$$

So first we increase indices by 1 (mod n) with the permutation

$$
\pi' = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ 2 & 3 & \cdots & n & 1 \end{pmatrix} = (2,3)(3,4)\cdots (n-1,n)(n,1),
$$

second we apply permutation π , and third we perform the second mapping above using the permutation π'' where \ldots

.

Theorem 3.1.F (continued 4)

Proof (continued).

$$
\pi'' = \begin{pmatrix} 1 & 2 & \cdots & j-1 & j & j+1 & \cdots & n-1 & n \\ 1 & 2 & \cdots & j-1 & n & j & \cdots & n-2 & n-1 \end{pmatrix}
$$

= $(n-2, n-1)(n-3, n-2) \cdots (j, j+1)(j, n)$.
Then $\gamma' = \pi'' \pi \pi'$. Notice $\sigma(\pi') = (-1)^{n-1}$ and $\sigma(\pi'') = (-1)^{n-j}$, so that

$$
\sigma(\gamma) = \sigma(\gamma') = \sigma(\pi'' \pi \pi')
$$

= $\sigma(\pi'') \sigma(\pi) \sigma(\pi') = (-1)^{2n-j-1} \sigma(\pi) = (-1)^{j+1} \sigma(\pi),$
or $\sigma(\pi) = (-1)^{j+1} \sigma(\gamma)$. So (*) becomes

$$
\det(A) = \sum_{j=1}^n a_{1j} \left(\sum_{\pi \in S_n^j} \sigma(\pi) \prod_{i=2}^n a_{i \pi(i)} \right) \text{ by } (*)
$$

Theorem 3.1.F (continued 4)

Proof (continued).

$$
\pi'' = \begin{pmatrix} 1 & 2 & \cdots & j-1 & j & j+1 & \cdots & n-1 & n \\ 1 & 2 & \cdots & j-1 & n & j & \cdots & n-2 & n-1 \end{pmatrix}
$$

= $(n-2, n-1)(n-3, n-2) \cdots (j, j+1)(j, n)$.
Then $\gamma' = \pi'' \pi \pi'$. Notice $\sigma(\pi') = (-1)^{n-1}$ and $\sigma(\pi'') = (-1)^{n-j}$, so that
 $\sigma(\gamma) = \sigma(\gamma') = \sigma(\pi'' \pi \pi')$
= $\sigma(\pi'') \sigma(\pi) \sigma(\pi') = (-1)^{2n-j-1} \sigma(\pi) = (-1)^{j+1} \sigma(\pi)$,
or $\sigma(\pi) = (-1)^{j+1} \sigma(\gamma)$. So (*) becomes

$$
\det(A) = \sum_{j=1}^n a_{1j} \left(\sum_{\pi \in S_n^j} \sigma(\pi) \prod_{i=2}^n a_{i \pi(i)} \right) \text{ by } (*)
$$

Theorem 3.1.F (continued 5)

Proof (continued).

$$
\det(A) = \sum_{j=1}^{n} a_{1j} \left(\sum_{\gamma \in S_{n-1}} (-1)^{j+1} \sigma(\gamma) \prod_{t=1}^{n-1} a_{t\gamma(t)}^{(j)} \right)
$$

\nwhere $\gamma' = \pi'' \pi \pi'$ and γ is
\nthe restriction of γ' to $\{1, 2, ..., n-1\}$
\n
$$
= \sum_{j=1}^{n} a_{1j} (-1)^{j+1} \left(\sum_{\gamma \in S_{n-1}} \sigma(\gamma) \prod_{t=1}^{n-1} a_{t\gamma(t)}^{(j)} \right)
$$

\n
$$
= \sum_{j=1}^{n} a_{1j} (-1)^{j+1} \det(A_{1j}) = \sum_{j=1}^{n} a_{1j} \alpha_{1j},
$$

and the claim holds for $i = 1$.

Theorem 3.1.F (continued 6)

Proof (continued). Consider now equation (5.1) for $i > 1$. Let B be the $n \times n$ matrix formed from A by interchanging the $(i - 1)$ th and *i*th rows, then the $(i - 2)$ th and $(i - 1)$ th rows, ..., then the 1st and 2nd rows (so that the first row of B is the *i*th row of A and the 2nd through *i*th row of B is the 1st through $(i - 1)$ th row of A, respectively). By Theorem 3.1.C, $\det(A) = (-1)^{i-1} \det(B)$. Let B_{1i} be the $(n-1) \times (n-1)$ matrix obtained by eliminating the 1st row and the jth column of B , and let b_{1j} be the jth element of the first row of B. Then $B_{1j} = A_{ij}$ and so

$$
\det(A) = (-1)^{i-1} \det(B) = (-1)^{i-1} \sum_{j=1}^{n} b_{1j} (-1)^{1+j} \det(B_{1j})
$$

by the first part of the proof

$$
= (-1)^{i-1} \sum_{j=1}^{n} a_{ij} (-1)^{1+j} \det(A_{ij}) \text{ since } B_{1j} = A_{ij}
$$

Theorem 3.1.F (continued 6)

Proof (continued). Consider now equation (5.1) for $i > 1$. Let B be the $n \times n$ matrix formed from A by interchanging the $(i - 1)$ th and *i*th rows, then the $(i - 2)$ th and $(i - 1)$ th rows, ..., then the 1st and 2nd rows (so that the first row of B is the *i*th row of A and the 2nd through *i*th row of B is the 1st through $(i - 1)$ th row of A, respectively). By Theorem 3.1.C, $\det(A) = (-1)^{i-1} \det(B)$. Let B_{1i} be the $(n-1) \times (n-1)$ matrix obtained by eliminating the 1st row and the jth column of B , and let b_{1j} be the jth element of the first row of B. Then $B_{1i} = A_{ii}$ and so

$$
\det(A) = (-1)^{i-1} \det(B) = (-1)^{i-1} \sum_{j=1}^{n} b_{1j} (-1)^{1+j} \det(B_{1j})
$$

by the first part of the proof

$$
= (-1)^{i-1} \sum_{j=1}^{n} a_{ij} (-1)^{1+j} \det(A_{ij}) \text{ since } B_{1j} = A_{ij}
$$

Theorem 3.1.F (continued 7)

Proof (continued).

$$
\det(A) = \sum_{j=1}^n a_{ij}(-1)^{i+j} \det(A_{ij}) = \sum_{j=1}^n a_{ij} \alpha_{ij}.
$$

So equation (5.1) holds for all $i = 1, 2, \ldots, n$.

Finally, consider equation (5.2). Notice that the matrix formed by eliminating the j th row and i th column of $A^{\mathcal{T}}$ is $A^{\mathcal{T}}_{ij}$. So the cofactor of the (j,i) th element of $A^{\mathcal{T}}$ is $(-1)^{j+i}\textup{det}(A^{\mathcal{T}}_{ij})=(-1)^{j+i}\textup{det}(A_{ij})=\alpha_{ij}$ by Theorem 3.1.A.

Theorem 3.1.F (continued 7)

Proof (continued).

$$
\det(A) = \sum_{j=1}^n a_{ij}(-1)^{i+j} \det(A_{ij}) = \sum_{j=1}^n a_{ij} \alpha_{ij}.
$$

So equation (5.1) holds for all $i = 1, 2, \ldots, n$.

Finally, consider equation (5.2). Notice that the matrix formed by eliminating the j th row and i th column of $A^{\mathcal{T}}$ is $A_{ij}^{\mathcal{T}}$. So the cofactor of the (j,i) th element of $A^{\mathcal{T}}$ is $(-1)^{j+i}\mathsf{det}(A^{\mathcal{T}}_{ij})=(-1)^{j+i}\mathsf{det}(A_{ij})=\alpha_{ij}$ by **Theorem 3.1.A.** Since the (j, i) th element of $A^{\mathcal{T}}$ is the (i, j) th element of A, then by equation (5.1) and Theorem 3.1.A,

$$
\det(A) = \det(A^T) = \sum_{j=1}^n a'_{ij} \alpha'_{ij} \text{ where } a'_{ij} = a_{ji} \text{ and } \alpha'_{ij} = (-1)^{i+j} \det(A^T_{ij})
$$
\n
$$
= \sum_{j=1}^n a'_{ji} \alpha'_{ji} \text{ interchanging } i \text{ and } j
$$
\nThere is the following matrices.

Theorem 3.1.F (continued 7)

Proof (continued).

$$
\det(A) = \sum_{j=1}^n a_{ij}(-1)^{i+j} \det(A_{ij}) = \sum_{j=1}^n a_{ij} \alpha_{ij}.
$$

So equation (5.1) holds for all $i = 1, 2, \ldots, n$.

Finally, consider equation (5.2). Notice that the matrix formed by eliminating the j th row and i th column of $A^{\mathcal{T}}$ is $A_{ij}^{\mathcal{T}}$. So the cofactor of the (j,i) th element of $A^{\mathcal{T}}$ is $(-1)^{j+i}\mathsf{det}(A^{\mathcal{T}}_{ij})=(-1)^{j+i}\mathsf{det}(A_{ij})=\alpha_{ij}$ by Theorem 3.1.A. Since the (j,i) th element of $\mathcal{A}^{\mathcal{T}}$ is the (i,j) th element of A, then by equation (5.1) and Theorem 3.1.A,

$$
\det(A) = \det(A^{\mathsf{T}}) = \sum_{j=1}^{n} a'_{ij} \alpha'_{ij} \text{ where } a'_{ij} = a_{ji} \text{ and } \alpha'_{ij} = (-1)^{i+j} \det(A^{\mathsf{T}}_{ij})
$$

$$
= \sum_{i=1}^{n} a'_{ji} \alpha'_{ji} \text{ interchanging } i \text{ and } j
$$

Theorem 3.1.F (continued 8)

Theorem 3.1.F. Let $A = [a_{ij}]$ be an $n \times n$ matrix and let α_{ij} represent the cofactor of a_{ii} . Then

$$
\det(A) = \sum_{i=1}^{n} a_{ij} \alpha_{ij} \text{ for } j = 1, 2, ..., \qquad (5.2)
$$

Proof (continued). ...

$$
det(A) = \sum_{i=1}^{n} a_{ij}(-1)^{j+i}det(A_{ji}^{T}) = \sum_{i=1}^{n} a_{ij}(-1)^{i+j}det(A_{ij})
$$

=
$$
\sum_{i=1}^{n} a_{ij}\alpha_{ij}
$$

and equation 5.2 holds.

Theorem 3.1.3. Let A be an $n \times n$ matrix with adjoint adj $(A) = [\alpha_{ij}]^{\textstyle \top}.$ Then A adj (A) = adj $(A)A$ = det $(A)I_n$.

Proof. With $A = [a_{ij}]$ we have the (i, j) entry of A adj (A) as $\sum_{k=1}^{n} a_{ik} \alpha_{jk}$. By Theorem 3.1.F, for $i = j$ this is det(A).

Theorem 3.1.3. Let A be an $n \times n$ matrix with adjoint adj $(A) = [\alpha_{ij}]^{\textstyle \top}.$ Then A adj $(A) =$ adj $(A)A =$ det $(A)I_n$.

Proof. With $A = [a_{ij}]$ we have the (i, j) entry of A adj (A) as $\sum_{k=1}^{n} a_{ik} \alpha_{jk}$. By Theorem 3.1.F, for $i = j$ this is det(A).

If $i \neq j$, consider the matrix $B = [b_{ij}]$ where B is $n \times n$ and has the same rows as A, except that its *j*th row is the same as the *i*th row of A. Then the cofactors α_{ik} of A are the same as the cofactors β_{ik} of B for $1 \leq k \leq n$. Also, since the *j*th row of B is the same as the *j*th of A then $b_{ik} = a_{ik}$ for $1 \leq k \leq n$. Since the *i*th row and the *j*th row are the same in B then, by Note 3.1.C, $det(B) = 0$.

Theorem 3.1.3. Let A be an $n \times n$ matrix with adjoint adj $(A) = [\alpha_{ij}]^{\textstyle \top}.$ Then A adj $(A) =$ adj $(A)A =$ det $(A)I_n$.

Proof. With $A = [a_{ij}]$ we have the (i, j) entry of A adj (A) as $\sum_{k=1}^{n} a_{ik} \alpha_{jk}$. By Theorem 3.1.F, for $i = j$ this is det(A).

If $i \neq j$, consider the matrix $B = [b_{ij}]$ where B is $n \times n$ and has the same rows as A, except that its *i*th row is the same as the *i*th row of A. Then the cofactors α_{ik} of A are the same as the cofactors β_{ik} of B for $1 \leq k \leq n$. Also, since the *j*th row of B is the same as the *i*th of A then $b_{ik} = a_{ik}$ for $1 \leq k \leq n$. Since the *i*th row and the *j*th row are the same in **B** then, by Note 3.1.C, $det(B) = 0$. So for $i \neq j$ the (i, j) entry of A adj (A) is $\sum_{n=1}^{\infty}$

$$
\sum_{k=1}^n a_{ik}\alpha_{jk} = \sum_{k=1}^n b_{jk}\beta_{jk} = \det(B) = 0
$$
 by Theorem 3.1.F.

So the (i, j) entry of Aadj (A) is det (A) for $i = j$ and 0 for $i \neq j$; that is A adj $(A) = det(A)I_n$, as claimed. Similarly, adj $(A)A = det(A)I_n$.

Theorem 3.1.3. Let A be an $n \times n$ matrix with adjoint adj $(A) = [\alpha_{ij}]^{\textstyle \top}.$ Then A adj $(A) =$ adj $(A)A =$ det $(A)I_n$.

Proof. With $A = [a_{ij}]$ we have the (i, j) entry of A adj (A) as $\sum_{k=1}^{n} a_{ik} \alpha_{jk}$. By Theorem 3.1.F, for $i = j$ this is det(A).

If $i \neq j$, consider the matrix $B = [b_{ij}]$ where B is $n \times n$ and has the same rows as A, except that its *i*th row is the same as the *i*th row of A. Then the cofactors α_{ik} of A are the same as the cofactors β_{ik} of B for $1 \leq k \leq n$. Also, since the *j*th row of B is the same as the *i*th of A then $b_{ik} = a_{ik}$ for $1 \leq k \leq n$. Since the *i*th row and the *j*th row are the same in B then, by Note 3.1.C, $det(B) = 0$. So for $i \neq j$ the (i, j) entry of A adj (A) is

$$
\sum_{k=1}^n a_{ik}\alpha_{jk} = \sum_{k=1}^n b_{jk}\beta_{jk} = \det(B) = 0
$$
 by Theorem 3.1.F.

So the (i, j) entry of Aadj (A) is det (A) for $i = j$ and 0 for $i \neq j$; that is A adj $(A) = det(A)I_n$, as claimed. Similarly, adj $(A)A = det(A)I_n$.

Theorem 3.1.G. Let T be an $m \times m$ matrix, V an $n \times m$ matrix, W an $n \times n$ matrix, and let '0' represent the $m \times n$ matrix of all entries as 0. Then the determinant of the partitioned matrix is

$$
\det\begin{bmatrix} T & 0 \\ V & W \end{bmatrix} = \det\begin{bmatrix} W & V \\ 0 & T \end{bmatrix} = \det(T)\det(W).
$$

\nProof. Let $A = \begin{bmatrix} T & 0 \\ V & W \end{bmatrix} = [a_{ij}]$ be a partitioned $(m+n) \times (m+n)$
\nmatrix. Let $T = [t_{ij}]$ and $W = [w_{ij}]$, so that $t_{ij} = a_{ij}$ for
\n $i, j \in \{1, 2, ..., m\}$ and $w_{ij} = a_{(i+m)(j+m)}$ for $i, j \in \{1, 2, ..., n\}$. By
\ndefinition: $\det(A) = \sum_{\pi \in S_{m+n}} \sigma(\pi) \prod_{i=1}^{m+n} a_{i \pi(i)}$. (*)

Theorem 3.1.G. Let T be an $m \times m$ matrix, V an $n \times m$ matrix, W an $n \times n$ matrix, and let '0' represent the $m \times n$ matrix of all entries as 0. Then the determinant of the partitioned matrix is

$$
\det\begin{bmatrix} T & 0 \\ V & W \end{bmatrix} = \det\begin{bmatrix} W & V \\ 0 & T \end{bmatrix} = \det(T)\det(W).
$$

\n**Proof.** Let $A = \begin{bmatrix} T & 0 \\ V & W \end{bmatrix} = [a_{ij}]$ be a partitioned $(m+n) \times (m+n)$
\nmatrix. Let $T = [t_{ij}]$ and $W = [w_{ij}]$, so that $t_{ij} = a_{ij}$ for
\n $i, j \in \{1, 2, ..., m\}$ and $w_{ij} = a_{(i+m)}(j+m)$ for $i, j \in \{1, 2, ..., n\}$. By
\ndefinition: $\det(A) = \sum_{\substack{\pi \in S_{m+n} \\ \pi \in S_{m+n}}} \sigma(\pi) \prod_{i=1}^{m+n} a_{i \pi(i)}.$ (*)
\nNow the only time the product in (*) *might* be nonzero is when π is a
\npermutation mapping $\{1, 2, ..., m\}$ to itself (otherwise $a_{i \pi(i)} = 0$ for some
\n $i \in \{1, 2, ..., m\}$), and hence also mapping $\{m+1, m+2, ..., m+n\}$ to
\nitself. Denote all such permutations as S'_{m+n} .

Theorem 3.1.G. Let T be an $m \times m$ matrix, V an $n \times m$ matrix, W an $n \times n$ matrix, and let '0' represent the $m \times n$ matrix of all entries as 0. Then the determinant of the partitioned matrix is

$$
\det\begin{bmatrix} T & 0 \\ V & W \end{bmatrix} = \det\begin{bmatrix} W & V \\ 0 & T \end{bmatrix} = \det(T)\det(W).
$$

\n**Proof.** Let $A = \begin{bmatrix} T & 0 \\ V & W \end{bmatrix} = [a_{ij}]$ be a partitioned $(m + n) \times (m + n)$
\nmatrix. Let $T = [t_{ij}]$ and $W = [w_{ij}]$, so that $t_{ij} = a_{ij}$ for
\n $i, j \in \{1, 2, ..., m\}$ and $w_{ij} = a_{(i+m)(j+m)}$ for $i, j \in \{1, 2, ..., n\}$. By
\ndefinition: $\det(A) = \sum_{\substack{\pi \in S_{m+n} \\ \pi \in S_{m+n}}} \sigma(\pi) \prod_{i=1}^{m+n} a_{i \pi(i)}.$ (*)
\nNow the only time the product in (*) *might* be nonzero is when π is a
\npermutation mapping $\{1, 2, ..., m\}$ to itself (otherwise $a_{i \pi(i)} = 0$ for some
\n $i \in \{1, 2, ..., m\}$), and hence also mapping $\{m + 1, m + 2, ..., m + n\}$ to
\nitself. Denote all such permutations as S'_{m+n} .

Theorem 3.1.G (continued 1)

Proof (continued). Such $\pi \in S_{m+n}'$ can be written as the product of two permutations, π_m and π_n , in S'_{m+n} where π_m fixes ${m+1, m+2,..., m+n}$ and π_n fixes ${1, 2,..., m}$; that is, $\pi = \pi_m \pi_n$ **and** $\sigma(\pi) = \sigma(\pi_m)\sigma(\pi_n)$. Now if we restrict π_m to $\{1, 2, ..., m\}$ and denote the resulting function as π'_m then we have $\pi'_m \in S_m$. If we define $\pi'_n(i-m) = \pi_n(i) - m$ for $i \in \{m+1, m+2, \ldots, m+n\}$, then $\pi'_n: \{1,2,\ldots,n\} \to \{1,2,\ldots,n\}$ and $\pi'_n \in S_n$. We have $\sigma(\pi_m) = \sigma(\pi'_m)$ and $\sigma(\pi_n) = \sigma(\pi'_n)$.

Theorem 3.1.G (continued 1)

Proof (continued). Such $\pi \in S_{m+n}'$ can be written as the product of two permutations, π_m and π_n , in S'_{m+n} where π_m fixes ${m+1, m+2,..., m+n}$ and π_n fixes ${1, 2,..., m}$; that is, $\pi = \pi_m \pi_n$ and $\sigma(\pi) = \sigma(\pi_m)\sigma(\pi_n)$. Now if we restrict π_m to $\{1, 2, ..., m\}$ and denote the resulting function as π'_m then we have $\pi'_m \in \mathcal{S}_m$. If we define $\pi'_n(i - m) = \pi_n(i) - m$ for $i \in \{m + 1, m + 2, \ldots, m + n\}$, then $\pi'_n:\{1,2,\ldots,n\}\to\{1,2,\ldots,n\}$ and $\pi'_n\in\mathcal{S}_n.$ We have $\sigma(\pi_m)=\sigma(\pi'_m)$ **and** $\sigma(\pi_n) = \sigma(\pi'_n)$. So from $(*)$ we have

$$
det(A) = \sum_{\pi \in S'_{m+n}} \sigma(\pi) \prod_{i=1}^{m+n} a_{i \pi(i)}
$$

=
$$
\sum_{\pi_m, \pi_n \in S'_{m+n}} \sigma(\pi_m) \sigma(\pi_n) \prod_{i=1}^{m} a_{i \pi_m(i)} \prod_{i=m+1}^{m+n} a_{i \pi_n(i)}
$$

where each $\pi \in S'_{m+n}$ is written as $\pi = \pi_m \pi_n$

Theorem 3.1.G (continued 1)

Proof (continued). Such $\pi \in S_{m+n}'$ can be written as the product of two permutations, π_m and π_n , in S'_{m+n} where π_m fixes ${m+1, m+2,..., m+n}$ and π_n fixes ${1, 2,..., m}$; that is, $\pi = \pi_m \pi_n$ and $\sigma(\pi) = \sigma(\pi_m)\sigma(\pi_n)$. Now if we restrict π_m to $\{1, 2, ..., m\}$ and denote the resulting function as π'_m then we have $\pi'_m \in \mathcal{S}_m$. If we define $\pi'_n(i - m) = \pi_n(i) - m$ for $i \in \{m + 1, m + 2, \ldots, m + n\}$, then $\pi'_n:\{1,2,\ldots,n\}\to\{1,2,\ldots,n\}$ and $\pi'_n\in\mathcal{S}_n.$ We have $\sigma(\pi_m)=\sigma(\pi'_m)$ and $\sigma(\pi_n)=\sigma(\pi'_n).$ So from $(*)$ we have

$$
det(A) = \sum_{\pi \in S'_{m+n}} \sigma(\pi) \prod_{i=1}^{m+n} a_{i \pi(i)}
$$

=
$$
\sum_{\pi_m, \pi_n \in S'_{m+n}} \sigma(\pi_m) \sigma(\pi_n) \prod_{i=1}^{m} a_{i \pi_m(i)} \prod_{i=m+1}^{m+n} a_{i \pi_n(i)}
$$

where each $\pi \in S'_{m+n}$ is written as $\pi = \pi_m \pi_n$

Theorem 3.1.G (continued 2)

Proof (continued).

$$
det(A) = \sum_{\pi_m, \pi_n \in S'_{m+n}} \sigma(\pi_m) \sigma(\pi_n) \prod_{i=1}^m a_{i \pi_m(i)} \prod_{i=m+1}^{m+n} a_{i \pi_n(i)}
$$

\n
$$
= \sum_{\pi'_m \in S_m, \pi'_n \in S_n} \sigma(\pi'_m) \sigma(\pi'_n) \prod_{i=1}^m a_{i \pi'_m(i)} \prod_{i=1}^n a_{(i+m) \pi_n(i+m)}
$$

\n
$$
= \sum_{\pi'_m \in S_m, \pi'_n \in S_n} \sigma(\pi'_m) \sigma(\pi'_n) \prod_{i=1}^m a_{i \pi'_m(i)} \prod_{i=1}^n a_{(i+m) \pi'_n(i)+m}
$$

\nsince $\pi'_n(i-m) = \pi_n(i) - m$ for $i \in \{m+1, m+2, ..., m+n\}$
\nor $\pi'_n(i) + m = \pi_n(i+m)$ for $i \in \{1, 2, ..., n\}$
\n
$$
= \sum_{\pi'_m \in S_m, \pi'_n \in S_m} \sigma(\pi'_m) \sigma(\pi'_n) \prod_{i=1}^m t_{i \pi'_m(i)} \prod_{i=1}^n w_{i \pi'_n(i)}
$$

Theorem 3.1.G (continued 3)

Proof (continued).

$$
\det(A) = \sum_{\substack{\pi'_m \in S_m, \pi'_n \in S_n}} \sigma(\pi'_m) \sigma(\pi'_n) \prod_{i=1}^m t_{i \pi'_m(i)} \prod_{i=1}^n w_{i \pi'_n(i)}
$$

\n
$$
= \sum_{\substack{\pi'_m \in S_m}} \sigma(\pi'_m) \prod_{i=1}^m t_{i \pi'_m(i)} \sum_{\substack{\pi'_n \in S_n}} \sigma(\pi'_n) \prod_{i=1}^n w_{i \pi'_n(i)}
$$

\n
$$
= \det(\mathcal{T}) \det(W).
$$

\nThe proof that $\det \begin{bmatrix} W & V \\ 0 & \mathcal{T} \end{bmatrix} = \det(\mathcal{T}) \det(W)$ is similar.

Theorem 3.1.G (continued 3)

Proof (continued).

$$
\det(A) = \sum_{\substack{\pi'_m \in S_m, \pi'_n \in S_n}} \sigma(\pi'_m) \sigma(\pi'_n) \prod_{i=1}^m t_{i \pi'_m(i)} \prod_{i=1}^n w_{i \pi'_n(i)}
$$

\n
$$
= \sum_{\substack{\pi'_m \in S_m}} \sigma(\pi'_m) \prod_{i=1}^m t_{i \pi'_m(i)} \sum_{\substack{\pi'_n \in S_n}} \sigma(\pi'_n) \prod_{i=1}^n w_{i \pi'_n(i)}
$$

\n= $\det(\mathcal{T}) \det(W).$
\nproof that $\det \begin{bmatrix} W & V \\ 0 & \mathcal{T} \end{bmatrix} = \det(\mathcal{T}) \det(W)$ is similar.

The

Theorem 3.1.H. Let A be $n \times n$ and let T be an $n \times n$ upper or lower triangular matrix with entries of 1 along the diagonal. Then $det(AT) = det(TA) = det(A).$

Proof. Consider the case AT where T is lower triangular. Define T_i to be an $n \times n$ matrix formed from I_n by replacing the *i*th column of I_n with the *i*th column of T (for $1 \le i \le n$). Then $T = T_1 T_2 \cdots T_n$, as shown in Exercise 3.1.C, so $AT = AT_1T_2 \cdots T_n$.

Theorem 3.1.H. Let A be $n \times n$ and let T be an $n \times n$ upper or lower triangular matrix with entries of 1 along the diagonal. Then $det(AT) = det(TA) = det(A).$

Proof. Consider the case AT where T is lower triangular. Define T_i to be an $n \times n$ matrix formed from I_n by replacing the *i*th column of I_n with the *i*th column of T (for $1 \le i \le n$). Then $T = T_1 T_2 \cdots T_n$, as shown in **Exercise 3.1.C, so** $AT = AT_1T_2 \cdots T_n$ **.** Define $B_0 = A$ and $B_i = AT_1\, T_2 \cdots T_i$ (for $1 \leq i \leq n$). Consider $B_{i-1}\, T_i$ for $1 \leq i \leq n$. Since all columns of \mathcal{T}_i , except for the i th column, are the same as I_n then the columns of $B_{i-1}T_i$ are the same as the columns of B_{i-1} , except for the *i*th column. Let t_1 ;, t_2 ; $,\ldots,t_n$; be the entries in the i th column of \mathcal{T}_i (so $t_{1i} = t_{2i} = \cdots = t_{(i-1)i} = 0$ and $t_{ii} = 1$). Let b_1, b_2, \ldots, b_n be the columns of B_{i-1} .

Theorem 3.1.H. Let A be $n \times n$ and let T be an $n \times n$ upper or lower triangular matrix with entries of 1 along the diagonal. Then $det(AT) = det(TA) = det(A).$

Proof. Consider the case AT where T is lower triangular. Define T_i to be an $n \times n$ matrix formed from I_n by replacing the *i*th column of I_n with the *i*th column of T (for $1 \le i \le n$). Then $T = T_1 T_2 \cdots T_n$, as shown in Exercise 3.1.C, so $AT = AT_1T_2 \cdots T_n$. Define $B_0 = A$ and $\mathcal{B}_i = A \mathcal{T}_1 \mathcal{T}_2 \cdots \mathcal{T}_i$ (for $1 \leq i \leq n$). Consider $\mathcal{B}_{i-1} \mathcal{T}_i$ for $1 \leq i \leq n$. Since all columns of \mathcal{T}_i , except for the i th column, are the same as I_n then the columns of $B_{i-1}T_i$ are the same as the columns of B_{i-1} , except for the *i*th column. Let t_1 ;, t_2 ; $,\ldots,t_n$; be the entries in the i th column of \mathcal{T}_i (so $t_{1i} = t_{2i} = \cdots = t_{(i-1)i} = 0$ and $t_{ii} = 1$). Let b_1, b_2, \ldots, b_n be the columns of B_{i-1} .

Theorem 3.1.H (continued)

Theorem 3.1.H. Let A be $n \times n$ and let T be an $n \times n$ upper or lower triangular matrix with entries of 1 along the diagonal. Then $det(AT) = det(TA) = det(A).$

Proof (continued). Then the entries of the *i*th column of $B_{i-1}T_i$ are

$$
\sum_{k=1}^{n} b_{jk} t_{ki} = b_{ji} + \sum_{k=i+1}^{n} b_{jk} t_{ki} \text{ for } 1 \leq j \leq n
$$

where the entries of b_i are $b_{1i}, b_{2i}, \ldots, b_{ni}.$ So the i th column of $B_{i-1} \mathcal{T}_i$ is $b_i + \sum_{k=i+1}^{n} b_k t_{ki}$, which is the *i*th column of B_{i-1} plus a series of scalar multiples of the columns $b_{i+1}, b_{i+2}, \ldots, b_n$ of B_{i-1} . So by Theorem 3.1.E, $det(B_i) = det(B_{i-1}T_i) = det(B_{i-1})$. This holds for $1 \le i \le n$, so

 $det(A) = det(B_0) = det(B_1) = det(B_2) = \cdots = det(B_n) = det(AT).$

The result holds similarly for \overline{T} upper triangular and for $\overline{T}A$.

Theorem 3.1.H (continued)

Theorem 3.1.H. Let A be $n \times n$ and let T be an $n \times n$ upper or lower triangular matrix with entries of 1 along the diagonal. Then $det(AT) = det(TA) = det(A).$

Proof (continued). Then the entries of the *i*th column of $B_{i-1}T_i$ are

$$
\sum_{k=1}^{n} b_{jk} t_{ki} = b_{ji} + \sum_{k=i+1}^{n} b_{jk} t_{ki} \text{ for } 1 \leq j \leq n
$$

where the entries of b_i are $b_{1i}, b_{2i}, \ldots, b_{ni}.$ So the i th column of $B_{i-1} \mathcal{T}_i$ is $b_i + \sum_{k=i+1}^{n} b_k t_{ki}$, which is the *i*th column of B_{i-1} plus a series of scalar multiples of the columns $b_{i+1}, b_{i+2}, \ldots, b_n$ of B_{i-1} . So by Theorem 3.1.E, $\det(B_i) = \det(B_{i-1}T_i) = \det(B_{i-1})$. This holds for $1 \le i \le n$, so

$$
\operatorname{det}(A)=\operatorname{det}(B_0)=\operatorname{det}(B_1)=\operatorname{det}(B_2)=\cdots=\operatorname{det}(B_n)=\operatorname{det}(A\mathcal{T}).
$$

The result holds similarly for T upper triangular and for TA .