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Theorem 3.1.1

Theorem 3.1.1. Suppose matrix A is diagonally dominant (that is, A is
symmetric and row and column diagonally dominant). If B is a principal
submatrix of A then B is also diagonally dominant.
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Theorem 3.1.1

Theorem 3.1.1. Suppose matrix A is diagonally dominant (that is, A is
symmetric and row and column diagonally dominant). If B is a principal
submatrix of A then B is also diagonally dominant.

Proof. Let A = [aj] be symmetric and diagonally dominant. Let B = [by/]
be a principal submatrix of A. We need to show that B is symmetric and
row diagonally dominant.
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Theorem 3.1.1

Theorem 3.1.1. Suppose matrix A is diagonally dominant (that is, A is
symmetric and row and column diagonally dominant). If B is a principal
submatrix of A then B is also diagonally dominant.

Proof. Let A = [aj] be symmetric and diagonally dominant. Let B = [by/]
be a principal submatrix of A. We need to show that B is symmetric and
row diagonally dominant. Consider entry by, in B. Then by, = aj; for
some i, . Now by, and by, are on the diagonal of B and we have by = aj;
and by = ajj. So in producing submatrix B, neither row j nor column i of
matrix A was eliminated and aji = by.
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Theorem 3.1.1

Theorem 3.1.1. Suppose matrix A is diagonally dominant (that is, A is
symmetric and row and column diagonally dominant). If B is a principal
submatrix of A then B is also diagonally dominant.

Proof. Let A = [aj] be symmetric and diagonally dominant. Let B = [by/]
be a principal submatrix of A. We need to show that B is symmetric and
row diagonally dominant. Consider entry by, in B. Then by, = aj; for
some i, . Now by, and by, are on the diagonal of B and we have by = aj;
and by = ajj. So in producing submatrix B, neither row j nor column i of
matrix A was eliminated and aji = by,. Since A is symmetric then a; = aj;
and so bxy = byx and B is symmetric. For every by, in B we have

bix = aji for some aj; in A, and since A is row diagonally dominant then

!

m
|bkk| = |aii| > Z laj| > Z |bke| where m’ is the number of
J=1#i 0=10+k
columns in B. So B is row diagonally dominant, as claimed. O
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Theorem 3.1.A

Theorem 3.1.A. Let A = [aj] be an n x n matrix. Then
det(A) = det(AT).

Theory of Matrices

June 2, 2020

4/ 21



Theorem 3.1.A

Theorem 3.1.A. Let A = [aj] be an n x n matrix. Then

det(A) = det(AT).

Proof. Let AT = [b;] so that b; = aj;. For m € S, consider [[/_, 3j n(i)-
Since 7 is a permutation of {1,2,...,n} then each index 1,2,...,n
appears as the second index in the product (the index representing the
column of the entry) so that [[[_; ai»;y = [[\_; a,(j); where ~ is some
element of S,,.
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Theorem 3.1.A

Theorem 3.1.A. Let A = [aj] be an n x n matrix. Then

det(A) = det(AT).

Proof. Let AT = [b;] so that b; = aj;. For m € S, consider [[/_, 3j n(i)-
Since 7 is a permutation of {1,2,...,n} then each index 1,2,...,n
appears as the second index in the product (the index representing the
column of the entry) so that [[[_; ai»;y = [[}_; a,(j); where ~ is some
element of S,. Notice that if i = ~(j) then j = 7(i). So in the group S,,
v =7n"1. Now the even permutations in S, form the subgroup A, (the
alternating group) and so the inverse of an even permutation is an even
permutation. The n!/2 odd permutations in S, \ A, must include all
inverses in this set and so the inverse of an odd permutation is an odd
permutation.
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Theorem 3.1.A

Theorem 3.1.A. Let A = [aj] be an n x n matrix. Then

det(A) = det(AT).

Proof. Let AT = [b;] so that b; = aj;. For m € S, consider [[/_, 3j n(i)-
Since 7 is a permutation of {1,2,...,n} then each index 1,2,...,n
appears as the second index in the product (the index representing the
column of the entry) so that [[[_; ai»;y = [[}_; a,(j); where ~ is some
element of S,. Notice that if i = ~(j) then j = 7(i). So in the group S,,
v =7n"1. Now the even permutations in S, form the subgroup A, (the
alternating group) and so the inverse of an even permutation is an even
permutation. The n!/2 odd permutations in S, \ A, must include all
inverses in this set and so the inverse of an odd permutation is an odd
permutation. Hence o(v) = o(m). Therefore

o(m) [1ity ain(iy = 0 (V) [1j=1 34(j)j- In terms of by,

n n
U(”)Ham(i) = G(V)Hbjw)- (*)
i=1 j=1
Theory of Matrices June 2, 2020 4 /27



Theorem 3.1.A(continued)

Theorem 3.1.A. Let A = [aj] be an n x n matrix. Then
det(A) = det(AT).

Proof (continued). Summing over all permutations in S, gives
det(A) = > of Hamr h=_ ol H = det(AT).
TESy YES,

(Notice that the sums are the same since 7 and «y range over all elements
of S,. Equation (x) does not claim m = ~ but instead, as we say,
T=~"1) O
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Theorem 3.1.B

Theorem 3.1.B

Theorem 3.1.B. If an n x n matrix B is formed from a n x n matrix A by
multiplying all of the elements of one row or one column of A by the same
scalar k (and leaving the elements of the other n — 1 row or columns
unchanged) then det(B) = k det(A).
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Theorem 3.1.B

Theorem 3.1.B. If an n x n matrix B is formed from a n x n matrix A by
multiplying all of the elements of one row or one column of A by the same
scalar k (and leaving the elements of the other n — 1 row or columns
unchanged) then det(B) = k det(A).

Proof. By definition, for A = [a;;] we have

det(A) = 3" cs, o(m) 11 aix(i)- In the product []iL; aj»(jy there is
exactly one element from each row (since i ranges over 1,2,...,n) and
exactly one element from each column (since 7 (/) ranges over 1,2,..., n).
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Theorem 3.1.B

Theorem 3.1.B. If an n x n matrix B is formed from a n x n matrix A by
multiplying all of the elements of one row or one column of A by the same
scalar k (and leaving the elements of the other n — 1 row or columns
unchanged) then det(B) = k det(A).

Proof. By definition, for A = [a;;] we have

det(A) = 3" cs, o(m) 11 aix(i)- In the product []iL; aj»(jy there is
exactly one element from each row (since i ranges over 1,2,...,n) and
exactly one element from each column (since 7 (/) ranges over 1,2,..., n).
So if B satisfies the hypotheses, then for given © € S,,, we have

[1i21 bix(iy = kI1j_1 ai=(i) since exactly one bj () equals ka; (jy and for
the other n — 1 values of i, b (i) = ajx(i)-
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Theorem 3.1.B

Theorem 3.1.B. If an n x n matrix B is formed from a n x n matrix A by
multiplying all of the elements of one row or one column of A by the same
scalar k (and leaving the elements of the other n — 1 row or columns
unchanged) then det(B) = k det(A).

Proof. By definition, for A = [a;;] we have

det(A) = 3" cs, o(m) 11 aix(i)- In the product []iL; aj»(jy there is
exactly one element from each row (since i ranges over 1,2,...,n) and
exactly one element from each column (since 7 (/) ranges over 1,2,..., n).
So if B satisfies the hypotheses, then for given © € S,,, we have

[1i21 bixgiy = k1721 ain(iy since exactly one b; r(j) equals ka; r(j and for

the other n — 1 values of i, bj(jy = aj(i)- So det(B) =
ZU(F)Hbiﬂ(i): Z kHalﬂ‘l _kz Haiﬂ'(i)

TESy i=1 TESy TESy i=1

= k det(A). O
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Theorem 3.1.C

Theorem 3.1.C. If a n x n matrix B = [bj] is formed from an n x n
matrix A = [a;;] by interchanging two rows (or columns) of A then
det(B) = —det(A).
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Theorem 3.1.C

Theorem 3.1.C

Theorem 3.1.C. If a n x n matrix B = [bj] is formed from an n x n

matrix A = [a;;] by interchanging two rows (or columns) of A then
det(B) = —det(A).

Proof. Suppose B is found by interchanging the ith and kth rows of A
where k > i.
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Theorem 3.1.C

Theorem 3.1.C

Theorem 3.1.C. If a n x n matrix B = [bj] is formed from an n x n
matrix A = [a;;] by interchanging two rows (or columns) of A then
det(B) = —det(A).

Proof. Suppose B is found by interchanging the ith and kth rows of A

where k > i. We have det(B) = [[,cs, o(7) [[}=; bj~(j) where

[1bit) = birbae()  bi-1yi-1)bin(iybisnynisny
j=1

bk—1) m(k—1) Pk (k) P(k+1) m(k+1) * * * Prr(n)
= Ax(1)R2x(2) " A>i-1)w(i—-1)qk (i) A>i+1) w(i+1) """
Ak—1) w(k—1)Fiw(k)A(k+1) w(k+1) """ nm(n)

since bj (i) = akx(i) and b (k) = 3jr(k)-

Theory of Matrices
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Theorem 3.1.C (continued 1)

Proof. To swap indices / and k we define v € S,, as
m(j) i A0k

V) =4 (k) ifj=i
w(i) ifj=k.
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Theorem 3.1.C (continued 1)

Proof. To swap indices / and k we define v € S,, as

m(j) ifjF# ik
vy)=1«¢ m(k) ifj=i  Then~y=mo(i, k) and so v can be written
x(i) ifj= k.

with one more transposition ( “two cycle”) than 7; that is, the parity (even
or odd) of 7 is opposite of the parity of m. Therefore o(7w) = —o (7). But
as 7 ranges over S, then v = o (i, k) ranges over S, (such +'s make up a
row of the multiplication table [“Cayley table”] of S,). So

det(B) = ) _ of H =) o H 3j7()

TESy YES,

where v = 7o (i, k).
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Theorem 3.1.C (continued 1)

Proof. To swap indices / and k we define v € S,, as

m(j) ifjF ik
vG)=«¢ w(k) ifj=i Then v = 7w o (i, k) and so 7 can be written
x(i) ifj= k.

with one more transposition ( “two cycle”) than 7; that is, the parity (even
or odd) of 7 is opposite of the parity of m. Therefore o(7w) = —o (7). But
as 7 ranges over S, then v = o (i, k) ranges over S, (such +'s make up a
row of the multiplication table [“Cayley table”] of S,). So

det(B) = ) o H => o H 3j4())
TESy YES,
where v = 7 o (i, k). Hence
det(B) = > (1) [[aj.¢) =~ D ol H aj(j) = —det(A).
YESn j=1 YESn
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Theorem 3.1.C (continued 2)

Theorem 3.1.C. If a n x n matrix B = [bj] is formed from an n x n

matrix A = [a;;] by interchanging two rows (or columns) of A then
det(B) = —det(A).

Proof. If B is formed by interchanging two columns of A then

det(B) = det(B") by Theorem 3.1.A
—det(AT) by above
= —det(A) by Theorem 3.1.A.
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Theorem 3.1.E

Theorem 3.1.E. Let B represent a matrix formed from n x n matrix A by
adding to any row (or column) of A, scalar multiples of one or more other
rows (or columns). Then det(B) = det(A).
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Theorem 3.1.E

Theorem 3.1.E. Let B represent a matrix formed from n x n matrix A by
adding to any row (or column) of A, scalar multiples of one or more other
rows (or columns). Then det(B) = det(A).

Proof. Let a; and b; be the ith rows of matrices A and B, respectively,
where a; = [aj1, aj2, - .., ain] and b; = [bj1, bj2, . .., bin] (remember, we
don't notationally distinguish between representations of scalars and
vectors). Then for some s € N, 1 < s < n and some scalars

ki, ko, ..., ks—1, Kst1,-..,kn (possibly 0) we have that the sth row of B is
bs = as + ZJLlJ#S kia; and the ith row of B, where i # s, is b; = a;.

Theory of Matrices June 2,2020 10 /27



Theorem 3.1.E (continued)

Proof (continued). So
n

det(B) = ZU(W)Hbiﬂ-(i): ZU(W)bsw(s) H bix(i)
i=1

TES, TeS, i=1,i#s

= Y oM | axe+ Y. Kaxey| Il a0
TES, j=1,j#s i=1,i#s

= > o@][[axin+ D | D o®™ka=y [ ai=ei
€Sy i=1 j=1,j#s \7€S, i=1,is

= det(A)+ ) det(B))

j=Li#s

where B; is the matrix formed from A by replacing the sth row of A with
kjaj (notice j # s).

Theory of Matrices June 2,2020 11 /27



Theorem 3.1.E (continued)

Proof (continued). So
n

det(B) = ZU(W)Hbiﬂ-(i): ZU(W)bsw(s) H bix(i)
i=1

TES, TeS, i=1,i#s

= Y oM | axe+ Y. Kaxey| Il a0
TES, j=1,j#s i=1,i#s

= > o@][[axin+ D | D o®™ka=y [ ai=ei
€Sy i=1 j=1,j#s \7€S, i=1,is

= det(A)+ ) det(B))

j=Li#s

where B; is the matrix formed from A by replacing the sth row of A with
kjaj (notice j # s). By Corollary 3.1.D, det(B;j) = 0 for j # s and so
det(B) = det(A) as claimed. By Theorem 3.1.A, the result also holds if we
replace “row” with “column”. []
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Theorem 3.1.F

Theorem 3.1.F. Let A = [a;] be an n x n matrix and let «j; represent the
cofactor of aj;. Then

det(A Zauau fori=1,2,. (5.1)
Jj=1
and
det(A Zauau forj=1,2,. (5.2)
i=1
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Theorem 3.1.F

Theorem 3.1.F. Let A = [a;] be an n x n matrix and let «j; represent the
cofactor of aj;. Then

det(A Zauau fori=1,2,...,n, (5.1)
j=1
and
det(A Zauau forj=1,2,. (5.2)

i=1

Proof. Let A; be the (n—1) x (n — 1) matrix that is formed by
eliminating the ith row and jth column of matrix A. Consider equation

(5.1) for the case i = 1. Denote by ag) the (t, s)th element of Ay; (so t
and s range over the set {1,2,...,n—1}).

Theory of Matrices June 2,2020 12/ 27



Theorem 3.1.F

Theorem 3.1.F. Let A = [a;] be an n x n matrix and let «j; represent the
cofactor of aj;. Then

det(A Zauau fori=1,2,...,n, (5.1)

and

det(A Zauau forj=1,2,. (5.2)
i=1

Proof. Let A; be the (n—1) x (n — 1) matrix that is formed by
eliminating the ith row and jth column of matrix A. Consider equation
(5.1) for the case i = 1. Denote by a,(fjs) the (t, s)th element of Ay; (so t
and s range over the set {1,2,...,n—1}). Then

det(A) = 3" s, o(m) 11 @ix(j)- When i =1 and 7 ranges over S, the
value of 7(/) ranges over the set {1,2,...,n}.

Theory of Matrices June 2,2020 12/ 27



Theorem 3.1.F (continued 1)

Proof (continued). Let S} C S, denote all 7 € S, such that (1) = (so
for given j € {1,2,..., n}, the permutations in S}, all map 1 to j and map
the remaining n — 1 values 2,3,...,nto 1,2,...,j—1,j+1,j+2,...,n,
so that |Sh| = (n — 1)! for each j € {1,2,...,n}).

June 2, 2020 13 /27
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Theorem 3.1.F (continued 1)

Proof (continued). Let S} C S, denote all 7 € S, such that (1) = (so

for given j € {1,2,...,

n}, the permutations in S all map 1 to j and map

the remaining n — 1 values 2,3,...,nto 1,2,...,j—1,j+1,j+2,...,n

so that |S}| =
and so

det(A

Theory of Matrices June 2,2020 13 /27

(n—1)! for eachj €{1,2,...,n}). We have S, = U}’ZIS{;

3>

m)ayj l_Ia,7T () | since m(1) =

( i (i)
=1 \res)

j=1 WESJ

3>

aij ZU(W)Haiw(i) - (%)

=1 \pesj  i=2

.



Theorem 3.1.F (continued 2)

Proof (continued). Now in (%), as permutation 7 ranges over S/ and as
i ranges over {2,3, ..., n}, the elements a; () ranges over all entries of

Ayj. Since we denote the (t,s) entry of Ay; as agjs), then we can re-index

the product and inner summation in (%) from i € {2,3,...,n} and 7 € S}
tote{1,2,...,n—1} and v € S,_1, respectively.

Theory of Matrices June 2,2020 14 /27



Theorem 3.1.F (continued 2)

Proof (continued). Now in (%), as permutation 7 ranges over S/ and as

i ranges over {2,3, ..., n}, the elements a; () ranges over all entries of

Ayj. Since we denote the (t,s) entry of Ay; as agjs)

the product and inner summation in (%) from i € {2,3,...,n} and 7 € S}
tote{1,2,...,n—1} and v € S,_1, respectively. We do so by defining
t=i—1forie€{2,3,...,n} and v € 5,1 as

~(t) = { 77(7;(—1;—2’[_)12 1 :]]: igi 3 ij fort € {1,2,...,n—1}. We
then have that v: {1,2,...,n—1} - {1,2,...,n—1} andso v € 5,_1.
Also, ~(t) = w(i) if w(i) <j, and y(t) = w(i) — 1 if w(i) > j.

, then we can re-index

Theory of Matrices June 2,2020 14 /27



Theorem 3.1.F (continued 2)

Proof (continued). Now in (%), as permutation 7 ranges over S/ and as

i ranges over {2,3, ..., n}, the elements a; () ranges over all entries of

Ayj. Since we denote the (t,s) entry of Ay; as agjs)

, then we can re-index
the product and inner summation in (%) from i € {2,3,...,n} and 7 € S}
tote{1,2,...,n—1} and v € S,_1, respectively. We do so by defining
t=i—1forie€{2,3,...,n} and v € 5,1 as

~(t) = { 77(7;(—1;—2’[_)12 1 :]]: igi 3 ij fort € {1,2,...,n—1}. We
then have that v: {1,2,...,n—1} - {1,2,...,n—1} andso v € 5,_1.
Also, ~(t) = w(i) if w(i) <j, and v(t) = w(i) — 1 if (i) > j. Now extend
v € Sp_1toy €8S, be defining /(t) = y(t) for t € {1,2,...,n— 1} and
~'(n) = n. Then o(v') = a(v).

Theory of Matrices June 2,2020 14 /27



Theorem 3.1.F (continued 3)

Proof (continued). We can relate 7/ and 7 with the following mapping:

Y1) Q) - A(=1) A (n)
! Lo | l
©(2) =w(3) --- w(n)  w(1) =.

We will need to “move the jth term to the right end” and do so using the
mapping 7”’:

1 2 j—-1 4 j+1 -+ n-1 n
U e |
1 2 j—1 n g -+ n—2 n-—1

Theory of Matrices June 2,2020 15/ 27



Theorem 3.1.F

Theorem 3.1.F (continued 3)

Proof (continued). We can relate 7/ and 7 with the following mapping:

Y1) /@) - An=1) A(n)
! Lo ! !
©(2) =(3) --- n(n) (1) =

We will need to “move the jth term to the right end” and do so using the
mapping 7”’:

1 2 j—-1 4 j+1 -+ n-1 n
L 2 A A L L [
12 ... j—1 n § -« n—2 n-—1
So first we increase indices by 1 (mod n) with the permutation
, (1 2 -+ n—=1 nY\ _ B
@ —(2 3 ... N 1)—(2,3)(3,4)--~(n 1,n)(n,1),

second we apply permutation 7, and third we perform the second mapping
above using the permutation 7" where . ..

Theory of Matrices June 2,2020 15/ 27



Theorem 3.1.F (continued 4)

Proof (continued).

y (12 o j—1 j j+1 -« n—1 n
=1 2 j—1n j - n-2 n-1

:(n—2,n—1)(n—3,n—2)---(j,j—i—1)(j,n).
Then + = 7"77’. Notice o(n') = (—1)"! and o(7") = (—1)", so that
o(7) = o(y) = o("7’)
= o(r")o(m)o(r") = (~1)*" 7 la(m) = (~1) "la(n),
or o(m) = (=1y "o (7).

Theory of Matrices June 2,2020 16 / 27



Theorem 3.1.F (continued 4)

Proof (continued).

y (12 o j—1 j j+1 -« n—1 n
=1 2 j—1n j - n-2 n-1

=(n—=2n—1)(n=3,n-2)---(j,j +1)(j,n).

Then + = 7"77’. Notice o(n') = (—1)"! and o(7") = (—1)", so that

o(y) = o(y) = o(n"77’)
— o= )o(m)o () = (~12o(r) = (~1)*o(x),
or o(r) = (1Y *1o(y). So (*) becomes

det(A) = Zalj (Z U(W)Haiw(i)) by (*)

TES) i=2

Theory of Matrices June 2, 2020
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Theorem 3.1.F (continued 5)

Proof (continued).

n n—1
det(A) = D ay | D (1o [[at)
j=1 YES,_1 t=1

where v/ = 7’77’ and v is
the restriction of 7/ to {1,2,...,n— 1}

Z:au(—l)j+1 Z Ham(t

Vesn 1

= Zalj 1)J+ det A1J Zaljalj,

and the claim holds for i = 1.

Theory of Matrices June 2,2020 17 /27



Theorem 3.1.F (continued 6)

Proof (continued). Consider now equation (5.1) for i > 1. Let B be the
n x n matrix formed from A by interchanging the (i — 1)th and ith rows,

then the (i — 2)th and (i — 1)th rows, ..., then the 1st and 2nd rows (so
that the first row of B is the ith row of A and the 2nd through ith row of
B is the 1st through (i — 1)th row of A, respectively). By Theorem 3.1.C,

det(A) = (—1)~det(B).

Theory of Matrices June 2,2020 18 /27



Theorem 3.1.F (continued 6)

Proof (continued). Consider now equation (5.1) for i > 1. Let B be the
n x n matrix formed from A by interchanging the (i — 1)th and ith rows,
then the (i — 2)th and (i — 1)th rows, ..., then the 1st and 2nd rows (so
that the first row of B is the ith row of A and the 2nd through ith row of
B is the 1st through (i — 1)th row of A, respectively). By Theorem 3.1.C,
det(A) = (—1)'"ldet(B). Let By; be the (n—1) x (n — 1) matrix obtained
by eliminating the 1st row and the jth column of B, and let by; be the jth
element of the first row of B. Then Bj; = Aj; and so

det(A) = (—1)"ldet(B )it Z byj(—1)det(By))
by the first part of the proof

- )1 Za 1) det(A;) since Byj = A;

Theory of Matrices June 2,2020 18 /27



Theorem 3.1.F (continued 7)

Proof (continued).

det(A Z aji(—1) ™ det(A Z ajjaj.

So equation (5.1) holds for alli=1,2,...,n

Theory of Matrices June 2, 2020
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Theorem 3.1.F (continued 7)

Proof (continued).

det(A Z aji(—1) ™ det(A Z ajjaj.

So equation (5.1) holds for alli=1,2,...,n

Finally, consider equation (5.2). Notice that the matrix formed by
eliminating the jth row and ith column of AT is AUT So the cofactor of

the (j, /)th element of AT is (—1)*det(A]) = (~1)*'det(Ay) = a; by
Theorem 3.1.A.
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Theorem 3.1.F (continued 7)

Proof (continued).

det(A Z aji(—1) ™ det(A Z ajjaj.

So equation (5.1) holds for alli=1,2,...,n

Finally, consider equation (5.2). Notice that the matrix formed by
eliminating the jth row and ith column of AT is AUT So the cofactor of
the (j, /)th element of AT is (—1)j+idet(A,jT-) = (—1Y"idet(A;) = a; by
Theorem 3.1.A. Since the (j, i)th element of AT is the (i, j)th element of
A, then by equation (5.1) and Theorem 3.1.A,
n

det(A) = det(AT) = Z ajjov; where ai; = aj; and oy = (—1)i+jdet(A,JT-)

j=1

/ . . .
= g a jjj interchanging i and j
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Theorem 3.1.F (continued 8)

Theorem 3.1.F. Let A = [a;] be an n x n matrix and let o represent the
cofactor of aj;. Then

det(A) = Z ajoj for j=1,2,...,. (5.2)
i=1

Proof (continued). ...
det(A) = Zau 1)J+’det Zau 1) det(A)

= E i
i=1

and equation 5.2 holds. O
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Theorem 3.1.3

Theorem 3.1.3. Let A be an n x n matrix with adjoint adj(A) = [a;]".
Then Aadj(A) = adj(A)A = det(A)/,.
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Theorem 3.1.3

Theorem 3.1.3

Theorem 3.1.3. Let A be an n x n matrix with adjoint adj(A) = [a;]".
Then Aadj(A) = adj(A)A = det(A)/,.

Proof. With A = [a;;] we have the (i, ) entry of Aadj(A) as > }_; aikjk
By Theorem 3.1.F, for i = this is det(A).
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Theorem 3.1.3

Theorem 3.1.3. Let A be an n x n matrix with adjoint adj(A) = [a;]".
Then Aadj(A) = adj(A)A = det(A)/,.

Proof. With A = [aj;] we have the (/,/) entry of Aadj(A) as > ;_; aikjk.
By Theorem 3.1.F, for i = j this is det(A).

If i # j, consider the matrix B = [b;;] where B is n x n and has the same
rows as A, except that its jth row is the same as the ith row of A. Then
the cofactors aj of A are the same as the cofactors 3 of B for

1 < k < n. Also, since the jth row of B is the same as the ith of A then
bjx = ajx for 1 < k < n. Since the ith row and the jth row are the same in
B then, by Note 3.1.C, det(B) = 0.
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Theorem 3.1.3

Theorem 3.1.3. Let A be an n x n matrix with adjoint adj(A) = [a;]".
Then Aadj(A) = adj(A)A = det(A)l,

Proof. With A = [aj;] we have the (/,/) entry of Aadj(A) as > ;_; aikjk.
By Theorem 3.1.F, for i = j this is det(A).

If i # j, consider the matrix B = [b;;] where B is n x n and has the same
rows as A, except that its jth row is the same as the ith row of A. Then
the cofactors aj of A are the same as the cofactors 3 of B for

1 < k < n. Also, since the jth row of B is the same as the ith of A then
bjx = ajx for 1 < k < n. Since the ith row and the jth row are the same in
B then, by Note 3.1.C, det(B) = 0. So for i # j the (i,)) entry of
Aadj(A) is

Zakajk = Z ik Bjk = det(B) = 0 by Theorem 3.1.F.
So the (I,j) entry of AadJ(A) is det(A) for i =j and 0 for j # j; that is

Aadj(A) = det(A)l,, as claimed. Similarly, adj(A)A = det(A)l,. O
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Theorem 3.1.G

Theorem 3.1.G. Let T be an m X m matrix, V an n X m matrix, W an
n X n matrix, and let ‘0’ represent the m x n matrix of all entries as 0.
Then the determinant of the partitioned matrix is

det[ ’ \9\/] :det{ i H — det(T)det(W).
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Theorem 3.1.G

Theorem 3.1.G. Let T be an m X m matrix, V an n X m matrix, W an
n X n matrix, and let ‘0’ represent the m x n matrix of all entries as 0.
Then the determinant of the partitioned matrix is

det[ T ] :det{ wov ] — det(T)det(W).

vV W 0o T
T O "
Proof. Let A = vV ow T [ajj] be a partitioned (m+ n) x (m+ n)

matrix. Let T = [t;] and W = [w;j], so that t; = a;; for
i,j €{L,2,...,m} and wj; = a(iym)(j+m) for i,j € {1,2,...,n}. By

m+n

definition: det(A) = Z o(m) H aj n(i)- (%)
i=1

TE Sern
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Theorem 3.1.G

Theorem 3.1.G. Let T be an m X m matrix, V an n X m matrix, W an
n X n matrix, and let ‘0’ represent the m x n matrix of all entries as 0.
Then the determinant of the partitioned matrix is

det[ T ] :det{ wov ] — det(T)det(W).

vV W 0o T
T O "
Proof. Let A = vV ow T [ajj] be a partitioned (m+ n) x (m+ n)

matrix. Let T = [tu] and W = [Wij]y so that ti = ajj for
i,j €{L,2,...,m} and wj; = a(iym)(j+m) for i,j € {1,2,...,n}. By

m+n
definition: det(A) = Z o(m) H aj n(i)- (%)
TESm+n i=1
Now the only time the product in (%) might be nonzero is when 7 is a
permutation mapping {1,2,..., m} to itself (otherwise a;(;y = 0 for some

i€{1,2,...,m}), and hence also mapping {m+1,m+2,...,m+ n} to

itself. Denote all such permutations as S/, ..
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Theorem 3.1.G (continued 1)

Proof (continued). Such 7 € S/, can be written as the product of two
permutations, 7, and 7, in S/, where 7, fixes
{m+1,m+2,....,m+ n} and 7, fixes {1,2,..., m}; that is, 7 = w7,
and o(7) = o(mm)o(my).
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Theorem 3.1.G (continued 1)

Proof (continued). Such 7 € S/, can be written as the product of two
permutations, 7, and 7, in S/, where 7, fixes
{m+1,m+2,....,m+ n} and 7, fixes {1,2,..., m}; that is, 7 = w7,
and o(m) = o(mm)o(m,). Now if we restrict mp, to {1,2,..., m} and
denote the resulting function as 7/, then we have 7, € S,. If we define
mn(i—m)=mp(i)—mforie{m+1,m+2,...,m+ n}, then

o {1,2,...,n} = {1,2,...,n} and 7, € S,. We have o(7,) = o(7},)
and o(m,) = o(7)).
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Theorem 3.1.G (continued 1)

Proof (continued). Such 7 € S/, can be written as the product of two
permutations, 7, and m,, in S/ m+n Where 7, fixes
{m+1,m+2,...,m+ n} and 7, fixes {1,2,..., m}; that is, 7 = 7,7,
and o(m) = o(mm)o(m,). Now if we restrict mp, to {1,2,..., m} and
denote the resulting function as 7/, then we have 7, € S,. If we define
mn(i—m)=mp(i)—mforie{m+1,m+2,...,m+ n}, then

o {1,2,...,n} = {1,2,...,n} and 7, € S,. We have o (7)) = o(n),)
and o(mn) = o(n},). So from (*) we have

m+n

det(A) = > o(m) [] aix(h
TES i n i=1
m—+n
= > olmmo(m H 3imn() 1] 2wt
TmyTn€S) 4 n i=m+1

where each m € S/, , is written as T = Ty, 7,
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Theorem 3.1.G (continued 2)

Proof (continued).

m m-+n
det(A) = Z U(Wm)U(Wn)Haiwm(/) H i 70 (i)
7rm,7r,,65,’n+n i=1 i=m+1

= Yo a(@)o(m) [ aim o [T a+m)matiem)
i=1 i=1

T ESm,THESH
m n
= > alma(m) [Taimwm [T a0rmmiem
T ESm,THhESH i=1 i=1
since m(i—m)=m,(i) —mforie {m+1,m+2,...,m+n]

or (i) + m=m,(i +m) for i € {1,2,...,n}

m

= > o@o@) [Tty T[T wim)
i=1 i=1

7} ESmymhESh
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Theorem 3.1.G (continued 3)

Proof (continued).

det(A) = Z J(WZ,,)U(WL)Ht,-w/m(;)HWiwg(i)
i=1 i=1

7l ESm,mhESL

m n
= > o) [Ttime D o@) [T wima
! E€Sm i=1 1 ES, i=1

= det(T)det(W).
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Theorem 3.1.G (continued 3)

Proof (continued).

det(A) = Z J(WZ,,)U(WL)Ht,-w/m(;)HWiwg(i)
i=1 i=1

7l ESm,mhESL

m n
= > olm) [Ttimm Do o) [Twinn
! E€Sm i=1 S, i=1

= det(T)det(W).

w v
0o T

O

The proof that det [ } = det( T)det(W) is similar.
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Theorem 3.1.H

Theorem 3.1.H. Let Abe nx nand let T be an n x n upper or lower
triangular matrix with entries of 1 along the diagonal. Then
det(AT) = det(TA) = det(A).
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Theorem 3.1.H

Theorem 3.1.H. Let Abe nx nand let T be an n x n upper or lower

triangular matrix with entries of 1 along the diagonal. Then
det(AT) = det(TA) = det(A).

Proof. Consider the case AT where T is lower triangular. Define T; to be
an n x n matrix formed from /,, by replacing the ith column of /, with the
ith column of T (for 1 <i<n). Then T = T1T,--- T,, as shown in
Exercise 3.1.C, so AT = AT1 T, T,.
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Theorem 3.1.H

Theorem 3.1.H. Let Abe nx nand let T be an n x n upper or lower
triangular matrix with entries of 1 along the diagonal. Then
det(AT) = det(TA) = det(A).

Proof. Consider the case AT where T is lower triangular. Define T; to be
an n x n matrix formed from /,, by replacing the ith column of /, with the
ith column of T (for 1 <i<n). Then T = T1T,--- T,, as shown in
Exercise 3.1.C, so AT = AT, T>--- T,. Define By = A and

Bi =AT1Ty---T; (for 1 < i< n). Consider B;_1T; for 1 < < n. Since
all columns of T;, except for the ith column, are the same as /, then the
columns of B;_1T; are the same as the columns of B;_1, except for the jth
column. Let ty;, toj, ..., t,; be the entries in the ith column of T; (so
ty=t=--= t(,',l),- =0and t; = ].). Let by, by, ..., b, be the
columns of B;_q.
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Theorem 3.1.H (continued)

Theorem 3.1.H. Let Abe nx nand let T be an n x n upper or lower

triangular matrix with entries of 1 along the diagonal. Then
det(AT) = det(TA) = det(A).

Proof (continued). Then the entries of the ith column of B;_1 T; are

n
> bjtii = bji + Z bjktii for 1 <j<n
= =i+1

where the entries of b; are byj, by, ..., bpi. So the ith column of B;_1T; is
b; + ZZ:,-H by tii, which is the ith column of B;_1 plus a series of scalar

multiples of the columns bjy1, biya,. .., b, of Bi_1.
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Theorem 3.1.H (continued)

Theorem 3.1.H. Let Abe nx nand let T be an n x n upper or lower
triangular matrix with entries of 1 along the diagonal. Then
det(AT) = det(TA) = det(A).

Proof (continued). Then the entries of the ith column of B;_1 T; are
n n
ijktki = bji + Z bjxtki for 1 <j <n
k=1 k=i+1

where the entries of b; are byj, by, ..., bpi. So the ith column of B;_1T; is
b; + ZZ:,-H by tii, which is the ith column of B;_1 plus a series of scalar

multiples of the columns bjy1, biya,..., b, of Bi_1. So by Theorem 3.1.E,
det(B;) = det(B;j_1T;) = det(Bj_1). This holds for 1 < i < n, so

det(A) = det(Bp) = det(By) = det(By) = - - - = det(B,) = det(AT).

The result holds similarly for T upper triangular and for TA. Ol
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