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Chapter 3. Basic Properties of Matrices
3.1. Basic Definitions and Notation—Proofs of Theorems
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Theorem 3.1.1

Theorem 3.1.1

Theorem 3.1.1. Suppose matrix A is diagonally dominant (that is, A is
symmetric and row and column diagonally dominant). If B is a principal
submatrix of A then B is also diagonally dominant.

Proof. Let A = [aij ] be symmetric and diagonally dominant. Let B = [bk`]
be a principal submatrix of A. We need to show that B is symmetric and
row diagonally dominant.

Consider entry bk` in B. Then bk` = aij for
some i , j . Now bkk and b`` are on the diagonal of B and we have bkk = aii

and b`` = ajj . So in producing submatrix B, neither row j nor column i of
matrix A was eliminated and aji = b`k . Since A is symmetric then aij = aji

and so bk` = b`k and B is symmetric. For every bkk in B we have
bkk = aii for some aii in A, and since A is row diagonally dominant then

|bkk | = |aii | >
∑

j=1,j 6=i

|aij | ≥
m′∑

`=1,` 6=k

|bk`| where m′ is the number of

columns in B. So B is row diagonally dominant, as claimed.
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Theorem 3.1.A

Theorem 3.1.A

Theorem 3.1.A. Let A = [aij ] be an n × n matrix. Then
det(A) = det(AT ).

Proof. Let AT = [bij ] so that bij = aji . For π ∈ Sn, consider
∏n

i=1 ai π(i).
Since π is a permutation of {1, 2, . . . , n} then each index 1, 2, . . . , n
appears as the second index in the product (the index representing the
column of the entry) so that

∏n
i=1 ai π(i) =

∏n
j=1 aγ(j) j where γ is some

element of Sn.

Notice that if i = γ(j) then j = π(i). So in the group Sn,
γ = π−1. Now the even permutations in Sn form the subgroup An (the
alternating group) and so the inverse of an even permutation is an even
permutation. The n!/2 odd permutations in Sn \ An must include all
inverses in this set and so the inverse of an odd permutation is an odd
permutation. Hence σ(γ) = σ(π). Therefore
σ(π)

∏n
i=1 ai π(i) = σ(γ)

∏n
j=1 aγ(j) j . In terms of bij ,

σ(π)
n∏

i=1

ai π(i) = σ(γ)
n∏

j=1

bj γ(j). (∗)
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Theorem 3.1.A

Theorem 3.1.A(continued)

Theorem 3.1.A. Let A = [aij ] be an n × n matrix. Then
det(A) = det(AT ).

Proof (continued). Summing over all permutations in Sn gives

det(A) =
∑
π∈Sn

σ(π)
n∏

i=1

ai π(i) =
∑
γ∈Sn

σ(γ)
n∏

j=1

bj γ(j) = det(AT ).

(Notice that the sums are the same since π and γ range over all elements
of Sn. Equation (∗) does not claim π = γ but instead, as we say,
π = γ−1.)
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Theorem 3.1.B

Theorem 3.1.B

Theorem 3.1.B. If an n× n matrix B is formed from a n× n matrix A by
multiplying all of the elements of one row or one column of A by the same
scalar k (and leaving the elements of the other n − 1 row or columns
unchanged) then det(B) = k det(A).

Proof. By definition, for A = [aij ] we have
det(A) =

∑
π∈Sn

σ(π)
∏n

i=1 ai π(i). In the product
∏n

i=1 ai π(i) there is
exactly one element from each row (since i ranges over 1, 2, . . . , n) and
exactly one element from each column (since π(i) ranges over 1, 2, . . . , n).

So if B satisfies the hypotheses, then for given π ∈ Sn, we have∏n
i=1 bi π(i) = k

∏n
i=1 ai π(i) since exactly one bi π(i) equals kai π(i) and for

the other n − 1 values of i , bi π(i) = ai π(i). So det(B) =∑
π∈Sn

σ(π)
n∏

i=1

bi π(i) =
∑
π∈Sn

σ(π)k
n∏

i=1

ai π(i) = k
∑
π∈Sn

σ(π)
n∏

i=1

ai π(i)

= k det(A).
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Theorem 3.1.C

Theorem 3.1.C

Theorem 3.1.C. If a n × n matrix B = [bij ] is formed from an n × n
matrix A = [aij ] by interchanging two rows (or columns) of A then
det(B) = −det(A).

Proof. Suppose B is found by interchanging the ith and kth rows of A
where k > i .

We have det(B) =
∏

π∈Sn
σ(π)

∏n
j=1 bj π(j) where

n∏
j=1

bj π(j) = b1 π(1)b2 π(2) · · · b(i−1) π(i−1)bi π(i)b(i+1) π(i+1) · · ·

b(k−1) π(k−1)bk π(k)b(k+1) π(k+1) · · · bn π(n)

= a1 π(1)a2 π(2) · · · a(i−1) π(i−1)ak π(i)a(i+1) π(i+1) · · ·
a(k−1) π(k−1)ai π(k)a(k+1) π(k+1) · · · an π(n)

since bi π(i) = ak π(i) and bk π(k) = ai π(k).
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Theorem 3.1.C

Theorem 3.1.C (continued 1)

Proof. To swap indices i and k we define γ ∈ Sn as

γ(j) =


π(j) if j 6= i , k
π(k) if j = i
π(i) if j = k.

Then γ = π ◦ (i , k) and so γ can be written

with one more transposition (“two cycle”) than π; that is, the parity (even
or odd) of γ is opposite of the parity of π. Therefore σ(π) = −σ(γ). But
as π ranges over Sn then γ = π ◦ (i , k) ranges over Sn (such γ’s make up a
row of the multiplication table [“Cayley table”] of Sn). So

det(B) =
∑
π∈Sn

σ(π)
n∏

j=1

bj π(j) =
∑
γ∈Sn

−σ(γ)
n∏

j=1

aj γ(j)

where γ = π ◦ (i , k).

Hence

det(B) =
∑
γ∈Sn

−σ(γ)
n∏

j=1

aj γ(j) = −
∑
γ∈Sn

σ(γ)
n∏

j=1

aj γ(j) = −det(A).
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Theorem 3.1.C

Theorem 3.1.C (continued 2)

Theorem 3.1.C. If a n × n matrix B = [bij ] is formed from an n × n
matrix A = [aij ] by interchanging two rows (or columns) of A then
det(B) = −det(A).

Proof. If B is formed by interchanging two columns of A then

det(B) = det(BT ) by Theorem 3.1.A

= −det(AT ) by above

= −det(A) by Theorem 3.1.A.
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Theorem 3.1.E

Theorem 3.1.E

Theorem 3.1.E. Let B represent a matrix formed from n × n matrix A by
adding to any row (or column) of A, scalar multiples of one or more other
rows (or columns). Then det(B) = det(A).

Proof. Let ai and bi be the ith rows of matrices A and B, respectively,
where ai = [ai1, ai2, . . . , ain] and bi = [bi1, bi2, . . . , bin] (remember, we
don’t notationally distinguish between representations of scalars and
vectors). Then for some s ∈ N, 1 ≤ s ≤ n and some scalars
k1, k2, . . . , ks−1, ks+1, . . . , kn (possibly 0) we have that the sth row of B is
bs = as +

∑n
j=1,j 6=s kjaj and the ith row of B, where i 6= s, is bi = ai .
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Theorem 3.1.E

Theorem 3.1.E (continued)
Proof (continued). So

det(B) =
∑
π∈Sn

σ(π)
n∏

i=1

bi π(i) =
∑
π∈Sn

σ(π)bs π(s)

∏
i=1,i 6=s

bi π(i)

=
∑
π∈Sn

σ(π)

as π(s) +
n∑

j=1,j 6=s

kjaj π(j)

 n∏
i=1,i 6=s

ai π(i)

=
∑
π∈Sn

σ(π)
n∏

i=1

ai π(i) +
∑

j=1,j 6=s

∑
π∈Sn

σ(π)kjaj π(j)

∏
i=1,i 6=s

ai π(i)
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∑
j=1,j 6=s
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det(B) = det(A) as claimed. By Theorem 3.1.A, the result also holds if we
replace “row” with “column”.
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Theorem 3.1.F

Theorem 3.1.F

Theorem 3.1.F. Let A = [aij ] be an n× n matrix and let αij represent the
cofactor of aij . Then

det(A) =
n∑

j=1

aijαij for i = 1, 2, . . . , n, (5.1)

and

det(A) =
n∑

i=1

aijαij for j = 1, 2, . . . , . (5.2)

Proof. Let Aij be the (n − 1)× (n − 1) matrix that is formed by
eliminating the ith row and jth column of matrix A. Consider equation

(5.1) for the case i = 1. Denote by a
(j)
ts the (t, s)th element of A1j (so t

and s range over the set {1, 2, . . . , n − 1}).

Then
det(A) =

∑
π∈Sn

σ(π)
∏n

i=1 ai π(i). When i = 1 and π ranges over Sn, the
value of π(i) ranges over the set {1, 2, . . . , n}.
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Theorem 3.1.F

Theorem 3.1.F (continued 1)

Proof (continued). Let S j
n ⊂ Sn denote all π ∈ Sn such that π(1) = j (so

for given j ∈ {1, 2, . . . , n}, the permutations in S j
n all map 1 to j and map

the remaining n − 1 values 2, 3, . . . , n to 1, 2, . . . , j − 1, j + 1, j + 2, . . . , n,
so that |S j

n| = (n − 1)! for each j ∈ {1, 2, . . . , n}). We have Sn = ∪· nj=1S
j
n

and so

det(A) =
n∑

j=1

∑
π∈S j

n

σ(π)
n∏

i=1

ai π(i)


=

n∑
j=1

∑
π∈S j

n

σ(π)a1j

n∏
i=2

ai π(i)

 since π(1) = j

=
n∑

j=1

a1j

∑
π∈S j

n

σ(π)
n∏

i=2

ai π(i)

 . (∗)
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Theorem 3.1.F

Theorem 3.1.F (continued 2)

Proof (continued). Now in (∗), as permutation π ranges over S j
n and as

i ranges over {2, 3, . . . , n}, the elements ai π(i) ranges over all entries of

A1j . Since we denote the (t, s) entry of A1j as a
(j)
ts , then we can re-index

the product and inner summation in (∗) from i ∈ {2, 3, . . . , n} and π ∈ S j
n

to t ∈ {1, 2, . . . , n − 1} and γ ∈ Sn−1, respectively. We do so by defining
t = i − 1 for i ∈ {2, 3, . . . , n} and γ ∈ Sn−1 as

γ(t) =

{
π(t + 1) if π(t + 1) < j

π(t + 1)− 1 if π(t + 1) > j
for t ∈ {1, 2, . . . , n − 1}. We

then have that γ : {1, 2, . . . , n − 1} → {1, 2, . . . , n − 1} and so γ ∈ Sn−1.
Also, γ(t) = π(i) if π(i) < j , and γ(t) = π(i)− 1 if π(i) > j .

Now extend
γ ∈ Sn−1 to γ′ ∈ Sn, be defining γ′(t) = γ(t) for t ∈ {1, 2, . . . , n− 1} and
γ′(n) = n. Then σ(γ′) = σ(γ).
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Theorem 3.1.F

Theorem 3.1.F (continued 3)

Proof (continued). We can relate γ′ and π with the following mapping:

γ′(1) γ′(2) · · · γ′(n − 1) γ′(n)
↓ ↓ · · · ↓ ↓

π(2) π(3) · · · π(n) π(1) = j .

We will need to “move the jth term to the right end” and do so using the
mapping π′′:

1 2 · · · j − 1 j j + 1 · · · n − 1 n
↓ ↓ · · · ↓ ↓ ↓ · · · ↓ ↓
1 2 · · · j − 1 n j · · · n − 2 n − 1

.

So first we increase indices by 1 (mod n) with the permutation

π′ =

(
1 2 · · · n − 1 n
2 3 · · · n 1

)
= (2, 3)(3, 4) · · · (n − 1, n)(n, 1),

second we apply permutation π, and third we perform the second mapping
above using the permutation π′′ where . . .
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Theorem 3.1.F

Theorem 3.1.F (continued 4)

Proof (continued).

π′′ =

(
1 2 · · · j − 1 j j + 1 · · · n − 1 n
1 2 · · · j − 1 n j · · · n − 2 n − 1

)
= (n − 2, n − 1)(n − 3, n − 2) · · · (j , j + 1)(j , n).

Then γ′ = π′′ππ′. Notice σ(π′) = (−1)n−1 and σ(π′′) = (−1)n−j , so that

σ(γ) = σ(γ′) = σ(π′′ππ′)

= σ(π′′)σ(π)σ(π′) = (−1)2n−j−1σ(π) = (−1)j+1σ(π),

or σ(π) = (−1)j+1σ(γ). So (∗) becomes

det(A) =
n∑

j=1

a1j

∑
π∈S j

n

σ(π)
n∏

i=2

ai π(i)

 by (∗)
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Theorem 3.1.F

Theorem 3.1.F (continued 5)

Proof (continued).

det(A) =
n∑

j=1

a1j

 ∑
γ∈Sn−1

(−1)j+1σ(γ)
n−1∏
t=1

a
(j)
t γ(t)


where γ′ = π′′ππ′ and γ is

the restriction of γ′ to {1, 2, . . . , n − 1}

=
n∑

j=1

a1j(−1)j+1

 ∑
γ∈Sn−1

σ(γ)
n−1∏
t=1

a
(j)
t γ(t)


=

n∑
j=1

a1j(−1)j+1det(A1j) =
n∑

j=1

a1jα1j ,

and the claim holds for i = 1.
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Theorem 3.1.F

Theorem 3.1.F (continued 6)

Proof (continued). Consider now equation (5.1) for i > 1. Let B be the
n × n matrix formed from A by interchanging the (i − 1)th and ith rows,
then the (i − 2)th and (i − 1)th rows, . . . , then the 1st and 2nd rows (so
that the first row of B is the ith row of A and the 2nd through ith row of
B is the 1st through (i − 1)th row of A, respectively). By Theorem 3.1.C,
det(A) = (−1)i−1det(B). Let B1j be the (n− 1)× (n− 1) matrix obtained
by eliminating the 1st row and the jth column of B, and let b1j be the jth
element of the first row of B. Then B1j = Aij and so

det(A) = (−1)i−1det(B) = (−1)i−1
n∑

j=1

b1j(−1)1+jdet(B1j)

by the first part of the proof

= (−1)i−1
n∑

j=1

aij(−1)1+jdet(Aij) since B1j = Aij
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Theorem 3.1.F

Theorem 3.1.F (continued 7)

Proof (continued).

det(A) =
n∑

j=1

aij(−1)i+jdet(Aij) =
n∑

j=1

aijαij .

So equation (5.1) holds for all i = 1, 2, . . . , n.

Finally, consider equation (5.2). Notice that the matrix formed by
eliminating the jth row and ith column of AT is AT

ij . So the cofactor of

the (j , i)th element of AT is (−1)j+idet(AT
ij ) = (−1)j+idet(Aij) = αij by

Theorem 3.1.A.

Since the (j , i)th element of AT is the (i , j)th element of
A, then by equation (5.1) and Theorem 3.1.A,

det(A) = det(AT ) =
n∑

j=1

a′ijα
′
ij where a′ij = aji and α′

ij = (−1)i+jdet(AT
ij )

=
n∑

i=1

a′jiα
′
ji interchanging i and j

. . .

() Theory of Matrices June 2, 2020 19 / 27



Theorem 3.1.F

Theorem 3.1.F (continued 7)

Proof (continued).

det(A) =
n∑

j=1

aij(−1)i+jdet(Aij) =
n∑

j=1

aijαij .

So equation (5.1) holds for all i = 1, 2, . . . , n.

Finally, consider equation (5.2). Notice that the matrix formed by
eliminating the jth row and ith column of AT is AT

ij . So the cofactor of

the (j , i)th element of AT is (−1)j+idet(AT
ij ) = (−1)j+idet(Aij) = αij by

Theorem 3.1.A. Since the (j , i)th element of AT is the (i , j)th element of
A, then by equation (5.1) and Theorem 3.1.A,

det(A) = det(AT ) =
n∑

j=1

a′ijα
′
ij where a′ij = aji and α′

ij = (−1)i+jdet(AT
ij )

=
n∑

i=1

a′jiα
′
ji interchanging i and j

. . . () Theory of Matrices June 2, 2020 19 / 27



Theorem 3.1.F

Theorem 3.1.F (continued 7)

Proof (continued).

det(A) =
n∑

j=1

aij(−1)i+jdet(Aij) =
n∑

j=1

aijαij .

So equation (5.1) holds for all i = 1, 2, . . . , n.

Finally, consider equation (5.2). Notice that the matrix formed by
eliminating the jth row and ith column of AT is AT

ij . So the cofactor of

the (j , i)th element of AT is (−1)j+idet(AT
ij ) = (−1)j+idet(Aij) = αij by

Theorem 3.1.A. Since the (j , i)th element of AT is the (i , j)th element of
A, then by equation (5.1) and Theorem 3.1.A,

det(A) = det(AT ) =
n∑

j=1

a′ijα
′
ij where a′ij = aji and α′

ij = (−1)i+jdet(AT
ij )

=
n∑

i=1

a′jiα
′
ji interchanging i and j

. . . () Theory of Matrices June 2, 2020 19 / 27



Theorem 3.1.F

Theorem 3.1.F (continued 8)

Theorem 3.1.F. Let A = [aij ] be an n× n matrix and let αij represent the
cofactor of aij . Then

det(A) =
n∑

i=1

aijαij for j = 1, 2, . . . , . (5.2)

Proof (continued). . . .

det(A) =
n∑

i=1

aij(−1)j+idet(AT
ji ) =

n∑
i=1

aij(−1)i+jdet(Aij)

=
n∑

i=1

aijαij

and equation 5.2 holds.
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Theorem 3.1.3

Theorem 3.1.3

Theorem 3.1.3. Let A be an n × n matrix with adjoint adj(A) = [αij ]
T .

Then A adj(A) = adj(A)A = det(A)In.

Proof. With A = [aij ] we have the (i , j) entry of A adj(A) as
∑n

k=1 aikαjk .
By Theorem 3.1.F, for i = j this is det(A).

If i 6= j , consider the matrix B = [bij ] where B is n × n and has the same
rows as A, except that its jth row is the same as the ith row of A. Then
the cofactors αjk of A are the same as the cofactors βjk of B for
1 ≤ k ≤ n. Also, since the jth row of B is the same as the ith of A then
bjk = aik for 1 ≤ k ≤ n. Since the ith row and the jth row are the same in
B then, by Note 3.1.C, det(B) = 0. So for i 6= j the (i , j) entry of
A adj(A) is

n∑
k=1

aikαjk =
n∑

k=1

bjkβjk = det(B) = 0 by Theorem 3.1.F.

So the (i , j) entry of A adj(A) is det(A) for i = j and 0 for i 6= j ; that is
A adj(A) = det(A)In, as claimed. Similarly, adj(A)A = det(A)In.
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rows as A, except that its jth row is the same as the ith row of A. Then
the cofactors αjk of A are the same as the cofactors βjk of B for
1 ≤ k ≤ n. Also, since the jth row of B is the same as the ith of A then
bjk = aik for 1 ≤ k ≤ n. Since the ith row and the jth row are the same in
B then, by Note 3.1.C, det(B) = 0. So for i 6= j the (i , j) entry of
A adj(A) is

n∑
k=1

aikαjk =
n∑

k=1

bjkβjk = det(B) = 0 by Theorem 3.1.F.

So the (i , j) entry of A adj(A) is det(A) for i = j and 0 for i 6= j ; that is
A adj(A) = det(A)In, as claimed. Similarly, adj(A)A = det(A)In.
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Theorem 3.1.G

Theorem 3.1.G

Theorem 3.1.G. Let T be an m ×m matrix, V an n ×m matrix, W an
n × n matrix, and let ‘0’ represent the m × n matrix of all entries as 0.
Then the determinant of the partitioned matrix is

det

[
T 0
V W

]
= det

[
W V
0 T

]
= det(T )det(W ).

Proof. Let A =

[
T 0
V W

]
= [aij ] be a partitioned (m + n)× (m + n)

matrix. Let T = [tij ] and W = [wij ], so that tij = aij for
i , j ∈ {1, 2, . . . ,m} and wij = a(i+m) (j+m) for i , j ∈ {1, 2, . . . , n}. By

definition: det(A) =
∑

π∈Sm+n

σ(π)
m+n∏
i=1

ai π(i). (∗)

Now the only time the product in (∗) might be nonzero is when π is a
permutation mapping {1, 2, . . . ,m} to itself (otherwise ai π(i) = 0 for some
i ∈ {1, 2, . . . ,m}), and hence also mapping {m + 1,m + 2, . . . ,m + n} to
itself. Denote all such permutations as S ′

m+n.
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Theorem 3.1.G

Theorem 3.1.G (continued 1)

Proof (continued). Such π ∈ S ′
m+n can be written as the product of two

permutations, πm and πn, in S ′
m+n where πm fixes

{m + 1,m + 2, . . . ,m + n} and πn fixes {1, 2, . . . ,m}; that is, π = πmπn

and σ(π) = σ(πm)σ(πn). Now if we restrict πm to {1, 2, . . . ,m} and
denote the resulting function as π′m then we have π′m ∈ Sm. If we define
π′n(i −m) = πn(i)−m for i ∈ {m + 1,m + 2, . . . ,m + n}, then
π′n : {1, 2, . . . , n} → {1, 2, . . . , n} and π′n ∈ Sn. We have σ(πm) = σ(π′m)
and σ(πn) = σ(π′n).

So from (∗) we have

det(A) =
∑

π∈S ′m+n

σ(π)
m+n∏
i=1

ai π(i)

=
∑

πm,πn∈S ′m+n

σ(πm)σ(πn)
m∏

i=1

ai πm(i)

m+n∏
i=m+1

ai πn(i)

where each π ∈ S ′
m+n is written as π = πmπn
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Theorem 3.1.G

Theorem 3.1.G (continued 2)

Proof (continued).

det(A) =
∑

πm,πn∈S ′m+n

σ(πm)σ(πn)
m∏

i=1

ai πm(i)

m+n∏
i=m+1

ai πn(i)

=
∑

π′m∈Sm,π′n∈Sn

σ(π′m)σ(π′n)
m∏

i=1

ai π′m(i)

n∏
i=1

a(i+m) πn(i+m)

=
∑

π′m∈Sm,π′n∈Sn

σ(π′m)σ(π′n)
m∏

i=1

ai π′m(i)

n∏
i=1

a(i+m) π′n(i)+m

since π′n(i −m) = πn(i)−m for i ∈ {m + 1,m + 2, . . . ,m + n}
or π′n(i) + m = πn(i + m) for i ∈ {1, 2, . . . , n}

=
∑

π′m∈Sm,π′n∈Sn

σ(π′m)σ(π′n)
m∏

i=1

ti π′m(i)

n∏
i=1

wi π′n(i)
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Theorem 3.1.G

Theorem 3.1.G (continued 3)

Proof (continued).

det(A) =
∑

π′m∈Sm,π′n∈Sn

σ(π′m)σ(π′n)
m∏

i=1

ti π′m(i)

n∏
i=1

wi π′n(i)

=
∑

π′m∈Sm

σ(π′m)
m∏

i=1

ti π′m(i)

∑
π′n∈Sn

σ(π′n)
n∏

i=1

wi π′n(i)

= det(T )det(W ).

The proof that det

[
W V
0 T

]
= det(T )det(W ) is similar.
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Theorem 3.1.G

Theorem 3.1.G (continued 3)

Proof (continued).
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Theorem 3.1.H

Theorem 3.1.H

Theorem 3.1.H. Let A be n × n and let T be an n × n upper or lower
triangular matrix with entries of 1 along the diagonal. Then
det(AT ) = det(TA) = det(A).

Proof. Consider the case AT where T is lower triangular. Define Ti to be
an n × n matrix formed from In by replacing the ith column of In with the
ith column of T (for 1 ≤ i ≤ n). Then T = T1T2 · · ·Tn, as shown in
Exercise 3.1.C, so AT = AT1T2 · · ·Tn.

Define B0 = A and
Bi = AT1T2 · · ·Ti (for 1 ≤ i ≤ n). Consider Bi−1Ti for 1 ≤ i ≤ n. Since
all columns of Ti , except for the ith column, are the same as In then the
columns of Bi−1Ti are the same as the columns of Bi−1, except for the ith
column. Let t1i , t2i , . . . , tni be the entries in the ith column of Ti (so
t1i = t2i = · · · = t(i−1)i = 0 and tii = 1). Let b1, b2, . . . , bn be the
columns of Bi−1.
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Theorem 3.1.H

Theorem 3.1.H (continued)

Theorem 3.1.H. Let A be n × n and let T be an n × n upper or lower
triangular matrix with entries of 1 along the diagonal. Then
det(AT ) = det(TA) = det(A).

Proof (continued). Then the entries of the ith column of Bi−1Ti are

n∑
k=1

bjktki = bji +
n∑

k=i+1

bjktki for 1 ≤ j ≤ n

where the entries of bi are b1i , b2i , . . . , bni . So the ith column of Bi−1Ti is
bi +

∑n
k=i+1 bktki , which is the ith column of Bi−1 plus a series of scalar

multiples of the columns bi+1, bi+2, . . . , bn of Bi−1. So by Theorem 3.1.E,
det(Bi ) = det(Bi−1Ti ) = det(Bi−1). This holds for 1 ≤ i ≤ n, so

det(A) = det(B0) = det(B1) = det(B2) = · · · = det(Bn) = det(AT ).

The result holds similarly for T upper triangular and for TA.
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