Theory of Matrices

Chapter 3. Basic Properties of Matrices 3.1. Basic Definitions and Notation—Proofs of Theorems

Table of contents

- **1** Theorem 3.1.1
- 2 Theorem 3.1.A
- 3 Theorem 3.1.B
- Theorem 3.1.C
- 5 Theorem 3.1.E
- 6 Theorem 3.1.F
- 7 Theorem 3.1.3
- 8 Theorem 3.1.G
 - Theorem 3.1.H

Theorem 3.1.1. Suppose matrix A is diagonally dominant (that is, A is symmetric and row and column diagonally dominant). If B is a principal submatrix of A then B is also diagonally dominant.

Proof. Let $A = [a_{ij}]$ be symmetric and diagonally dominant. Let $B = [b_{k\ell}]$ be a principal submatrix of A. We need to show that B is symmetric and row diagonally dominant.

Theorem 3.1.1. Suppose matrix A is diagonally dominant (that is, A is symmetric and row and column diagonally dominant). If B is a principal submatrix of A then B is also diagonally dominant.

Proof. Let $A = [a_{ij}]$ be symmetric and diagonally dominant. Let $B = [b_{k\ell}]$ be a principal submatrix of A. We need to show that B is symmetric and row diagonally dominant. Consider entry $b_{k\ell}$ in B. Then $b_{k\ell} = a_{ij}$ for some i, j. Now b_{kk} and $b_{\ell\ell}$ are on the diagonal of B and we have $b_{kk} = a_{ii}$ and $b_{\ell\ell} = a_{jj}$. So in producing submatrix B, neither row j nor column i of matrix A was eliminated and $a_{ji} = b_{\ell k}$.

Theorem 3.1.1. Suppose matrix A is diagonally dominant (that is, A is symmetric and row and column diagonally dominant). If B is a principal submatrix of A then B is also diagonally dominant.

Proof. Let $A = [a_{ij}]$ be symmetric and diagonally dominant. Let $B = [b_{k\ell}]$ be a principal submatrix of A. We need to show that B is symmetric and row diagonally dominant. Consider entry $b_{k\ell}$ in B. Then $b_{k\ell} = a_{ij}$ for some i, j. Now b_{kk} and $b_{\ell\ell}$ are on the diagonal of B and we have $b_{kk} = a_{ji}$ and $b_{\ell\ell} = a_{jj}$. So in producing submatrix *B*, neither row *j* nor column *i* of matrix A was eliminated and $a_{ii} = b_{\ell k}$. Since A is symmetric then $a_{ii} = a_{ii}$ and so $b_{k\ell} = b_{\ell k}$ and B is symmetric. For every b_{kk} in B we have $b_{kk} = a_{ii}$ for some a_{ii} in A, and since A is row diagonally dominant then $|b_{kk}| = |a_{ii}| > \sum |a_{ij}| \ge \sum |b_{k\ell}|$ where m' is the number of $i=1, i\neq i$ $\ell=1, \ell\neq k$ columns in *B*. So *B* is row diagonally dominant, as claimed.

Theorem 3.1.1. Suppose matrix A is diagonally dominant (that is, A is symmetric and row and column diagonally dominant). If B is a principal submatrix of A then B is also diagonally dominant.

Proof. Let $A = [a_{ij}]$ be symmetric and diagonally dominant. Let $B = [b_{k\ell}]$ be a principal submatrix of A. We need to show that B is symmetric and row diagonally dominant. Consider entry $b_{k\ell}$ in B. Then $b_{k\ell} = a_{ij}$ for some i, j. Now b_{kk} and $b_{\ell\ell}$ are on the diagonal of B and we have $b_{kk} = a_{ji}$ and $b_{\ell\ell} = a_{jj}$. So in producing submatrix *B*, neither row *j* nor column *i* of matrix A was eliminated and $a_{ii} = b_{\ell k}$. Since A is symmetric then $a_{ii} = a_{ii}$ and so $b_{k\ell} = b_{\ell k}$ and B is symmetric. For every b_{kk} in B we have $b_{kk} = a_{ii}$ for some a_{ii} in A, and since A is row diagonally dominant then $|b_{kk}| = |a_{ii}| > \sum |a_{ij}| \ge \sum |b_{k\ell}|$ where m' is the number of $i=1, i\neq i$ $\ell=1, \ell\neq k$ columns in B. So B is row diagonally dominant, as claimed.

Theorem 3.1.A. Let $A = [a_{ij}]$ be an $n \times n$ matrix. Then $det(A) = det(A^T)$.

Proof. Let $A^T = [b_{ij}]$ so that $b_{ij} = a_{ji}$. For $\pi \in S_n$, consider $\prod_{i=1}^n a_{i \pi(i)}$. Since π is a permutation of $\{1, 2, ..., n\}$ then each index 1, 2, ..., n appears as the second index in the product (the index representing the column of the entry) so that $\prod_{i=1}^n a_{i \pi(i)} = \prod_{j=1}^n a_{\gamma(j)j}$ where γ is some element of S_n .

Theorem 3.1.A

Theorem 3.1.A. Let $A = [a_{ij}]$ be an $n \times n$ matrix. Then $det(A) = det(A^T)$.

Proof. Let $A^T = [b_{ij}]$ so that $b_{ij} = a_{ji}$. For $\pi \in S_n$, consider $\prod_{i=1}^n a_{i\pi(i)}$. Since π is a permutation of $\{1, 2, ..., n\}$ then each index 1, 2, ..., n appears as the second index in the product (the index representing the column of the entry) so that $\prod_{i=1}^n a_{i\pi(i)} = \prod_{j=1}^n a_{\gamma(j)j}$ where γ is some element of S_n . Notice that if $i = \gamma(j)$ then $j = \pi(i)$. So in the group S_n , $\gamma = \pi^{-1}$. Now the even permutations in S_n form the subgroup A_n (the alternating group) and so the inverse of an even permutation is an even permutation. The n!/2 odd permutations in $S_n \setminus A_n$ must include all inverses in this set and so the inverse of an odd permutation is an odd permutation.

Theorem 3.1.A

Theorem 3.1.A. Let $A = [a_{ij}]$ be an $n \times n$ matrix. Then $det(A) = det(A^T)$.

Proof. Let $A^T = [b_{ij}]$ so that $b_{ij} = a_{ji}$. For $\pi \in S_n$, consider $\prod_{i=1}^n a_{i,\pi(i)}$. Since π is a permutation of $\{1, 2, \ldots, n\}$ then each index $1, 2, \ldots, n$ appears as the second index in the product (the index representing the column of the entry) so that $\prod_{i=1}^{n} a_{i\pi(i)} = \prod_{i=1}^{n} a_{\gamma(i)i}$ where γ is some element of S_n . Notice that if $i = \gamma(j)$ then $j = \pi(i)$. So in the group S_n , $\gamma = \pi^{-1}$. Now the even permutations in S_n form the subgroup A_n (the alternating group) and so the inverse of an even permutation is an even permutation. The n!/2 odd permutations in $S_n \setminus A_n$ must include all inverses in this set and so the inverse of an odd permutation is an odd permutation. Hence $\sigma(\gamma) = \sigma(\pi)$. Therefore $\sigma(\pi) \prod_{i=1}^{n} a_{i\pi(i)} = \sigma(\gamma) \prod_{i=1}^{n} a_{\gamma(i)i}$. In terms of b_{ii} ,

$$\sigma(\pi)\prod_{i=1}^{n}a_{i\,\pi(i)}=\sigma(\gamma)\prod_{j=1}^{n}b_{j\,\gamma(j)}.\qquad(*)$$

Theorem 3.1.A

Theorem 3.1.A. Let $A = [a_{ij}]$ be an $n \times n$ matrix. Then $det(A) = det(A^T)$.

Proof. Let $A^T = [b_{ij}]$ so that $b_{ij} = a_{ji}$. For $\pi \in S_n$, consider $\prod_{i=1}^n a_{i,\pi(i)}$. Since π is a permutation of $\{1, 2, \dots, n\}$ then each index $1, 2, \dots, n$ appears as the second index in the product (the index representing the column of the entry) so that $\prod_{i=1}^{n} a_{i\pi(i)} = \prod_{i=1}^{n} a_{\gamma(i)i}$ where γ is some element of S_n . Notice that if $i = \gamma(j)$ then $j = \pi(i)$. So in the group S_n , $\gamma = \pi^{-1}$. Now the even permutations in S_n form the subgroup A_n (the alternating group) and so the inverse of an even permutation is an even permutation. The n!/2 odd permutations in $S_n \setminus A_n$ must include all inverses in this set and so the inverse of an odd permutation is an odd permutation. Hence $\sigma(\gamma) = \sigma(\pi)$. Therefore $\sigma(\pi) \prod_{i=1}^{n} a_{i\pi(i)} = \sigma(\gamma) \prod_{i=1}^{n} a_{\gamma(i)i}$. In terms of b_{ij} ,

$$\sigma(\pi)\prod_{i=1}^{n}a_{i\,\pi(i)}=\sigma(\gamma)\prod_{j=1}^{n}b_{j\,\gamma(j)}.\qquad(*)$$

Theorem 3.1.A(continued)

Theorem 3.1.A. Let $A = [a_{ij}]$ be an $n \times n$ matrix. Then $det(A) = det(A^T)$.

Proof (continued). Summing over all permutations in S_n gives

$$\det(A) = \sum_{\pi \in S_n} \sigma(\pi) \prod_{i=1}^n a_{i \pi(i)} = \sum_{\gamma \in S_n} \sigma(\gamma) \prod_{j=1}^n b_{j \gamma(j)} = \det(A^T).$$

(Notice that the sums are the same since π and γ range over all elements of S_n . Equation (*) does not claim $\pi = \gamma$ but instead, as we say, $\pi = \gamma^{-1}$.)

Theorem 3.1.B. If an $n \times n$ matrix B is formed from a $n \times n$ matrix A by multiplying all of the elements of one row or one column of A by the same scalar k (and leaving the elements of the other n - 1 row or columns unchanged) then $\det(B) = k \det(A)$.

Proof. By definition, for $A = [a_{ij}]$ we have $det(A) = \sum_{\pi \in S_n} \sigma(\pi) \prod_{i=1}^n a_{i\pi(i)}$. In the product $\prod_{i=1}^n a_{i\pi(i)}$ there is exactly one element from each row (since *i* ranges over 1, 2, ..., n) and exactly one element from each column (since $\pi(i)$ ranges over 1, 2, ..., n).

Theory of Matrices

Theorem 3.1.B. If an $n \times n$ matrix B is formed from a $n \times n$ matrix A by multiplying all of the elements of one row or one column of A by the same scalar k (and leaving the elements of the other n - 1 row or columns unchanged) then $\det(B) = k \det(A)$.

Proof. By definition, for $A = [a_{ij}]$ we have det $(A) = \sum_{\pi \in S_n} \sigma(\pi) \prod_{i=1}^n a_{i\pi(i)}$. In the product $\prod_{i=1}^n a_{i\pi(i)}$ there is exactly one element from each row (since *i* ranges over 1, 2, ..., n) and exactly one element from each column (since $\pi(i)$ ranges over 1, 2, ..., n). So if *B* satisfies the hypotheses, then for given $\pi \in S_n$, we have $\prod_{i=1}^n b_{i\pi(i)} = k \prod_{i=1}^n a_{i\pi(i)}$ since exactly one $b_{i\pi(i)}$ equals $ka_{i\pi(i)}$ and for the other n - 1 values of *i*, $b_{i\pi(i)} = a_{i\pi(i)}$.

Theorem 3.1.B. If an $n \times n$ matrix B is formed from a $n \times n$ matrix A by multiplying all of the elements of one row or one column of A by the same scalar k (and leaving the elements of the other n - 1 row or columns unchanged) then $\det(B) = k \det(A)$.

Proof. By definition, for $A = [a_{ij}]$ we have $det(A) = \sum_{\pi \in S_n} \sigma(\pi) \prod_{i=1}^n a_{i\pi(i)}$. In the product $\prod_{i=1}^n a_{i\pi(i)}$ there is exactly one element from each row (since *i* ranges over 1, 2, ..., n) and exactly one element from each column (since $\pi(i)$ ranges over 1, 2, ..., n). So if *B* satisfies the hypotheses, then for given $\pi \in S_n$, we have $\prod_{i=1}^n b_{i\pi(i)} = k \prod_{i=1}^n a_{i\pi(i)}$ since exactly one $b_{i\pi(i)}$ equals $ka_{i\pi(i)}$ and for the other n - 1 values of *i*, $b_{i\pi(i)} = a_{i\pi(i)}$. So det(B) = $\sum_{\pi \in S_n} \sigma(\pi) \prod_{i=1}^n b_{i\pi(i)} = \sum_{\pi \in S_n} \sigma(\pi) k \prod_{i=1}^n a_{i\pi(i)} = k \sum_{\pi \in S_n} \sigma(\pi) \prod_{i=1}^n a_{i\pi(i)}$

 $= k \det(A).$

Theorem 3.1.B. If an $n \times n$ matrix B is formed from a $n \times n$ matrix A by multiplying all of the elements of one row or one column of A by the same scalar k (and leaving the elements of the other n - 1 row or columns unchanged) then $\det(B) = k \det(A)$.

Proof. By definition, for $A = [a_{ii}]$ we have $\det(A) = \sum_{\pi \in S_n} \sigma(\pi) \prod_{i=1}^n a_{i\pi(i)}$. In the product $\prod_{i=1}^n a_{i\pi(i)}$ there is exactly one element from each row (since i ranges over 1, 2, ..., n) and exactly one element from each column (since $\pi(i)$ ranges over 1, 2, ..., n). So if B satisfies the hypotheses, then for given $\pi \in S_n$, we have $\prod_{i=1}^{n} b_{i\pi(i)} = k \prod_{i=1}^{n} a_{i\pi(i)}$ since exactly one $b_{i\pi(i)}$ equals $ka_{i\pi(i)}$ and for the other n-1 values of i, $b_{i \pi(i)} = a_{i \pi(i)}$. So det(B) = $\sum_{\pi \in S_n} \sigma(\pi) \prod_{i=1}^n b_{i\pi(i)} = \sum_{\pi \in S_n} \sigma(\pi) k \prod_{i=1}^n a_{i\pi(i)} = k \sum_{\pi \in S_n} \sigma(\pi) \prod_{i=1}^n a_{i\pi(i)}$ $= k \det(A).$

Theorem 3.1.C. If a $n \times n$ matrix $B = [b_{ij}]$ is formed from an $n \times n$ matrix $A = [a_{ij}]$ by interchanging two rows (or columns) of A then det(B) = -det(A).

Proof. Suppose *B* is found by interchanging the *i*th and *k*th rows of *A* where k > i.

Theorem 3.1.C. If a $n \times n$ matrix $B = [b_{ij}]$ is formed from an $n \times n$ matrix $A = [a_{ij}]$ by interchanging two rows (or columns) of A then det(B) = -det(A).

Proof. Suppose *B* is found by interchanging the *i*th and *k*th rows of *A* where k > i. We have $det(B) = \prod_{\pi \in S_n} \sigma(\pi) \prod_{j=1}^n b_{j\pi(j)}$ where

$$\prod_{j=1}^{n} b_{j \pi(j)} = b_{1 \pi(1)} b_{2 \pi(2)} \cdots b_{(i-1) \pi(i-1)} b_{i \pi(i)} b_{(i+1) \pi(i+1)} \cdots b_{(k-1) \pi(k-1)} b_{k \pi(k)} b_{(k+1) \pi(k+1)} \cdots b_{n \pi(n)}$$

$$= a_{1 \pi(1)} a_{2 \pi(2)} \cdots a_{(i-1) \pi(i-1)} a_{k \pi(i)} a_{(i+1) \pi(i+1)} \cdots a_{(k-1) \pi(k-1)} a_{i \pi(k)} a_{(k+1) \pi(k+1)} \cdots a_{n \pi(n)}$$
since $b_{i \pi(i)} = a_{k \pi(i)}$ and $b_{k \pi(k)} = a_{i \pi(k)}$.

Theorem 3.1.C. If a $n \times n$ matrix $B = [b_{ij}]$ is formed from an $n \times n$ matrix $A = [a_{ij}]$ by interchanging two rows (or columns) of A then det(B) = -det(A).

Proof. Suppose *B* is found by interchanging the *i*th and *k*th rows of *A* where k > i. We have det $(B) = \prod_{\pi \in S_n} \sigma(\pi) \prod_{j=1}^n b_{j\pi(j)}$ where

$$\prod_{j=1}^{n} b_{j \pi(j)} = b_{1 \pi(1)} b_{2 \pi(2)} \cdots b_{(i-1) \pi(i-1)} b_{i \pi(i)} b_{(i+1) \pi(i+1)} \cdots b_{n \pi(i-1)} b_{k \pi(k)} b_{(k+1) \pi(k-1)} \cdots b_{n \pi(n)}$$

$$= a_{1 \pi(1)} a_{2 \pi(2)} \cdots a_{(i-1) \pi(i-1)} a_{k \pi(i)} a_{(i+1) \pi(i+1)} \cdots a_{(k-1) \pi(k-1)} a_{i \pi(k)} a_{(k+1) \pi(k+1)} \cdots a_{n \pi(n)}$$
since $b_{i \pi(i)} = a_{k \pi(i)}$ and $b_{k \pi(k)} = a_{i \pi(k)}$.

Theorem 3.1.C (continued 1)

Proof. To swap indices *i* and *k* we define $\gamma \in S_n$ as $\gamma(j) = \begin{cases} \pi(j) & \text{if } j \neq i, k \\ \pi(k) & \text{if } j = i \\ \pi(i) & \text{if } j = k. \end{cases}$ Then $\gamma = \pi \circ (i, k)$ and so γ can be written

with one more transposition ("two cycle") than π ; that is, the parity (even or odd) of γ is opposite of the parity of π . Therefore $\sigma(\pi) = -\sigma(\gamma)$. But as π ranges over S_n then $\gamma = \pi \circ (i, k)$ ranges over S_n (such γ 's make up a row of the multiplication table ["Cayley table"] of S_n). So

$$\det(B) = \sum_{\pi \in S_n} \sigma(\pi) \prod_{j=1}^n b_{j \pi(j)} = \sum_{\gamma \in S_n} -\sigma(\gamma) \prod_{j=1}^n a_{j \gamma(j)}$$

where $\gamma = \pi \circ (i, k)$.

Theorem 3.1.C (continued 1)

Proof. To swap indices *i* and *k* we define $\gamma \in S_n$ as $\gamma(j) = \begin{cases} \pi(j) & \text{if } j \neq i, k \\ \pi(k) & \text{if } j = i \\ \pi(i) & \text{if } j = k. \end{cases}$ Then $\gamma = \pi \circ (i, k)$ and so γ can be written

with one more transposition ("two cycle") than π ; that is, the parity (even or odd) of γ is opposite of the parity of π . Therefore $\sigma(\pi) = -\sigma(\gamma)$. But as π ranges over S_n then $\gamma = \pi \circ (i, k)$ ranges over S_n (such γ 's make up a row of the multiplication table ["Cayley table"] of S_n). So

$$\det(B) = \sum_{\pi \in S_n} \sigma(\pi) \prod_{j=1}^n b_{j \pi(j)} = \sum_{\gamma \in S_n} -\sigma(\gamma) \prod_{j=1}^n a_{j \gamma(j)}$$

where $\gamma = \pi \circ (i, k)$. Hence

$$\det(B) = \sum_{\gamma \in S_n} -\sigma(\gamma) \prod_{j=1}^n a_{j\gamma(j)} = -\sum_{\gamma \in S_n} \sigma(\gamma) \prod_{j=1}^n a_{j\gamma(j)} = -\det(A).$$

Theorem 3.1.C (continued 1)

Proof. To swap indices *i* and *k* we define $\gamma \in S_n$ as $\gamma(j) = \begin{cases} \pi(j) & \text{if } j \neq i, k \\ \pi(k) & \text{if } j = i \\ \pi(i) & \text{if } j = k. \end{cases}$ Then $\gamma = \pi \circ (i, k)$ and so γ can be written

with one more transposition ("two cycle") than π ; that is, the parity (even or odd) of γ is opposite of the parity of π . Therefore $\sigma(\pi) = -\sigma(\gamma)$. But as π ranges over S_n then $\gamma = \pi \circ (i, k)$ ranges over S_n (such γ 's make up a row of the multiplication table ["Cayley table"] of S_n). So

$$\det(B) = \sum_{\pi \in S_n} \sigma(\pi) \prod_{j=1}^n b_{j \pi(j)} = \sum_{\gamma \in S_n} -\sigma(\gamma) \prod_{j=1}^n a_{j \gamma(j)}$$

where $\gamma = \pi \circ (i, k)$. Hence

$$\det(B) = \sum_{\gamma \in S_n} -\sigma(\gamma) \prod_{j=1}^n a_{j\gamma(j)} = -\sum_{\gamma \in S_n} \sigma(\gamma) \prod_{j=1}^n a_{j\gamma(j)} = -\det(A).$$

Theorem 3.1.C (continued 2)

Theorem 3.1.C. If a $n \times n$ matrix $B = [b_{ij}]$ is formed from an $n \times n$ matrix $A = [a_{ij}]$ by interchanging two rows (or columns) of A then det(B) = -det(A).

Proof. If B is formed by interchanging two columns of A then

$$det(B) = det(B^{T}) by Theorem 3.1.A$$
$$= -det(A^{T}) by above$$
$$= -det(A) by Theorem 3.1.A.$$

Theorem 3.1.E. Let *B* represent a matrix formed from $n \times n$ matrix *A* by adding to any row (or column) of *A*, scalar multiples of one or more other rows (or columns). Then det(*B*) = det(*A*).

Proof. Let a_i and b_i be the *i*th rows of matrices A and B, respectively, where $a_i = [a_{i1}, a_{i2}, \ldots, a_{in}]$ and $b_i = [b_{i1}, b_{i2}, \ldots, b_{in}]$ (remember, we don't notationally distinguish between representations of scalars and vectors). Then for some $s \in \mathbb{N}$, $1 \le s \le n$ and some scalars $k_1, k_2, \ldots, k_{s-1}, k_{s+1}, \ldots, k_n$ (possibly 0) we have that the *s*th row of B is $b_s = a_s + \sum_{j=1, j \ne s}^n k_j a_j$ and the *i*th row of B, where $i \ne s$, is $b_i = a_i$.

Theorem 3.1.E. Let *B* represent a matrix formed from $n \times n$ matrix *A* by adding to any row (or column) of *A*, scalar multiples of one or more other rows (or columns). Then det(*B*) = det(*A*).

Proof. Let a_i and b_i be the *i*th rows of matrices A and B, respectively, where $a_i = [a_{i1}, a_{i2}, \ldots, a_{in}]$ and $b_i = [b_{i1}, b_{i2}, \ldots, b_{in}]$ (remember, we don't notationally distinguish between representations of scalars and vectors). Then for some $s \in \mathbb{N}$, $1 \le s \le n$ and some scalars $k_1, k_2, \ldots, k_{s-1}, k_{s+1}, \ldots, k_n$ (possibly 0) we have that the *s*th row of B is $b_s = a_s + \sum_{j=1, j \ne s}^n k_j a_j$ and the *i*th row of B, where $i \ne s$, is $b_i = a_i$.

Theorem 3.1.E (continued) Proof (continued). So $\det(B) = \sum_{\pi \in S_n} \sigma(\pi) \prod_{i=1} b_{i \pi(i)} = \sum_{\pi \in S_n} \sigma(\pi) b_{s \pi(s)} \prod_{i=1, i \neq s} b_{i \pi(i)}$ $= \sum_{\pi \in S_n} \sigma(\pi) \left(a_{s \pi(s)} + \sum_{i=1, i \neq s}^n k_i a_{j \pi(i)} \right) \prod_{i=1}^n a_{i \pi(i)} a_{i \pi(i)}$ $= \sum_{\pi \in S_n} \sigma(\pi) \prod_{i=1}^n a_{i \pi(i)} + \sum_{j=1, j \neq s} \left(\sum_{\pi \in S_n} \sigma(\pi) k_j a_{j \pi(j)} \prod_{i=1, i \neq s} a_{i \pi(i)} \right)$ $= \det(A) + \sum \det(B_j)$ $i=1, i\neq s$

where B_j is the matrix formed from A by replacing the *s*th row of A with $k_j a_j$ (notice $j \neq s$). By Corollary 3.1.D, det $(B_j) = 0$ for $j \neq s$ and so det(B) = det(A) as claimed. By Theorem 3.1.A, the result also holds if we replace "row" with "column".

C

Theorem 3.1.E (continued) Proof (continued). So $\det(B) = \sum_{\pi \in S_n} \sigma(\pi) \prod_{i=1} b_{i \pi(i)} = \sum_{\pi \in S_n} \sigma(\pi) b_{s \pi(s)} \prod_{i=1, i \neq s} b_{i \pi(i)}$ $= \sum_{\pi \in S_n} \sigma(\pi) \left(a_{s \pi(s)} + \sum_{i=1, i \neq s}^n k_i a_{j \pi(i)} \right) \prod_{i=1, i \neq s}^n a_{i \pi(i)}$ $= \sum_{\pi \in S_n} \sigma(\pi) \prod_{i=1}^n a_{i \pi(i)} + \sum_{j=1, j \neq s} \left(\sum_{\pi \in S_n} \sigma(\pi) k_j a_{j \pi(j)} \prod_{i=1, i \neq s} a_{i \pi(i)} \right)$ $= \det(A) + \sum \det(B_j)$ $i=1, i\neq s$

where B_j is the matrix formed from A by replacing the sth row of A with $k_j a_j$ (notice $j \neq s$). By Corollary 3.1.D, det $(B_j) = 0$ for $j \neq s$ and so det(B) = det(A) as claimed. By Theorem 3.1.A, the result also holds if we replace "row" with "column".

Theorem 3.1.F. Let $A = [a_{ij}]$ be an $n \times n$ matrix and let α_{ij} represent the cofactor of a_{ij} . Then

$$\det(A) = \sum_{j=1}^{n} a_{ij} \alpha_{ij} \text{ for } i = 1, 2, \dots, n, \qquad (5.1)$$

and

$$\det(A) = \sum_{i=1}^{n} a_{ij} \alpha_{ij} \text{ for } j = 1, 2, \dots, .$$
 (5.2)

Proof. Let A_{ij} be the $(n-1) \times (n-1)$ matrix that is formed by eliminating the *i*th row and *j*th column of matrix A. Consider equation (5.1) for the case i = 1. Denote by $a_{ts}^{(j)}$ the (t, s)th element of A_{1j} (so t and s range over the set $\{1, 2, ..., n-1\}$).

Theorem 3.1.F. Let $A = [a_{ij}]$ be an $n \times n$ matrix and let α_{ij} represent the cofactor of a_{ij} . Then

$$\det(A) = \sum_{j=1}^{n} a_{ij} \alpha_{ij} \text{ for } i = 1, 2, \dots, n, \qquad (5.1)$$

and

$$\det(A) = \sum_{i=1}^{n} a_{ij} \alpha_{ij} \text{ for } j = 1, 2, \dots, .$$
 (5.2)

Proof. Let A_{ij} be the $(n-1) \times (n-1)$ matrix that is formed by eliminating the *i*th row and *j*th column of matrix *A*. Consider equation (5.1) for the case i = 1. Denote by $a_{ts}^{(j)}$ the (t, s)th element of A_{1j} (so t and s range over the set $\{1, 2, \ldots, n-1\}$). Then $\det(A) = \sum_{\pi \in S_n} \sigma(\pi) \prod_{i=1}^n a_{i\pi(i)}$. When i = 1 and π ranges over S_n , the value of $\pi(i)$ ranges over the set $\{1, 2, \ldots, n\}$.

Theorem 3.1.F. Let $A = [a_{ij}]$ be an $n \times n$ matrix and let α_{ij} represent the cofactor of a_{ij} . Then

$$\det(A) = \sum_{j=1}^{n} a_{ij} \alpha_{ij} \text{ for } i = 1, 2, \dots, n, \qquad (5.1)$$

and

$$\det(A) = \sum_{i=1}^{n} a_{ij} \alpha_{ij} \text{ for } j = 1, 2, \dots, .$$
 (5.2)

Proof. Let A_{ij} be the $(n-1) \times (n-1)$ matrix that is formed by eliminating the *i*th row and *j*th column of matrix *A*. Consider equation (5.1) for the case i = 1. Denote by $a_{ts}^{(j)}$ the (t, s)th element of A_{1j} (so t and s range over the set $\{1, 2, \ldots, n-1\}$). Then $\det(A) = \sum_{\pi \in S_n} \sigma(\pi) \prod_{i=1}^n a_{i\pi(i)}$. When i = 1 and π ranges over S_n , the value of $\pi(i)$ ranges over the set $\{1, 2, \ldots, n\}$.

Theorem 3.1.F (continued 1)

Proof (continued). Let $S_n^j \subset S_n$ denote all $\pi \in S_n$ such that $\pi(1) = j$ (so for given $j \in \{1, 2, ..., n\}$, the permutations in S_n^j all map 1 to j and map the remaining n-1 values 2, 3, ..., n to 1, 2, ..., j-1, j+1, j+2, ..., n, so that $|S_n^j| = (n-1)!$ for each $j \in \{1, 2, ..., n\}$). We have $S_n = \bigcup_{j=1}^n S_n^j$ and so

$$\det(A) = \sum_{j=1}^{n} \left(\sum_{\pi \in S_{n}^{j}} \sigma(\pi) \prod_{i=1}^{n} a_{i \pi(i)} \right)$$
$$= \sum_{j=1}^{n} \left(\sum_{\pi \in S_{n}^{j}} \sigma(\pi) a_{1j} \prod_{i=2}^{n} a_{i \pi(i)} \right) \text{ since } \pi(1) = j$$
$$= \sum_{j=1}^{n} a_{1j} \left(\sum_{\pi \in S_{n}^{j}} \sigma(\pi) \prod_{i=2}^{n} a_{i \pi(i)} \right). \quad (*)$$

Theorem 3.1.F (continued 1)

Proof (continued). Let $S_n^j \subset S_n$ denote all $\pi \in S_n$ such that $\pi(1) = j$ (so for given $j \in \{1, 2, ..., n\}$, the permutations in S_n^j all map 1 to j and map the remaining n-1 values 2, 3, ..., n to 1, 2, ..., j-1, j+1, j+2, ..., n, so that $|S_n^j| = (n-1)!$ for each $j \in \{1, 2, ..., n\}$). We have $S_n = \bigcup_{j=1}^n S_n^j$ and so

$$det(A) = \sum_{j=1}^{n} \left(\sum_{\pi \in S_n^j} \sigma(\pi) \prod_{i=1}^{n} a_{i\pi(i)} \right)$$
$$= \sum_{j=1}^{n} \left(\sum_{\pi \in S_n^j} \sigma(\pi) a_{1j} \prod_{i=2}^{n} a_{i\pi(i)} \right) \text{ since } \pi(1) = j$$
$$= \sum_{j=1}^{n} a_{1j} \left(\sum_{\pi \in S_n^j} \sigma(\pi) \prod_{i=2}^{n} a_{i\pi(i)} \right). \quad (*)$$

Theorem 3.1.F (continued 2)

Proof (continued). Now in (*), as permutation π ranges over S_n^j and as *i* ranges over $\{2, 3, \ldots, n\}$, the elements $a_{i\pi(i)}$ ranges over all entries of A_{1i} . Since we denote the (t, s) entry of A_{1i} as $a_{ts}^{(j)}$, then we can re-index the product and inner summation in (*) from $i \in \{2, 3, ..., n\}$ and $\pi \in S_n^j$ to $t \in \{1, 2, ..., n-1\}$ and $\gamma \in S_{n-1}$, respectively. We do so by defining t = i - 1 for $i \in \{2, 3, \ldots, n\}$ and $\gamma \in S_{n-1}$ as $\gamma(t) = \begin{cases} \pi(t+1) & \text{if } \pi(t+1) < j \\ \pi(t+1) - 1 & \text{if } \pi(t+1) > j \end{cases} \text{ for } t \in \{1, 2, \dots, n-1\}. \text{ We}$ then have that $\gamma: \{1, 2, \dots, n-1\} \rightarrow \{1, 2, \dots, n-1\}$ and so $\gamma \in S_{n-1}$. Also, $\gamma(t) = \pi(i)$ if $\pi(i) < i$, and $\gamma(t) = \pi(i) - 1$ if $\pi(i) > i$.

Theorem 3.1.F (continued 2)

Proof (continued). Now in (*), as permutation π ranges over S_n^j and as *i* ranges over $\{2, 3, \ldots, n\}$, the elements $a_{i\pi(i)}$ ranges over all entries of A_{1i} . Since we denote the (t, s) entry of A_{1i} as $a_{ts}^{(j)}$, then we can re-index the product and inner summation in (*) from $i \in \{2, 3, ..., n\}$ and $\pi \in S_n^j$ to $t \in \{1, 2, \dots, n-1\}$ and $\gamma \in S_{n-1}$, respectively. We do so by defining t = i - 1 for $i \in \{2, 3, \ldots, n\}$ and $\gamma \in S_{n-1}$ as $\gamma(t) = \begin{cases} \pi(t+1) & \text{if } \pi(t+1) < j \\ \pi(t+1) - 1 & \text{if } \pi(t+1) > j \end{cases} \text{ for } t \in \{1, 2, \dots, n-1\}. \text{ We}$ then have that $\gamma: \{1, 2, \dots, n-1\} \rightarrow \{1, 2, \dots, n-1\}$ and so $\gamma \in S_{n-1}$. Also, $\gamma(t) = \pi(i)$ if $\pi(i) < i$, and $\gamma(t) = \pi(i) - 1$ if $\pi(i) > i$. Now extend $\gamma \in S_{n-1}$ to $\gamma' \in S_n$, be defining $\gamma'(t) = \gamma(t)$ for $t \in \{1, 2, \dots, n-1\}$ and $\gamma'(n) = n$. Then $\sigma(\gamma') = \sigma(\gamma)$.

Theorem 3.1.F (continued 2)

Proof (continued). Now in (*), as permutation π ranges over S_n^j and as *i* ranges over $\{2, 3, \ldots, n\}$, the elements $a_{i\pi(i)}$ ranges over all entries of A_{1i} . Since we denote the (t, s) entry of A_{1i} as $a_{ts}^{(j)}$, then we can re-index the product and inner summation in (*) from $i \in \{2, 3, ..., n\}$ and $\pi \in S_n^j$ to $t \in \{1, 2, \dots, n-1\}$ and $\gamma \in S_{n-1}$, respectively. We do so by defining t = i - 1 for $i \in \{2, 3, \ldots, n\}$ and $\gamma \in S_{n-1}$ as $\gamma(t) = \begin{cases} \pi(t+1) & \text{if } \pi(t+1) < j \\ \pi(t+1) - 1 & \text{if } \pi(t+1) > j \end{cases} \text{ for } t \in \{1, 2, \dots, n-1\}. \text{ We}$ then have that $\gamma: \{1, 2, \dots, n-1\} \rightarrow \{1, 2, \dots, n-1\}$ and so $\gamma \in S_{n-1}$. Also, $\gamma(t) = \pi(i)$ if $\pi(i) < i$, and $\gamma(t) = \pi(i) - 1$ if $\pi(i) > i$. Now extend $\gamma \in S_{n-1}$ to $\gamma' \in S_n$, be defining $\gamma'(t) = \gamma(t)$ for $t \in \{1, 2, \dots, n-1\}$ and $\gamma'(n) = n$. Then $\sigma(\gamma') = \sigma(\gamma)$.

Theorem 3.1.F (continued 3)

Proof (continued). We can relate γ' and π with the following mapping:

We will need to "move the *j*th term to the right end" and do so using the mapping π'' :

So first we increase indices by $1 \pmod{n}$ with the permutation

$$\pi' = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ 2 & 3 & \cdots & n & 1 \end{pmatrix} = (2,3)(3,4)\cdots(n-1,n)(n,1),$$

second we apply permutation $\pi,$ and third we perform the second mapping above using the permutation π'' where \ldots

Theorem 3.1.F (continued 3)

Proof (continued). We can relate γ' and π with the following mapping:

$$\begin{array}{cccccccc} \gamma'(1) & \gamma'(2) & \cdots & \gamma'(n-1) & \gamma'(n) \\ \downarrow & \downarrow & \cdots & \downarrow & \\ \pi(2) & \pi(3) & \cdots & \pi(n) & \pi(1) = j. \end{array}$$

We will need to "move the *j*th term to the right end" and do so using the mapping π'' :

So first we increase indices by $1 \pmod{n}$ with the permutation

$$\pi' = \begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ 2 & 3 & \cdots & n & 1 \end{pmatrix} = (2,3)(3,4)\cdots(n-1,n)(n,1),$$

second we apply permutation $\pi,$ and third we perform the second mapping above using the permutation π'' where \ldots

Theorem 3.1.F (continued 4)

Proof (continued).

$$\pi'' = \begin{pmatrix} 1 & 2 & \cdots & j-1 & j & j+1 & \cdots & n-1 & n \\ 1 & 2 & \cdots & j-1 & n & j & \cdots & n-2 & n-1 \end{pmatrix}$$

= $(n-2, n-1)(n-3, n-2) \cdots (j, j+1)(j, n)$.
Then $\gamma' = \pi'' \pi \pi'$. Notice $\sigma(\pi') = (-1)^{n-1}$ and $\sigma(\pi'') = (-1)^{n-j}$, so that
 $\sigma(\gamma) = \sigma(\gamma') = \sigma(\pi'' \pi \pi')$
= $\sigma(\pi'')\sigma(\pi)\sigma(\pi') = (-1)^{2n-j-1}\sigma(\pi) = (-1)^{j+1}\sigma(\pi)$,
or $\sigma(\pi) = (-1)^{j+1}\sigma(\gamma)$. So (*) becomes

$$\det(A) = \sum_{j=1}^{n} a_{1j} \left(\sum_{\pi \in S_n^j} \sigma(\pi) \prod_{i=2}^{n} a_{i\pi(i)} \right) \text{ by } (*)$$

or

Theorem 3.1.F (continued 4)

Proof (continued).

$$\pi'' = \begin{pmatrix} 1 & 2 & \cdots & j-1 & j & j+1 & \cdots & n-1 & n \\ 1 & 2 & \cdots & j-1 & n & j & \cdots & n-2 & n-1 \end{pmatrix}$$

= $(n-2, n-1)(n-3, n-2) \cdots (j, j+1)(j, n)$.
Then $\gamma' = \pi'' \pi \pi'$. Notice $\sigma(\pi') = (-1)^{n-1}$ and $\sigma(\pi'') = (-1)^{n-j}$, so that
 $\sigma(\gamma) = \sigma(\gamma') = \sigma(\pi'' \pi \pi')$
= $\sigma(\pi'')\sigma(\pi)\sigma(\pi') = (-1)^{2n-j-1}\sigma(\pi) = (-1)^{j+1}\sigma(\pi)$,
or $\sigma(\pi) = (-1)^{j+1}\sigma(\gamma)$. So (*) becomes

$$\det(A) = \sum_{j=1}^{n} a_{1j} \left(\sum_{\pi \in S_n^j} \sigma(\pi) \prod_{i=2}^{n} a_{i\pi(i)} \right) \text{ by } (*)$$

or

Theorem 3.1.F (continued 5)

Proof (continued).

$$det(A) = \sum_{j=1}^{n} a_{1j} \left(\sum_{\gamma \in S_{n-1}} (-1)^{j+1} \sigma(\gamma) \prod_{t=1}^{n-1} a_{t\gamma(t)}^{(j)} \right)$$

where $\gamma' = \pi'' \pi \pi'$ and γ is
the restriction of γ' to $\{1, 2, \dots, n-1\}$
$$= \sum_{j=1}^{n} a_{1j} (-1)^{j+1} \left(\sum_{\gamma \in S_{n-1}} \sigma(\gamma) \prod_{t=1}^{n-1} a_{t\gamma(t)}^{(j)} \right)$$

$$= \sum_{j=1}^{n} a_{1j} (-1)^{j+1} det(A_{1j}) = \sum_{j=1}^{n} a_{1j} \alpha_{1j},$$

and the claim holds for i = 1.

()

Theorem 3.1.F (continued 6)

Proof (continued). Consider now equation (5.1) for i > 1. Let *B* be the $n \times n$ matrix formed from *A* by interchanging the (i - 1)th and *i*th rows, then the (i - 2)th and (i - 1)th rows, ..., then the 1st and 2nd rows (so that the first row of *B* is the *i*th row of *A* and the 2nd through *i*th row of *B* is the 1st through (i - 1)th row of *A*, respectively). By Theorem 3.1.C, $det(A) = (-1)^{i-1}det(B)$. Let B_{1j} be the $(n - 1) \times (n - 1)$ matrix obtained by eliminating the 1st row and the *j*th column of *B*, and let b_{1j} be the *j*th element of the first row of *B*. Then $B_{1j} = A_{ij}$ and so

$$\det(A) = (-1)^{i-1} \det(B) = (-1)^{i-1} \sum_{j=1}^{n} b_{1j} (-1)^{1+j} \det(B_{1j})$$

by the first part of the proof

$$= (-1)^{i-1} \sum_{j=1}^{n} a_{ij} (-1)^{1+j} \det(A_{ij}) \text{ since } B_{1j} = A_{ij}$$

Theorem 3.1.F (continued 6)

Proof (continued). Consider now equation (5.1) for i > 1. Let *B* be the $n \times n$ matrix formed from *A* by interchanging the (i - 1)th and *i*th rows, then the (i - 2)th and (i - 1)th rows, ..., then the 1st and 2nd rows (so that the first row of *B* is the *i*th row of *A* and the 2nd through *i*th row of *B* is the 1st through (i - 1)th row of *A*, respectively). By Theorem 3.1.C, $det(A) = (-1)^{i-1}det(B)$. Let B_{1j} be the $(n - 1) \times (n - 1)$ matrix obtained by eliminating the 1st row and the *j*th column of *B*, and let b_{1j} be the *j*th element of the first row of *B*. Then $B_{1j} = A_{ij}$ and so

$$\det(A) = (-1)^{i-1} \det(B) = (-1)^{i-1} \sum_{j=1}^{n} b_{1j} (-1)^{1+j} \det(B_{1j})$$

by the first part of the proof

$$= (-1)^{i-1} \sum_{j=1}^{n} a_{ij} (-1)^{1+j} \det(A_{ij}) \text{ since } B_{1j} = A_{ij}$$

Theorem 3.1.F (continued 7)

Proof (continued).

$$\det(A) = \sum_{j=1}^n a_{ij}(-1)^{i+j} \det(A_{ij}) = \sum_{j=1}^n a_{ij} \alpha_{ij}.$$

So equation (5.1) holds for all $i = 1, 2, \ldots, n$.

Finally, consider equation (5.2). Notice that the matrix formed by eliminating the *j*th row and *i*th column of A^T is A_{ij}^T . So the cofactor of the (j, i)th element of A^T is $(-1)^{j+i} \det(A_{ij}^T) = (-1)^{j+i} \det(A_{ij}) = \alpha_{ij}$ by Theorem 3.1.A.

()

Theorem 3.1.F (continued 7)

Proof (continued).

$$\det(A) = \sum_{j=1}^n a_{ij}(-1)^{i+j} \det(A_{ij}) = \sum_{j=1}^n a_{ij} \alpha_{ij}.$$

So equation (5.1) holds for all i = 1, 2, ..., n.

Finally, consider equation (5.2). Notice that the matrix formed by eliminating the *j*th row and *i*th column of A^T is A_{ij}^T . So the cofactor of the (j, i)th element of A^T is $(-1)^{j+i} \det(A_{ij}^T) = (-1)^{j+i} \det(A_{ij}) = \alpha_{ij}$ by Theorem 3.1.A. Since the (j, i)th element of A^T is the (i, j)th element of A, then by equation (5.1) and Theorem 3.1.A,

$$det(A) = det(A^{T}) = \sum_{j=1}^{n} a'_{ij} \alpha'_{ij} \text{ where } a'_{ij} = a_{ji} \text{ and } \alpha'_{ij} = (-1)^{i+j} det(A^{T}_{ij})$$
$$= \sum_{i=1}^{n} a'_{ji} \alpha'_{ji} \text{ interchanging } i \text{ and } j$$

Theorem 3.1.F (continued 7)

Proof (continued).

$$\det(A) = \sum_{j=1}^n a_{ij}(-1)^{i+j} \det(A_{ij}) = \sum_{j=1}^n a_{ij} \alpha_{ij}.$$

So equation (5.1) holds for all $i = 1, 2, \ldots, n$.

Finally, consider equation (5.2). Notice that the matrix formed by eliminating the *j*th row and *i*th column of A^T is A_{ii}^T . So the cofactor of the (j, i)th element of A^T is $(-1)^{j+i} \det(A_{ij}^T) = (-1)^{j+i} \det(A_{ij}) = \alpha_{ij}$ by Theorem 3.1.A. Since the (j, i)th element of A^T is the (i, j)th element of A, then by equation (5.1) and Theorem 3.1.A,

$$det(A) = det(A^{T}) = \sum_{j=1}^{n} a'_{ij} \alpha'_{ji} \text{ where } a'_{ij} = a_{ji} \text{ and } \alpha'_{ij} = (-1)^{i+j} det(A^{T}_{ij})$$
$$= \sum_{i=1}^{n} a'_{ji} \alpha'_{ji} \text{ interchanging } i \text{ and } j$$

Theory of Matrices

Theorem 3.1.F (continued 8)

Theorem 3.1.F. Let $A = [a_{ij}]$ be an $n \times n$ matrix and let α_{ij} represent the cofactor of a_{ij} . Then

$$\det(A) = \sum_{i=1}^{n} a_{ij} \alpha_{ij} \text{ for } j = 1, 2, \dots, .$$
 (5.2)

Proof (continued). ...

$$det(A) = \sum_{i=1}^{n} a_{ij}(-1)^{j+i} det(A_{ji}^{T}) = \sum_{i=1}^{n} a_{ij}(-1)^{i+j} det(A_{ij})$$
$$= \sum_{i=1}^{n} a_{ij}\alpha_{ij}$$

and equation 5.2 holds.

Theorem 3.1.3. Let A be an $n \times n$ matrix with adjoint $\operatorname{adj}(A) = [\alpha_{ij}]^T$. Then $A \operatorname{adj}(A) = \operatorname{adj}(A)A = \operatorname{det}(A)I_n$.

Proof. With $A = [a_{ij}]$ we have the (i, j) entry of $A \operatorname{adj}(A)$ as $\sum_{k=1}^{n} a_{ik} \alpha_{jk}$. By Theorem 3.1.F, for i = j this is $\det(A)$.

Theorem 3.1.3. Let A be an $n \times n$ matrix with adjoint $\operatorname{adj}(A) = [\alpha_{ij}]^T$. Then $A \operatorname{adj}(A) = \operatorname{adj}(A)A = \operatorname{det}(A)I_n$.

Proof. With $A = [a_{ij}]$ we have the (i, j) entry of $A \operatorname{adj}(A)$ as $\sum_{k=1}^{n} a_{ik} \alpha_{jk}$. By Theorem 3.1.F, for i = j this is $\det(A)$.

If $i \neq j$, consider the matrix $B = [b_{ij}]$ where B is $n \times n$ and has the same rows as A, except that its *j*th row is the same as the *i*th row of A. Then the cofactors α_{jk} of A are the same as the cofactors β_{jk} of B for $1 \leq k \leq n$. Also, since the *j*th row of B is the same as the *i*th of A then $b_{jk} = a_{ik}$ for $1 \leq k \leq n$. Since the *i*th row and the *j*th row are the same in B then, by Note 3.1.C, det(B) = 0.

Theorem 3.1.3. Let A be an $n \times n$ matrix with adjoint $\operatorname{adj}(A) = [\alpha_{ij}]^T$. Then $A \operatorname{adj}(A) = \operatorname{adj}(A)A = \operatorname{det}(A)I_n$.

Proof. With $A = [a_{ij}]$ we have the (i, j) entry of $A \operatorname{adj}(A)$ as $\sum_{k=1}^{n} a_{ik} \alpha_{jk}$. By Theorem 3.1.F, for i = j this is $\det(A)$.

If $i \neq j$, consider the matrix $B = [b_{ij}]$ where B is $n \times n$ and has the same rows as A, except that its *j*th row is the same as the *i*th row of A. Then the cofactors α_{jk} of A are the same as the cofactors β_{jk} of B for $1 \leq k \leq n$. Also, since the *j*th row of B is the same as the *i*th of A then $b_{jk} = a_{ik}$ for $1 \leq k \leq n$. Since the *i*th row and the *j*th row are the same in B then, by Note 3.1.C, det(B) = 0. So for $i \neq j$ the (i, j) entry of $A \operatorname{adj}(A)$ is

$$\sum_{k=1} a_{ik} \alpha_{jk} = \sum_{k=1} b_{jk} \beta_{jk} = \det(B) = 0$$
 by Theorem 3.1.F.

So the (i,j) entry of $A \operatorname{adj}(A)$ is $\det(A)$ for i = j and 0 for $i \neq j$; that is $A \operatorname{adj}(A) = \det(A)I_n$, as claimed. Similarly, $\operatorname{adj}(A)A = \det(A)I_n$.

Theorem 3.1.3. Let A be an $n \times n$ matrix with adjoint $\operatorname{adj}(A) = [\alpha_{ij}]^T$. Then $A \operatorname{adj}(A) = \operatorname{adj}(A)A = \operatorname{det}(A)I_n$.

Proof. With $A = [a_{ij}]$ we have the (i, j) entry of $A \operatorname{adj}(A)$ as $\sum_{k=1}^{n} a_{ik} \alpha_{jk}$. By Theorem 3.1.F, for i = j this is $\det(A)$.

If $i \neq j$, consider the matrix $B = [b_{ij}]$ where B is $n \times n$ and has the same rows as A, except that its *j*th row is the same as the *i*th row of A. Then the cofactors α_{jk} of A are the same as the cofactors β_{jk} of B for $1 \leq k \leq n$. Also, since the *j*th row of B is the same as the *i*th of A then $b_{jk} = a_{ik}$ for $1 \leq k \leq n$. Since the *i*th row and the *j*th row are the same in B then, by Note 3.1.C, det(B) = 0. So for $i \neq j$ the (i, j) entry of $A \operatorname{adj}(A)$ is

$$\sum_{k=1}^{n} a_{ik} \alpha_{jk} = \sum_{k=1}^{n} b_{jk} \beta_{jk} = \det(B) = 0$$
 by Theorem 3.1.F.

So the (i,j) entry of $A \operatorname{adj}(A)$ is $\det(A)$ for i = j and 0 for $i \neq j$; that is $A \operatorname{adj}(A) = \det(A)I_n$, as claimed. Similarly, $\operatorname{adj}(A)A = \det(A)I_n$.

Theorem 3.1.G. Let T be an $m \times m$ matrix, V an $n \times m$ matrix, W an $n \times n$ matrix, and let '0' represent the $m \times n$ matrix of all entries as 0. Then the determinant of the partitioned matrix is

$$\det \begin{bmatrix} T & 0 \\ V & W \end{bmatrix} = \det \begin{bmatrix} W & V \\ 0 & T \end{bmatrix} = \det(T)\det(W).$$
Proof. Let $A = \begin{bmatrix} T & 0 \\ V & W \end{bmatrix} = [a_{ij}]$ be a partitioned $(m+n) \times (m+n)$
matrix. Let $T = [t_{ij}]$ and $W = [w_{ij}]$, so that $t_{ij} = a_{ij}$ for
 $i, j \in \{1, 2, ..., m\}$ and $w_{ij} = a_{(i+m)(j+m)}$ for $i, j \in \{1, 2, ..., n\}$. By
definition: $\det(A) = \sum_{\pi \in S_{m+n}} \sigma(\pi) \prod_{i=1}^{m+n} a_{i\pi(i)}.$ (*)

Theorem 3.1.G. Let T be an $m \times m$ matrix, V an $n \times m$ matrix, W an $n \times n$ matrix, and let '0' represent the $m \times n$ matrix of all entries as 0. Then the determinant of the partitioned matrix is

$$\det \begin{bmatrix} T & 0 \\ V & W \end{bmatrix} = \det \begin{bmatrix} W & V \\ 0 & T \end{bmatrix} = \det(T)\det(W).$$
Proof. Let $A = \begin{bmatrix} T & 0 \\ V & W \end{bmatrix} = [a_{ij}]$ be a partitioned $(m+n) \times (m+n)$
matrix. Let $T = [t_{ij}]$ and $W = [w_{ij}]$, so that $t_{ij} = a_{ij}$ for
 $i, j \in \{1, 2, ..., m\}$ and $w_{ij} = a_{(i+m)(j+m)}$ for $i, j \in \{1, 2, ..., n\}$. By
definition: $\det(A) = \sum_{\pi \in S_{m+n}} \sigma(\pi) \prod_{i=1}^{m+n} a_{i\pi(i)}.$ (*)
Now the only time the product in (*) might be nonzero is when π is a
permutation mapping $\{1, 2, ..., m\}$ to itself (otherwise $a_{i\pi(i)} = 0$ for some
 $i \in \{1, 2, ..., m\}$), and hence also mapping $\{m + 1, m + 2, ..., m + n\}$ to
itself. Denote all such permutations as S'_{m+n} .

Theorem 3.1.G. Let T be an $m \times m$ matrix, V an $n \times m$ matrix, W an $n \times n$ matrix, and let '0' represent the $m \times n$ matrix of all entries as 0. Then the determinant of the partitioned matrix is

$$\det \begin{bmatrix} T & 0 \\ V & W \end{bmatrix} = \det \begin{bmatrix} W & V \\ 0 & T \end{bmatrix} = \det(T)\det(W).$$
Proof. Let $A = \begin{bmatrix} T & 0 \\ V & W \end{bmatrix} = [a_{ij}]$ be a partitioned $(m+n) \times (m+n)$
matrix. Let $T = [t_{ij}]$ and $W = [w_{ij}]$, so that $t_{ij} = a_{ij}$ for
 $i, j \in \{1, 2, ..., m\}$ and $w_{ij} = a_{(i+m)(j+m)}$ for $i, j \in \{1, 2, ..., n\}$. By
definition: $\det(A) = \sum_{\pi \in S_{m+n}} \sigma(\pi) \prod_{i=1}^{m+n} a_{i\pi(i)}.$ (*)
Now the only time the product in (*) *might* be nonzero is when π is a
permutation mapping $\{1, 2, ..., m\}$ to itself (otherwise $a_{i\pi(i)} = 0$ for some
 $i \in \{1, 2, ..., m\}$), and hence also mapping $\{m + 1, m + 2, ..., m + n\}$ to
itself. Denote all such permutations as S'_{m+n} .

Theorem 3.1.G (continued 1)

Proof (continued). Such $\pi \in S'_{m+n}$ can be written as the product of two permutations, π_m and π_n , in S'_{m+n} where π_m fixes $\{m+1, m+2, \ldots, m+n\}$ and π_n fixes $\{1, 2, \ldots, m\}$; that is, $\pi = \pi_m \pi_n$ and $\sigma(\pi) = \sigma(\pi_m)\sigma(\pi_n)$. Now if we restrict π_m to $\{1, 2, \ldots, m\}$ and denote the resulting function as π'_m then we have $\pi'_m \in S_m$. If we define $\pi'_n(i-m) = \pi_n(i) - m$ for $i \in \{m+1, m+2, \ldots, m+n\}$, then $\pi'_n : \{1, 2, \ldots, n\} \to \{1, 2, \ldots, n\}$ and $\pi'_n \in S_n$. We have $\sigma(\pi_m) = \sigma(\pi'_m)$ and $\sigma(\pi_n) = \sigma(\pi'_n)$.

Theorem 3.1.G (continued 1)

Proof (continued). Such $\pi \in S'_{m+n}$ can be written as the product of two permutations, π_m and π_n , in S'_{m+n} where π_m fixes $\{m+1, m+2, \ldots, m+n\}$ and π_n fixes $\{1, 2, \ldots, m\}$; that is, $\pi = \pi_m \pi_n$ and $\sigma(\pi) = \sigma(\pi_m)\sigma(\pi_n)$. Now if we restrict π_m to $\{1, 2, \ldots, m\}$ and denote the resulting function as π'_m then we have $\pi'_m \in S_m$. If we define $\pi'_n(i-m) = \pi_n(i) - m$ for $i \in \{m+1, m+2, \ldots, m+n\}$, then $\pi'_n : \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, n\}$ and $\pi'_n \in S_n$. We have $\sigma(\pi_m) = \sigma(\pi'_m)$ and $\sigma(\pi_n) = \sigma(\pi'_n)$. So from (*) we have

$$\det(A) = \sum_{\pi \in S'_{m+n}} \sigma(\pi) \prod_{i=1}^{m+n} a_{i \pi(i)}$$
$$= \sum_{\pi_m, \pi_n \in S'_{m+n}} \sigma(\pi_m) \sigma(\pi_n) \prod_{i=1}^m a_{i \pi_m(i)} \prod_{i=m+1}^{m+n} a_{i \pi_n(i)}$$
$$\text{where each } \pi \in S'_{m+n} \text{ is written as } \pi = \pi_m \pi_n$$

Theorem 3.1.G (continued 1)

Proof (continued). Such $\pi \in S'_{m+n}$ can be written as the product of two permutations, π_m and π_n , in S'_{m+n} where π_m fixes $\{m+1, m+2, \ldots, m+n\}$ and π_n fixes $\{1, 2, \ldots, m\}$; that is, $\pi = \pi_m \pi_n$ and $\sigma(\pi) = \sigma(\pi_m)\sigma(\pi_n)$. Now if we restrict π_m to $\{1, 2, \ldots, m\}$ and denote the resulting function as π'_m then we have $\pi'_m \in S_m$. If we define $\pi'_n(i-m) = \pi_n(i) - m$ for $i \in \{m+1, m+2, \ldots, m+n\}$, then $\pi'_n : \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, n\}$ and $\pi'_n \in S_n$. We have $\sigma(\pi_m) = \sigma(\pi'_m)$ and $\sigma(\pi_n) = \sigma(\pi'_n)$. So from (*) we have

$$\det(A) = \sum_{\pi \in S'_{m+n}} \sigma(\pi) \prod_{i=1}^{m+n} a_{i \pi(i)}$$
$$= \sum_{\pi_m, \pi_n \in S'_{m+n}} \sigma(\pi_m) \sigma(\pi_n) \prod_{i=1}^m a_{i \pi_m(i)} \prod_{i=m+1}^{m+n} a_{i \pi_n(i)}$$
where each $\pi \in S'_{m+n}$ is written as $\pi = \pi_m \pi_n$

(

Theorem 3.1.G (continued 2)

Proof (continued).

$$\det(A) = \sum_{\pi_m, \pi_n \in S'_{m+n}} \sigma(\pi_m) \sigma(\pi_n) \prod_{i=1}^m a_{i \pi_m(i)} \prod_{i=m+1}^{m+n} a_{i \pi_n(i)}$$

$$= \sum_{\pi'_m \in S_m, \pi'_n \in S_n} \sigma(\pi'_m) \sigma(\pi'_n) \prod_{i=1}^m a_{i \pi'_m(i)} \prod_{i=1}^n a_{(i+m)\pi_n(i+m)}$$

$$= \sum_{\pi'_m \in S_m, \pi'_n \in S_n} \sigma(\pi'_m) \sigma(\pi'_n) \prod_{i=1}^m a_{i \pi'_m(i)} \prod_{i=1}^n a_{(i+m)\pi'_n(i)+m}$$
since $\pi'_n(i-m) = \pi_n(i) - m$ for $i \in \{m+1, m+2, \dots, m+n\}$
or $\pi'_n(i) + m = \pi_n(i+m)$ for $i \in \{1, 2, \dots, n\}$

$$= \sum_{\pi'_m \in S_m, \pi'_n \in S_n} \sigma(\pi'_m) \sigma(\pi'_n) \prod_{i=1}^m t_{i \pi'_m(i)} \prod_{i=1}^n w_{i \pi'_n(i)}$$

Theorem 3.1.G (continued 3)

Proof (continued).

$$det(A) = \sum_{\pi'_m \in S_m, \pi'_n \in S_n} \sigma(\pi'_m) \sigma(\pi'_n) \prod_{i=1}^m t_i \pi'_m(i) \prod_{i=1}^n w_i \pi'_n(i)$$
$$= \sum_{\pi'_m \in S_m} \sigma(\pi'_m) \prod_{i=1}^m t_i \pi'_m(i) \sum_{\pi'_n \in S_n} \sigma(\pi'_n) \prod_{i=1}^n w_i \pi'_n(i)$$
$$= det(T) det(W).$$
The proof that $det \begin{bmatrix} W & V \\ 0 & T \end{bmatrix} = det(T) det(W)$ is similar.

Theorem 3.1.G (continued 3)

Proof (continued).

$$det(A) = \sum_{\pi'_m \in S_m, \pi'_n \in S_n} \sigma(\pi'_m) \sigma(\pi'_n) \prod_{i=1}^m t_{i \pi'_m(i)} \prod_{i=1}^n w_{i \pi'_n(i)}$$
$$= \sum_{\pi'_m \in S_m} \sigma(\pi'_m) \prod_{i=1}^m t_{i \pi'_m(i)} \sum_{\pi'_n \in S_n} \sigma(\pi'_n) \prod_{i=1}^n w_{i \pi'_n(i)}$$
$$= det(T) det(W).$$
The proof that det $\begin{bmatrix} W & V \\ 0 & T \end{bmatrix} = det(T) det(W)$ is similar.

Theorem 3.1.H. Let A be $n \times n$ and let T be an $n \times n$ upper or lower triangular matrix with entries of 1 along the diagonal. Then det(AT) = det(TA) = det(A).

Proof. Consider the case AT where T is lower triangular. Define T_i to be an $n \times n$ matrix formed from I_n by replacing the *i*th column of I_n with the *i*th column of T (for $1 \le i \le n$). Then $T = T_1 T_2 \cdots T_n$, as shown in Exercise 3.1.C, so $AT = AT_1 T_2 \cdots T_n$.

Theorem 3.1.H. Let A be $n \times n$ and let T be an $n \times n$ upper or lower triangular matrix with entries of 1 along the diagonal. Then det(AT) = det(TA) = det(A).

Proof. Consider the case AT where T is lower triangular. Define T_i to be an $n \times n$ matrix formed from I_n by replacing the *i*th column of I_n with the *i*th column of T (for $1 \le i \le n$). Then $T = T_1T_2\cdots T_n$, as shown in Exercise 3.1.C, so $AT = AT_1T_2\cdots T_n$. Define $B_0 = A$ and $B_i = AT_1T_2\cdots T_i$ (for $1 \le i \le n$). Consider $B_{i-1}T_i$ for $1 \le i \le n$. Since all columns of T_i , except for the *i*th column, are the same as I_n then the columns of $B_{i-1}T_i$ are the same as the columns of B_{i-1} , except for the *i*th column. Let $t_{1i}, t_{2i}, \ldots, t_{ni}$ be the entries in the *i*th column of T_i (so $t_{1i} = t_{2i} = \cdots = t_{(i-1)i} = 0$ and $t_{ii} = 1$). Let b_1, b_2, \ldots, b_n be the columns of B_{i-1} .

Theorem 3.1.H. Let A be $n \times n$ and let T be an $n \times n$ upper or lower triangular matrix with entries of 1 along the diagonal. Then det(AT) = det(TA) = det(A).

Proof. Consider the case AT where T is lower triangular. Define T_i to be an $n \times n$ matrix formed from I_n by replacing the *i*th column of I_n with the *i*th column of T (for $1 \le i \le n$). Then $T = T_1T_2 \cdots T_n$, as shown in Exercise 3.1.C, so $AT = AT_1T_2 \cdots T_n$. Define $B_0 = A$ and $B_i = AT_1T_2 \cdots T_i$ (for $1 \le i \le n$). Consider $B_{i-1}T_i$ for $1 \le i \le n$. Since all columns of T_i , except for the *i*th column, are the same as I_n then the columns of $B_{i-1}T_i$ are the same as the columns of B_{i-1} , except for the *i*th column. Let $t_{1i}, t_{2i}, \ldots, t_{ni}$ be the entries in the *i*th column of T_i (so $t_{1i} = t_{2i} = \cdots = t_{(i-1)i} = 0$ and $t_{ii} = 1$). Let b_1, b_2, \ldots, b_n be the columns of B_{i-1} .

Theorem 3.1.H (continued)

Theorem 3.1.H. Let A be $n \times n$ and let T be an $n \times n$ upper or lower triangular matrix with entries of 1 along the diagonal. Then det(AT) = det(TA) = det(A).

Proof (continued). Then the entries of the *i*th column of $B_{i-1}T_i$ are

$$\sum_{k=1}^n b_{jk}t_{ki} = b_{ji} + \sum_{k=i+1}^n b_{jk}t_{ki}$$
 for $1 \leq j \leq n$

where the entries of b_i are $b_{1i}, b_{2i}, \ldots, b_{ni}$. So the *i*th column of $B_{i-1}T_i$ is $b_i + \sum_{k=i+1}^n b_k t_{ki}$, which is the *i*th column of B_{i-1} plus a series of scalar multiples of the columns $b_{i+1}, b_{i+2}, \ldots, b_n$ of B_{i-1} . So by Theorem 3.1.E, $\det(B_i) = \det(B_{i-1}T_i) = \det(B_{i-1})$. This holds for $1 \le i \le n$, so

 $\det(A) = \det(B_0) = \det(B_1) = \det(B_2) = \cdots = \det(B_n) = \det(AT).$

The result holds similarly for T upper triangular and for TA.

Theorem 3.1.H (continued)

Theorem 3.1.H. Let A be $n \times n$ and let T be an $n \times n$ upper or lower triangular matrix with entries of 1 along the diagonal. Then det(AT) = det(TA) = det(A).

Proof (continued). Then the entries of the *i*th column of $B_{i-1}T_i$ are

$$\sum_{k=1}^n b_{jk}t_{ki} = b_{ji} + \sum_{k=i+1}^n b_{jk}t_{ki}$$
 for $1 \leq j \leq n$

where the entries of b_i are $b_{1i}, b_{2i}, \ldots, b_{ni}$. So the *i*th column of $B_{i-1}T_i$ is $b_i + \sum_{k=i+1}^n b_k t_{ki}$, which is the *i*th column of B_{i-1} plus a series of scalar multiples of the columns $b_{i+1}, b_{i+2}, \ldots, b_n$ of B_{i-1} . So by Theorem 3.1.E, $\det(B_i) = \det(B_{i-1}T_i) = \det(B_{i-1})$. This holds for $1 \le i \le n$, so

$$\det(A) = \det(B_0) = \det(B_1) = \det(B_2) = \cdots = \det(B_n) = \det(AT).$$

The result holds similarly for T upper triangular and for TA.