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Theorem 3.2.1 (continued 1)

(1) Let A= [aj;] be m x n and let B = [bj] be n x's. Then
(AB)T = BTA'.
n
Proof. Let C = [c;] = (AB)T. The (i,j)th entry of AB is Z aikbyj, so

k=1

cj =Y ajbq. Let BT =[b]" =
k=1
AT [au]T

[b ] = [bji] and
[a5] = [aji]- Then the (i,/)th entry of BTAT is
n n n
Z b,-tka,’ij = Z bk,-ajk = Z ajkbk,- = C,'j
k=1 k=1 k=1
(AB)T = BTAT. O

and therefore C =
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Theorem 3.2.1

Theorem 3.2.1. Properties of Matrix Multiplication.

(1) Let A= [a;] be m x nand let B = [bj;] be n x s. Then
(AB)T = BTAT.
(2) Let A= [aj] be mx n, B =[bjj] be nxs, and C = [cj] be

s x t. Then A(BC) =
is associative.

(AB)C. That is, matrix multiplication

(3) Let A= [ajj] be mx nand let B = [b;j] and C = [cjj| be
nxs. Then A(B+ C)=AB+ AC. Let A=[aj] be mx n
and let B = [bjj] and C = [c;;] be n x m matrices. Then

(B + C)A = BA+ CA. That is, matrix multiplication
distributes over matrx addition.

(4) Let A= [aj] and B = [bj;] be n x n matrices. If A and B are
diagonal then AB is diagonal. If A and B are upper
triangular then AB is upper triangular. If A and B are lower
triangular then AB is lower triangular.
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Theorem 3.2.1 (continued 2)

(2) Let A= [ajj] be mx n, B=[bjj] be nxs, and C = [cjj] be s x t.
Then A(BC) = (AB)C. That is, matrix multiplication is associative.

Proof. The (i,/)th entry of BC is > ;_; bikckj and so the (k, j)th entry of
BC is Y ~j_q brecej. Therefore the (i,/)th entry of A(BC) is

kzla,k <Z bu%) = Z <Za kbu) = Z <Za gbgk> Ckj

(=1 k=1

where the second inequality holds by interchanging dummy variables ¢ and
k. Now >, _; ajsbex is the (i, k)th entry of AB, and so the last sum is the
(i,j)th entry of (AB)C. Therefore A(BC) = (AB)C. O
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Theorem 3.2.1 (continued 3) Theorem 3.2.1 (continued 4)

(3) Let A =[a;j] be m x nand let B = [bjj] and C = [c;;] be n x s. Then

A(B+ C) = AB+ AC. Let A= [ajj] be m x n and let B = [bjj] and

C = [cjj] be s x m matrices. Then (B 4+ C)A = BA+ CA. That is, matrix

multiplication distributes over vector addition. (4) Let A = [a;] and B = [b;j] be n x n matrices. If A and B are diagonal
then AB is diagonal. If A and B are upper triangular then AB is upper

Proof. (3) The (k,j)th entry of B+ C is byj + cij and so the (7,/)th triangular. If A and B are lower triangular then AB is lower triangular.

entry of A(B+ C) is

n n n Proof. (4) The proof is left as Exercise 3.2. O
> ailbig+cg) =D abig + Y aucy,
k=1 k=1 k=1
which is the (i, j)th entry of AB 4+ AC, and so A(B+ C) = AB + AC.
Similarly, (B + C)A = BA+ CA. O
Theory of Matrices June5,2020 6 /22 Theory of Matrices June5,2020 7 /22
Theorem 3.2.2 Theorem 3.2.2 (continued 1)
Proof. The dimensions of the matrix products are:
kxp kxq
. L . A B E F | l
Theorem 3.2.2. Consider partitioned matrices [ c D and C H ] A B E F "AE + BG AF + BH
where A = [aj] is k x £, B=[bj] is k x m, C ={[cj]is nx ¥, D=[dj]is c D G H |CE+DG CF + DH
nXxX m, E:[e,-j] iS€><p, F:[f,'j] iSqu, G:[g,-j] iszp, and (k+n)x (£+m) E+m)x(p+q) 1‘ ']‘
H = [hjj] is m x q. Then the product of the partitioned matrices is the oo nxa
partitioned matrix — A B N — E F — In. P
Let M [ c D [mj] and N G H [njj]. Then the (i,/)th
[ A B ] [ E F ] _ [ AE +BG AF +BH ] entry of MN is S>2™ my,n,;. For i€ {1,2,... k} and j € {1,2,...,p}
¢ D G H CE+DG CF+DH we have (where we set s = r — /) that
Notice that the dimensions of the matrices insure that all matrix products tm ¢ tm ¢ m
involve matrices conformable for multiplication. Z MirNej = Z Mir Nj +- Z MirNej = Z dirérj + Z bisgsj
r=1 r=1 r=0+1 r=1 s=1
since m;, = a;, for r € {1,2,...,¢}, m;, = b;, for

re{l+1,0+2,....,04+m}, nj=ejforre{l,2,...,0} and ...
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Theorem 3.2.2 (continued 2)

Proof. ...nj=gsfor {rel+1,0+2,...,0+ m} (that is,
se€{1,2,...,n}) where j € {1,2,... k} and j € {1,2,..., p}. Therefore
the (/,/)th entry of MN is the sum of the (i,j)th entry of AE and the
(i,j)th entry of BG, as claimed.

The result similarly holds for i € {1,2,...,k} and
Je{p+1l,p+2,...,p+ q} (where the (i, )th entry of MN is the
(i,j — p)th entry of AF + BH), fori € {k+1,k+2,...,k+ n} and
J€{1,2,...,p} (where the (i,j)th entry of MN is the (i — k, j)th entry of
CE + DG), and for i e {k+1,k+2,...,k+ n} and
Je{p+1,p+2,...,p+ q} (where the (i, )th entry of MN is the

(i — k,j — p)th entry of CF + DH). O
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Theorem 3.2.3 (continued 1)

Proof (continued). For i = g we have e;; = 0 for j # p, and egp = 1.

Let B = EpqA = [bjj]. Then Bis n x mand for i € {1,2,...,n} \ {p,q}

we have bj = Y }_; ejxaxj = ajj, so for these values of i, row i of B is the

same as row i of A. For i = p, we have bpj = Y] _; epkakj = aqj, so the

pth row of B is the same as the gth row of A. For i = g, we have

bgj = > h_1 €qkakj = apj, so the gth row of B is the same as the pth row
Rp—Ryq

of A. Thatis, A = E,,A, as claimed.

Second, consider row scaling, R, — sR, where s # 0. Form elementary

matrix Es, by multiplying the pth row of n x n identity matrix /, by
Rp—sRp

nonzero scalar s: I, Esp = [ejj]. So we have e; = 0 for

ie{l,2,...,n}\{p} and i #j, and e =1 for i € {1,2,...,n} \ {p}.

Now for i = p we have e,; =0 for j # p and ey, = 5. Let

B = EspA = [bjj].
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Theorem 3.2.3

Theorem 3.2.3

Theorem 3.2.3. Each of the three elementary row operations on n x m
matrix A can be accomplished by multiplication on the left by an
elementary matrix which is formed by performing the same elementary row
operation on the n x n identity matrix. Each of the three elementary
column operations on n X m matrix A can be accomplished by
multiplication on the right by an elementary matrix which is formed by
performing the same elementary column operation on the m x m identity
matrix.

Proof. Let A = [a;] be n x m.
First, consider row interchange. R, <+ R,. Form elementary matrix Epq by
interchanging the pth row and gth row of n x n identity matrix /,:

Rp—Rq
I ©— 7 Epg=ej]. Sowehave e; =0foric{1,2,...,n}\{p,q} and
i#j, and g;j=1forie€{1,2,...,n}\ {p,q}. Now for i = p we have

ey =0 for j # g, and ey = 1.

Theorem 3.2.3 (continued 2)

Proof (continued). Then Bis n x m and for i € {1,2,...,n}\ {p},
bj =314 eikak = ajj, so for these values of /, the ith row of B is the

same as the ith row of A. For i = p, byj = Y ;_ €pkakj = sap;, so the pth
Rp—sRp

row of B is s times the pth row of A. That is, A EspA, as claimed.

Third, consider row addition: R, — R, + sR,;. We leave this as Exercise
3.D.

The proof for elementary column operations is similar. O
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Theorem 3.2.4 Theorem 3.2.4 (continued)

Theorem 3.2.4. For n x n matrices A and B, det(AB) = det(A)det(B).

Theorem 3.2.4. For n x n matrices A and B, det(AB) = det(A)det(B).
Proof. We have

A 0 Proof (continued). ...

det(A)det(B) = det <{ /B }) by Theorem 3.1.G
n -1, 0 5
(—1)"det <[ " ]) = (—1)"det(—1,)det(AB) = (—1)“"det(AB)
= det A D b B by Theorem 3.1.H since A AB
-1, B 0o I,
I B since det(—/,) = (—1)" by Example 3.1.A. Therefore,
({ (')7 / }) is upper triangular with diagonal entries 1
2 g det(A)det(B) = det <[ %) AOB D
= det by Theorem 3.2.2. —in
-1, 0
_ n _ln 0 _ 2n _
Now if we swap rows j and n+ i for i =1,2,...,n of [ _’L) AOB ] then = (=1)"det ([ A AB ]) = (=1)7"det(AB) = det(AB).
— O
we get [ /(” AOB ] and by Theorem 3.1.C, ...
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Theorem 3.2.7 Theorem 3.2.8
Theorem 3.2.7. Let A and B be n x n matrices. Then Theorem 3.2.8. Properties of the Inner Product of Matrices.
tr(A® B) = tr(A)tr(B). Let A, B, and C be matrices conformable for the addition and inner
Proof. From (x), the diagonal entries of A® B are products given below. Then
14| (i—1)/n] 1+[(i—1)/n] bi—n\_(i—l)/nj,i—n|_(i—1)/nJ forie {1,2, cey n2}. For ( ) If A 75 0 then <A, A> >0 and <0,A> = <A, 0> = <0, 0> =0.

ie{l+(k—=1)n2+ (k—1)n,..., kn} we have
1+|(i—1)/n]=1+(k—1)=k and
i—nl(i—1)/n| =i—n(k—1) € {1,2,...,n}, and for these values of i,

(2) (A, B) = (B,A).
(3) (sA,B) =s(A,B) = (A, sB) for scalar s € R.
(4)

- 4) ((A+ B),C) = (A,C)+ (B, C) and
a i—=1)/n i—=1)/n bi—n i—1)/n|,i—n|(i—1)/n] = 4@ bi—n —1),i—n(k— . So ! ’
1+((i—1)/n), 1+ |(i-1)/n) Pimn|(i=1) /n}i—n[(i—-1)/n] = @Kk Di—n(k—1),i-n(k-1) (C.(A+B)) = (C.A)+ (C.BY.
n2
(5) (A, B) =tr(ATB).
tr(A® B) = a1 ((i-1)/n) 1+ L(i~1)/n) Divnl(i=1) /] i=nl(i~1)/n] (6)
=1

(7) Schwarz Inequality: For n x m matrices A and B,

(A,B) = (AT.BT).
‘<A7 B>’ - <A’A>1/2<B7 B>1/2'

—Z Z akk bi— n(k—1),i—n(k—1) Zakab,,—tr A)tr )

= :
Li=l+(k=1)n - Proof. We leave the proofs of (5) and (7) as an exercise.



Theorem 3.2.8 (continued 1)

(1) If A0 then (A, A) > 0 and (0, A) = (A, 0) = (0,0) = 0.

Proof. (1) Let the column vectors of n x m matrix A be a1, a,...,am. If
A # 0 then for some 1 < k < m we have ||a|| > 0. So

Za aj = Z Zuaj||2>||aku2>o
j=1

The columns of the n X m zero matrix are all O vectors, say 01,02,...,0p,,

and so
m m
_ To. —0 — T, _
=> a/0;=0=> 0/a =
j=1 j=1

m

and (0,0) => 0/0; =0.

O
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Theorem 3.2.8 (continued 3)
(3) (sA,B) = s(A,B) = (A, sB) for scalar s € R.

Proof (continued). ...

m

(sA,B) = Z sa)) " b; = Zsa zm:aTb s(A, B).
j=1 j=1

Also

(A;sB) = (sB,A) by part (2)
= s(B,A) as just shown
= s(A,B) by part (2). O
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Theorem 3.2.8. Properties of the Inner Product of Matrices

Theorem 3.2.8 (continued 2)

(2) <A’ B> - <B7A>

(3) (sA,B) = s(A,B) = (A, sB) for scalar s € R.

Proof. (2) Let the column vectors of n x m matrices A and B be
ai,ar,...,am and by, by, ..., by, respectively. Then

(A,B) = ZaTb —Z aj, bj)
j=1

= Z(bj,aj> by Theorem 2.1.6(2)
j=1

m
= Y blaj=(BA). O
j=1

(3) Let the column vectors of n x m matrix A be a1, ay, ...,
s € R be a scalar. Then the column vectors of sA are saj, say, . ..

am and let
,Sam and
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Theorem 3.2.8. Properties of the Inner Product of Matrices

Theorem 3.2.8 (continued 4)
(4) ((A+B),C) =(A,C)+(B,C) and (C,(A+ B)) = (C,A) + (C,B).

Proof. (4) Let A, B, C be n x m matrices with column vectors
a1, az,...,am, bi,bo,..., by, and c1, ¢, ..., Cm, respectively. Then the

columns of A+ B are a1 + by, a» + bo,...,am + by and
(A+B),C) =) (a+b) =D (af +b/)=> (3] +b]c)
Jj=1 Jj=1 Jj=1
m m
=>"alg+Y blg=(AC)+(B,C).
j=1 j=1
Next,
(C,(A+B)) = ((A+B),C) by part (2)
(A, C) + (B, C) as just shown
= (C,A)+(C,B) by part (2). O
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Theorem 3.2.8 (continued 5)

(6) <A’ B> - <AT’ BT>'

Proof. (6) Let A= [a;], AT = [af], B =[by], and BT = [b}] be n x m
matrices (so aj; = aj; and bj; = bJ,) and denote the columns of A as aj, the

columns of B as bj, the columns of AT as af, and the columns of BT as
bi. Then

m m n
SIEEE ol oy
j=1

j=1 \i=1

m
Z ZQJ’ ji | interchanging i and j

i=1
:Z( ajj J,> Z(Zau ) :Z )T bt = (AT BT).
j=1 \i=1 i =

L]



