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Theorem 3.2.1

Theorem 3.2.1. Properties of Matrix Multiplication.

(1) Let A= [a;] be m x nand let B = [b;] be n x s. Then
(AB)T =BTAT,

(2) Let A= [aj] be m x n, B = [bjj] be nx s, and C = [cjj] be
s x t. Then A(BC) = (AB)C. That is, matrix multiplication
is associative.

(3) Let A= [aj] be m x n and let B = [b;] and C = [cjj| be
nxs. Then A(B+ C)=AB + AC. Let A= [aj] be mx n
and let B = [bj] and C = [c;;] be n x m matrices. Then
(B+ C)A = BA+ CA. That is, matrix multiplication
distributes over matrx addition.

(4) Let A= [aj] and B = [bjj] be n x n matrices. If A and B are
diagonal then AB is diagonal. If A and B are upper
triangular then AB is upper triangular. If A and B are lower
triangular then AB is lower triangular.
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Theorem 3.2.1 (continued 1)

(1) Let A= [a;] be m x n and let B = [bjj] be n x's. Then
(AB)T = BTAT.

Theory of Matrices June5,2020 4 /22



Theorem 3.2.1 (continued 1)

(1) Let A= [a;] be m x n and let B = [bjj] be n x's. Then
(AB)T = BTAT.

Proof. Let C = [¢;] = (AB)T. The (i,j)th entry of AB is Za,-kbkj, so
k=1

Cjj = Zajkbk,'. Let BT = [bU]T [b ] - [bﬂ] and
k=1
AT = [a]™ = [35] = [a;]. Then the (i, j)th entry of BTAT is

n n n
Z b,-tka,t(j = Z bk,-ajk = Z ajkbk,- = C,'j
k=1 k=1 k=1
and therefore C = (AB)T = BTAT. O
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Theorem 3.2.1 (continued 2)

(2) Let A= [a;] be mx n, B=[bjj] be nx s, and C = [cjj] be s x t.

Then A(BC) = (AB)C. That is, matrix multiplication is associative.
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Theorem 3.2.1 (continued 2)

(2) Let A= [a;] be mx n, B=[bjj] be nx s, and C = [cjj] be s x t.
Then A(BC) = (AB)C. That is, matrix multiplication is associative.

Proof. The (i,/)th entry of BC is Y ;_; bikckj and so the (k, j)th entry of
BC is >~;_; bkecyj. Therefore the (i,)th entry of A(BC) is

; aik <Z bkgCgJ> = Z (Z_: aik bk4> Z (Z a,gbgk)

/=1 k=1

where the second inequality holds by interchanging dummy variables ¢ and
k. Now >/, airbex is the (i, k)th entry of AB, and so the last sum is the
(1,j)th entry of (AB)C. Therefore A(BC) = (AB)C. O
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Theorem 3.2.1 (continued 3)

(3) Let A= [aj] be m x nand let B = [bjj] and C = [c;;] be n x s. Then
A(B+ C) = AB+ AC. Let A= [ajj] be m x n and let B = [bjj] and

C = [cjj] be s x m matrices. Then (B + C)A = BA+ CA. That is, matrix
multiplication distributes over vector addition.
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Theorem 3.2.1 (continued 3)

(3) Let A= [aj] be m x nand let B = [bjj] and C = [c;;] be n x s. Then
A(B+ C) = AB+ AC. Let A= [ajj] be m x n and let B = [bjj] and

C = [cjj] be s x m matrices. Then (B + C)A = BA+ CA. That is, matrix
multiplication distributes over vector addition.

Proof. (3) The (k,j)th entry of B + C is byj + cxj and so the (7, /)th
entry of A(B+ C) is

n n n
Z ajk(brj + cxj) = E ajkbyj + Z ajk Ckj,
k=1 k=1

k=1

which is the (i,/)th entry of AB + AC, and so A(B+ C) = AB + AC.
Similarly, (B + C)A = BA+ CA. O
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Theorem 3.2.1 (continued 4)

(4) Let A= [a;] and B = [bjj] be n x n matrices. If A and B are diagonal
then AB is diagonal. If A and B are upper triangular then AB is upper
triangular. If A and B are lower triangular then AB is lower triangular.

Proof. (4) The proof is left as Exercise 3.2.

7/ 22
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Theorem 3.2.2

Theorem 3.2.2

Theorem 3.2.2. Consider partitioned matrices é\. g an c H
where A = [aj] is k x £, B=[bj] is k xm, C=[cj]lisnx¥ D=][dj]is
nxm, E=lejlislxp, F=[fj]lis¢xgq, G=][gj]ismxp, and

H = [hjj] is m x q. Then the product of the partitioned matrices is the
partitioned matrix

A B E F| | AE+BG AF+BH
¢ D G H CE4+DG CF+DH |-

dEF}

Notice that the dimensions of the matrices insure that all matrix products
involve matrices conformable for multiplication.
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Theorem 3.2.2 (continued 1)

Proof. The dimensions of the matrix products are:

kXxp kxq
! !

A B E F AE + BG AF + BH

c D G H | CE+DG CF+ DH
(k+n)x(+m)  (E+m)x (p+q) 1 )
nxp nxgq

A B [ E F .
Let M = [ c D } = [mj] and N = G H} = [nj]. Then the (/,j)th

entry of MN is Zfi’ln Mmijrnyj.
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Theorem 3.2.2 (continued 1)

Proof. The dimensions of the matrix products are:

kXxp kxq
! !

A B E F AE + BG AF + BH

c D G H | CE+DG CF+ DH
(k+n)x(+m)  (E+m)x (p+q) 1 )
nxp nxgq

A B [ E F .
Let M = [ c D } = [mj] and N = G H} = [nj]. Then the (/,j)th

entry of MN is Zr 1 ming. Forie{l,2,... k}and j€e{1,2,...,p}
we have (where we set s = r — /) that

{+m {+m
Z mj-ny = Z miynyj + Z mi Ny = Z ajr€rj + Z blsgs_]
r=0+1
since m;, = a;, for r € {1,2,...,¢}, mj, = b;, for

re{l+1,0+2,....,04+m}, nj=ejforre{l,2,....0} and ...
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Theorem 3.2.2 (continued 2)

Proof. ...nj =g for {rel+1,0+2,...,0+ m} (that is,
s€{l,2,...,n}) where j € {1,2,... k} and j € {1,2,..., p}. Therefore
the (/,/)th entry of MN is the sum of the (i,/)th entry of AE and the
(7,/)th entry of BG, as claimed.

10 / 22
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Theorem 3.2.2 (continued 2)

Proof. ...nj =g for {rel+1,0+2,...,0+ m} (that is,
s€{l,2,...,n}) where j € {1,2,... k} and j € {1,2,..., p}. Therefore
the (/,/)th entry of MN is the sum of the (i,/)th entry of AE and the
(7,/)th entry of BG, as claimed.

The result similarly holds for i € {1,2,..., k} and
Je{p+1,p+2,...,p+ q} (where the (i,j)th entry of MN is the
(i,j — p)th entry of AF + BH), for i € {k+1,k+2,...,k+ n} and
J€{1,2,...,p} (where the (i,j)th entry of MN is the (i — k, j)th entry of
CE + DG), and for i e {k+1,k+2,...,k+ n} and
Je{p+1,p+2,...,p+ q} (where the (i,j)th entry of MN is the
(i — k,j — p)th entry of CF + DH).

O
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Theorem 3.2.3

Theorem 3.2.3. Each of the three elementary row operations on n x m
matrix A can be accomplished by multiplication on the left by an
elementary matrix which is formed by performing the same elementary row
operation on the n x n identity matrix. Each of the three elementary
column operations on n x m matrix A can be accomplished by
multiplication on the right by an elementary matrix which is formed by
performing the same elementary column operation on the m x m identity
matrix.
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Theorem 3.2.3

Theorem 3.2.3. Each of the three elementary row operations on n x m
matrix A can be accomplished by multiplication on the left by an
elementary matrix which is formed by performing the same elementary row
operation on the n x n identity matrix. Each of the three elementary
column operations on n x m matrix A can be accomplished by
multiplication on the right by an elementary matrix which is formed by
performing the same elementary column operation on the m x m identity
matrix.

Proof. Let A = [a;] be n x m.
First, consider row interchange. R, <+ R;. Form elementary matrix E,; by

interchanging the pth row and gth row of n x n identity matrix /,:
Rp—Ryq

Iy Epq = [ejj]. So we have e =0 for i € {1,2,...,n}\ {p,q} and
i#j,and ej =1forie{1,2,...,n}\ {p,q}.
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Theorem 3.2.3

Theorem 3.2.3. Each of the three elementary row operations on n x m
matrix A can be accomplished by multiplication on the left by an
elementary matrix which is formed by performing the same elementary row
operation on the n x n identity matrix. Each of the three elementary
column operations on n x m matrix A can be accomplished by
multiplication on the right by an elementary matrix which is formed by
performing the same elementary column operation on the m x m identity
matrix.

Proof. Let A = [a;] be n x m.
First, consider row interchange. R, <+ R;. Form elementary matrix E,; by

interchanging the pth row and gth row of n x n identity matrix /,:
Rp—Ryq

In Epq = [ejj]. So we have e =0 for i € {1,2,...,n}\ {p,q} and
i#j,and ej =1forie{1,2,...,n}\ {p,q}. Now for i = p we have
epi = 0 for j # g, and epq = 1.
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Theorem 3.2.3 (continued 1)

Proof (continued). For i = g we have e;; = 0 for j # p, and egp = 1.
Let B = EpqA = [bj]. Then Biis n x mand for i € {1,2,...,n} \ {p, q}
we have bjj = Y}_; ejxakj = ajj, so for these values of i, row i of B is the

same as row | of A.

12 /22
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Theorem 3.2.3 (continued 1)

Proof (continued). For i = g we have e;; = 0 for j # p, and egp = 1.

Let B = EpqA = [bj]. Then Biis n x mand for i € {1,2,...,n} \ {p, q}

we have bjj = Y}_; ejxakj = ajj, so for these values of i, row i of B is the

same as row i of A. For i = p, we have b,; = 22:1 €pkakj = agj, SO the

pth row of B is the same as the gth row of A. For i = g, we have

bgi = 11 €qkakj = apj, so the gth row of B is the same as the pth row
Rp—Rq

of A. Thatis, A ~ ~ EpqA, as claimed.
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Theorem 3.2.3 (continued 1)

Proof (continued). For i = g we have e;; = 0 for j # p, and egp = 1.
Let B = EpqA = [bj]. Then Biis n x mand for i € {1,2,...,n} \ {p, q}
we have bjj = Y}_; ejxakj = ajj, so for these values of i, row i of B is the
same as row i of A. For i = p, we have b,; = 22:1 €pkakj = agj, SO the
pth row of B is the same as the gth row of A. For i = g, we have

bgi = 11 €qkakj = apj, so the gth row of B is the same as the pth row
Rp—Rq
of A. Thatis, A ~ ~ EpqA, as claimed.

Second, consider row scaling, R, — sR, where s # 0. Form elementary

matrix Es, by multiplying the pth row of n x n identity matrix /, by
Rp—sRp

nonzero scalar s: I, ~  Egp = [ej]. So we have e; = 0 for

ie{l,2,...,n}\{p} and i #j, and e =1 for i€ {1,2,...,n}\ {p}.
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Theorem 3.2.3 (continued 1)

Proof (continued). For i = g we have e;; = 0 for j # p, and egp = 1.
Let B = EpqA = [bj]. Then Biis n x mand for i € {1,2,...,n} \ {p, q}
we have bjj = Y}_; ejxakj = ajj, so for these values of i, row i of B is the
same as row i of A. For i = p, we have b,; = 22:1 €pkakj = agj, SO the
pth row of B is the same as the gth row of A. For i = g, we have

bgi = 11 €qkakj = apj, so the gth row of B is the same as the pth row
Rp—Rq
of A. Thatis, A ~ ~ EpqA, as claimed.

Second, consider row scaling, R, — sR, where s # 0. Form elementary

matrix Es, by multiplying the pth row of n x n identity matrix /, by
Rp—sRp

nonzero scalar s: I, ~  Egp = [ej]. So we have e; = 0 for

ie{l,2,...,n}\{p} and i #j, and e =1 for i€ {1,2,...,n}\ {p}.

Now for i = p we have e,; = 0 for j # p and e,, = 5. Let

B = E;A = [bjj].
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Theorem 3.2.3 (continued 2)

Proof (continued). Then Bis n x m and for i € {1,2,...,n}\ {p},
bjj = > "4_; eikaxj = ajj, so for these values of i, the ith row of B is the

same as the ith row of A. For i = p, byj = > ;1 €pkakj = sapj, so the pth
Rp—sRp
row of B is s times the pth row of A. That is, A EspA, as claimed.
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Theorem 3.2.3 (continued 2)

Proof (continued). Then Bis n x m and for i € {1,2,...,n}\ {p},
bij =3 11 eikakj = ajj, so for these values of i/, the ith row of B is the

same as the ith row of A. For i = p, byj = > ;1 €pkakj = sapj, so the pth
Rp—sRp

row of B is s times the pth row of A. That is, A - EspA, as claimed.

Third, consider row addition: R, — R, + sR,. We leave this as Exercise
3.D.
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Theorem 3.2.3 (continued 2)

Proof (continued). Then Bis n x m and for i € {1,2,...,n}\ {p},
bjj = > "4_; eikaxj = ajj, so for these values of i, the ith row of B is the

same as the ith row of A. For i = p, byj = > ;1 €pkakj = sapj, so the pth
Rp—sRp

row of B is s times the pth row of A. That is, A - EspA, as claimed.

Third, consider row addition: R, — R, + sR,. We leave this as Exercise
3.D.

O

The proof for elementary column operations is similar.
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Theorem 3.2.4

Theorem 3.2.4. For n x n matrices A and B, det(AB) = det(A)det(B).
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Theorem 3.2.4

Theorem 3.2.4

Theorem 3.2.4. For n x n matrices A and B, det(AB) = det(A)det(B).

Proof. We have

det(A)det(B)

det({ A0 ]) by Theorem 3.1.G

-1, B
A 0 l, B _
det ([ 1 B ] [ 0 I ]) by Theorem 3.1.H since

0

det ([ _A/ AOB }) by Theorem 3.2.2.

<[ " /B ]) is upper triangular with diagonal entries 1
n

Theory of Matrices June 5,2020 14 / 22



Theorem 3.2.4
Theorem 3.2.4. For n x n matrices A and B, det(AB) = det(A)det(B).
Proof. We have
A 0
det(A)det(B) = det by Theorem 3.1.G

-1, B
A 0 I, B :
= det ([ 1 B ] [ 0 I ]) by Theorem 3.1.H since
I, B : : : : .
0 is upper triangular with diagonal entries 1
= det ([ _A/ AOB }) by Theorem 3.2.2.
Now if we swap rows i and n+ i fori=1,2,... n of { _AI AOB ] then

-, 0
we get [ A AB ] and by Theorem 3.1.C, ...
Theory of Matrices June 5, 2020 14 / 22



Theorem 3.2.4 (continued)

Theorem 3.2.4. For n x n matrices A and B, det(AB) = det(A)det(B).
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Theorem 3.2.4 (continued)

Theorem 3.2.4. For n x n matrices A and B, det(AB) = det(A)det(B).

Proof (continued). ...

(—1)"det <[ _A’" AOB D = (—1)"det(—/,)det(AB) = (—1)?"det(AB)

since det(—/,) = (—1)" by Example 3.1.A.
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Theorem 3.2.4 (continued)

Theorem 3.2.4. For n x n matrices A and B, det(AB) = det(A)det(B).

Proof (continued). ...

(—1)"det <[ _A’" AOB D = (—1)"det(—/,)det(AB) = (—1)?"det(AB)

since det(—/,) = (—1)" by Example 3.1.A. Therefore,

det(A)det(B) = det ([ jn AOB D

= (—1)"det <[ _A'” AOB D = (—1)*"det(AB) = det(AB).

O
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Theorem 3.2.7

Theorem 3.2.7. Let A and B be n x n matrices. Then
tr(A® B) = tr(A)tr(B).
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Theorem 3.2.7

Theorem 3.2.7. Let A and B be n x n matrices. Then

tr(A® B) = tr(A)tr(B).

Proof. From (%), the diagonal entries of A® B are

14 (i—1)/n] 14 |(i—1)/n] Pi—n|(i=1)/n)i—n|(i—1)/n] for i € {1,2,...,n*}. For
ie{l+(k—1)n2+ (k—1)n,..., kn} we have

1+|(i—1)/n] =14+ (k—1)=k and

i—nl(i—1)/n| =i—n(k—1) € {1,2,...,n}, and for these values of i,
A1y ((i-1)/n),14((i-1)/n) Pi—n|(i=1)/n),i—n[(i-1)/n] = 3kkDi—n(k—1),i—n(k—1)-
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Theorem 3.2.7

Theorem 3.2.7. Let A and B be n x n matrices. Then
tr(A® B) = tr(A)tr(B).

Proof. From (%), the diagonal entries of A® B are

14 (i—1)/n] 14 |(i—1)/n] Pi—n|(i=1)/n)i—n|(i—1)/n] for i € {1,2,...,n*}. For

ie{l+(k—1)n2+ (k—1)n,..., kn} we have

1+|(i—1)/n] =14+ (k—1)=k and

i—nl(i—1)/n| =i—n(k—1) € {1,2,...,n}, and for these values of i,

A14((i-1)/n],1+[(i-1)/n] bi—nL(i—l)/nJ,i—nL(i—l)/nj = akkbi—n(k—l),i—n(k—1)~ So
n2

tr(A® B) = Z A14((i-1)/n),1+|(i—-1)/n) Bi—n|(i—=1)/n],i—n|(i-1)/n]
i—1

—Z Z akkbi—n(k—1),i-n(k-1) Zakkzb,,—tr(Atr B).

k=1i=1+(k—1)n

Theory of Matrices June 5,2020 16 / 22



Theorem 3.2.8. Properties of the Inner Product of Matrices

Theorem 3.2.8

Theorem 3.2.8. Properties of the Inner Product of Matrices.
Let A, B, and C be matrices conformable for the addition and inner
products given below. Then

(1) If A0 then (A, A) > 0 and (0,A) = (A,0) = (0,0) = 0.

(2) (A, B) = (B, A).

(3) (sA,B) =s(A,B) = (A, sB) for scalar s € R.

(4) (A+B),C)=(A,C)+(B,() and
(C,(A+B)) = (C,A) +(C, B).

(5) (A, B) =tr(ATB).

(6) (A, B) = (AT,BT).

(7) Schwarz Inequality: For n x m matrices A and B,

h
’<A’ B>‘ = <A, A>1/2<B’ B>1/2'

Theory of Matrices June 5,2020 17 / 22



Theorem 3.2.8. Properties of the Inner Product of Matrices

Theorem 3.2.8

Theorem 3.2.8. Properties of the Inner Product of Matrices.
Let A, B, and C be matrices conformable for the addition and inner
products given below. Then

(1) If A# 0 then (A, A) >0 and (0,A) = (A,0) = (0,0) = 0.
(2) (A,B) = (B, A).

(3) (sA,B) =s(A,B) = (A, sB) for scalar s € R.

(4) ((A+B),C) = (A C) +(B, () and

(C,(A+B)) = (C,A) +(C, B).
(5) (A, B) =tr(ATB).
(6) (A, B) = (AT,BT).

(A,
(7) Schwarz Inequality: For n x m matrices A and B,
’<A’ B>‘ = <A, A>1/2<B’ B>1/2'

Proof. We leave the proofs of (5) and (7) as an exercise.
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Theorem 3.2.8. Properties of the Inner Product of Matrices

Theorem 3.2.8 (continued 1)

(1) If A0 then (A, A) >0 and (0, A) = (A,0) = (0,0) = 0.

Theory of Matrices June 5,2020 18 / 22



Theorem 3.2.8. Properties of the Inner Product of Matrices

Theorem 3.2.8 (continued 1)

(1) If A0 then (A, A) >0 and (0, A) = (A,0) = (0,0) = 0.

Proof. (1) Let the column vectors of n x m matrix A be a1, a2,...,am. If
A # 0 then for some 1 < k < m we have ||ax|| > 0. So

Za aj = Z Z||aj||2>||ak||2>o
j=1

j=1

Theory of Matrices June 5,2020 18 / 22



Theorem 3.2.8. Properties of the Inner Product of Matrices

Theorem 3.2.8 (continued 1)

(1) If A0 then (A, A) >0 and (0, A) = (A,0) = (0,0) = 0.

Proof. (1) Let the column vectors of n x m matrix A be a1, a2,...,am. If
A # 0 then for some 1 < k < m we have ||ax|| > 0. So

Za aj = Z Z||aj||2>||ak||2>o
j=1

j=1

The columns of the n x m zero matrix are all 0 vectors, say 01,02,...,0.,,

and so
m m
_ To. — 0 — T,
=> a/0;=0=> 0/a =
Jj=1 Jj=1

m

and (0,0) => 0/0; =0. O

Jj=1

Theory of Matrices June 5,2020 18 / 22



Theorem 3.2.8. Properties of the Inner Product of Matrices

Theorem 3.2.8 (continued 2)

(2) (A, B) = (B, A).

(3) (sA,B) = s(A,B) = (A, sB) for scalar s € R.

Theory of Matrices

June 5, 2020
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Theorem 3.2.8. Properties of the Inner Product of Matrices

Theorem 3.2.8 (continued 2)

(2) (A,B) = (B, A).
(3) (sA,B) = s(A,B) = (A, sB) for scalar s € R.

Proof. (2) Let the column vectors of n x m matrices A and B be

ai,az,...,am and by, by, ..., by, respectively. Then
(A,B) = ZaTb _Z aj, bj)
j=1
= Z(b ;) by Theorem 2.1.6(2)
j=1

= > blaj=(BA). O
j=1

Theory of Matrices June 5, 2020
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Theorem 3.2.8. Properties of the Inner Product of Matrices

Theorem 3.2.8 (continued 2)

(2) (A,B) = (B, A).
(3) (sA,B) = s(A,B) = (A, sB) for scalar s € R.

Proof. (2) Let the column vectors of n x m matrices A and B be

ai,az,...,am and by, by, ..., by, respectively. Then
(A,B) = ZaTb _Z aj, bj)
j=1
= Z(b ;) by Theorem 2.1.6(2)
j=1

= > blaj=(BA). O
j=1

(3) Let the column vectors of n x m matrix A be a1, a2,...,am and let
s € R be a scalar. Then the column vectors of sA are sai, say,...,san and
SO ...

Theory of Matrices June 5,2020 19 /22



Theorem 3.2.8. Properties of the Inner Product of Matrices

Theorem 3.2.8 (continued 3)

(3) (sA,B) =s(A, B) = (A, sB) for scalar s € R.
Proof (continued). ...

m

(sA, B) = Z(saj)Tbj = Zsaijj = SZ aj bj = s(A, B).

j=1 j=1 j=1

Theory of Matrices June 5, 2020
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Theorem 3.2.8. Properties of the Inner Product of Matrices

Theorem 3.2.8 (continued 3)

(3) (sA,B) =s(A, B) = (A, sB) for scalar s € R.
Proof (continued). ...

m

(sA, B) = Z(saj)Tbj = Zsaijj = SZ aj bj = s(A, B).

j=1 j=1 j=1
Also

(A;sB) = (sB,A) by part (2)
= s(B,A) as just shown
= s(A,B) by part (2). [
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Theorem 3.2.8. Properties of the Inner Product of Matrices

Theorem 3.2.8 (continued 4)
(4) (A+B),C)=(A,C)+(B,C) and (C,(A+ B)) = (C,A) + (C, B).
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Theorem 3.2.8. Properties of the Inner Product of Matrices

Theorem 3.2.8 (continued 4)
(4) (A+B),C)=(A,C)+(B,C) and (C,(A+ B)) = (C,A) + (C, B).

Proof. (4) Let A, B, C be n x m matrices with column vectors

ai,az,...,am, bi,by,..., by, and ci, ¢, ..., Cm, respectively. Then the
columns of A+ B are a1 + by, a» + bo,...,am + by, and
m m m
(A+B),C)=) (a+b) =D (af +b])=D (af g +b])
j=1 j=1 j=1

m

=> al+> blg=(AC)+(BC)
j=1 j=1
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Theorem 3.2.8. Properties of the Inner Product of Matrices

Theorem 3.2.8 (continued 4)
(4) (A+B),C)=(A,C)+(B,C) and (C,(A+ B)) = (C,A) + (C, B).

Proof. (4) Let A, B, C be n x m matrices with column vectors
ai,az,...,am, bi,by,..., by, and ci, ¢, ..., Cm, respectively. Then the
columns of A+ B are a1 + by, a» + bo,...,am + by, and

m m m

(A+B),C)=) (a+b) =D (af +b])=D (af g +b])
j=1 j=1 j=1

=> al+> blg=(AC)+(BC)
j=1 j=1
Next,
(C.(A+B)) = ((A+B),C) by part (2)
(A, C) + (B, C) as just shown
= (C,A)+(C,B) by part (2). [
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Theorem 3.2.8 (continued 5)

(6) (A, B) = (AT,BT).
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Theorem 3.2.8. Properties of the Inner Product of Matrices

Theorem 3.2.8 (continued 5)
(6) (A, B) = (AT BT).

Proof. (6) Let A= [a;], AT = [a}], B =[bj], and BT = [bf] be n x m
matrices (so atj = aj; and b = bJ,) and denote the columns of A as aj, the
columns of B as b;, the cqumns of AT as at, and the columns of BT as

JY
bf. Then
SIEEE o oy
j=1 j=1 \i=1
Zaj,-bj,- interchanging / and j
i=1 \j=1
(Soo) =3 (3ot ) = o = ar. e,
J=1 \i= j=1 \i=1 j=1
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