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Theorem 3.2.1

Theorem 3.2.1

Theorem 3.2.1. Properties of Matrix Multiplication.

(1) Let A = [aij ] be m × n and let B = [bij ] be n × s. Then
(AB)T = BTAT .

(2) Let A = [aij ] be m × n, B = [bij ] be n × s, and C = [cij ] be
s × t. Then A(BC ) = (AB)C . That is, matrix multiplication
is associative.

(3) Let A = [aij ] be m × n and let B = [bij ] and C = [cij ] be
n × s. Then A(B + C ) = AB + AC . Let A = [aij ] be m × n
and let B = [bij ] and C = [cij ] be n ×m matrices. Then
(B + C )A = BA + CA. That is, matrix multiplication
distributes over matrx addition.

(4) Let A = [aij ] and B = [bij ] be n× n matrices. If A and B are
diagonal then AB is diagonal. If A and B are upper
triangular then AB is upper triangular. If A and B are lower
triangular then AB is lower triangular.
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Theorem 3.2.1

Theorem 3.2.1 (continued 1)

(1) Let A = [aij ] be m × n and let B = [bij ] be n × s. Then
(AB)T = BTAT .

Proof. Let C = [cij ] = (AB)T . The (i , j)th entry of AB is
n∑

k=1

aikbkj , so

cij =
n∑

k=1

ajkbki . Let BT = [bij ]
T = [bt

ij ] = [bji ] and

AT = [aij ]
T = [at

ij ] = [aji ]. Then the (i , j)th entry of BTAT is

n∑
k=1

bt
ikat

kj =
n∑

k=1

bkiajk =
n∑

k=1

ajkbki = cij

and therefore C = (AB)T = BTAT .
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Theorem 3.2.1

Theorem 3.2.1 (continued 2)

(2) Let A = [aij ] be m × n, B = [bij ] be n × s, and C = [cij ] be s × t.
Then A(BC ) = (AB)C . That is, matrix multiplication is associative.

Proof. The (i , j)th entry of BC is
∑s

k=1 bikckj and so the (k, j)th entry of
BC is

∑s
`=1 bk`c`j . Therefore the (i , j)th entry of A(BC ) is

n∑
k=1

aik

(
s∑

`=1

bk`c`j

)
=

s∑
`=1

(
n∑

k=1

aikbk`

)
c`j =

s∑
k=1

(
n∑

`=1

ai`b`k

)
ckj

where the second inequality holds by interchanging dummy variables ` and
k. Now

∑n
`=1 ai`b`k is the (i , k)th entry of AB, and so the last sum is the

(i , j)th entry of (AB)C . Therefore A(BC ) = (AB)C .
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Theorem 3.2.1

Theorem 3.2.1 (continued 3)

(3) Let A = [aij ] be m × n and let B = [bij ] and C = [cij ] be n × s. Then
A(B + C ) = AB + AC . Let A = [aij ] be m × n and let B = [bij ] and
C = [cij ] be s ×m matrices. Then (B + C )A = BA + CA. That is, matrix
multiplication distributes over vector addition.

Proof. (3) The (k, j)th entry of B + C is bkj + ckj and so the (i , j)th
entry of A(B + C ) is

n∑
k=1

aik(bkj + ckj) =
n∑

k=1

aikbkj +
n∑

k=1

aikckj ,

which is the (i , j)th entry of AB + AC , and so A(B + C ) = AB + AC .
Similarly, (B + C )A = BA + CA.
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Theorem 3.2.1

Theorem 3.2.1 (continued 4)

(4) Let A = [aij ] and B = [bij ] be n × n matrices. If A and B are diagonal
then AB is diagonal. If A and B are upper triangular then AB is upper
triangular. If A and B are lower triangular then AB is lower triangular.

Proof. (4) The proof is left as Exercise 3.2.
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Theorem 3.2.2

Theorem 3.2.2

Theorem 3.2.2. Consider partitioned matrices

[
A B
C D

]
and

[
E F
G H

]
where A = [aij ] is k × `, B = [bij ] is k ×m, C = [cij ] is n × `, D = [dij ] is
n ×m, E = [eij ] is `× p, F = [fij ] is `× q, G = [gij ] is m × p, and
H = [hij ] is m × q. Then the product of the partitioned matrices is the
partitioned matrix[

A B
C D

] [
E F
G H

]
=

[
AE + BG AF + BH
CE + DG CF + DH

]
.

Notice that the dimensions of the matrices insure that all matrix products
involve matrices conformable for multiplication.
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Theorem 3.2.2

Theorem 3.2.2 (continued 1)

Proof. The dimensions of the matrix products are:

Let M =

[
A B
C D

]
= [mij ] and N =

[
E F
G H

]
= [nij ]. Then the (i , j)th

entry of MN is
∑`+m

r=1 mirnrj . For i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , p}
we have (where we set s = r − `) that

`+m∑
r=1

mirnrj =
∑̀
r=1

mirnrj +
`+m∑

r=`+1

mirnrj =
∑̀
r=1

airerj +
m∑

s=1

bisgsj

since mir = air for r ∈ {1, 2, . . . , `}, mir = bir for
r ∈ {` + 1, ` + 2, . . . , ` + m}, nrj = erj for r ∈ {1, 2, . . . , `}, and . . .
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Theorem 3.2.2

Theorem 3.2.2 (continued 2)

Proof. . . . nrj = gsj for {r ∈ ` + 1, ` + 2, . . . , ` + m} (that is,
s ∈ {1, 2, . . . , n}) where i ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , p}. Therefore
the (i , j)th entry of MN is the sum of the (i , j)th entry of AE and the
(i , j)th entry of BG , as claimed.

The result similarly holds for i ∈ {1, 2, . . . , k} and
j ∈ {p + 1, p + 2, . . . , p + q} (where the (i , j)th entry of MN is the
(i , j − p)th entry of AF + BH), for i ∈ {k + 1, k + 2, . . . , k + n} and
j ∈ {1, 2, . . . , p} (where the (i , j)th entry of MN is the (i − k, j)th entry of
CE + DG ), and for i ∈ {k + 1, k + 2, . . . , k + n} and
j ∈ {p + 1, p + 2, . . . , p + q} (where the (i , j)th entry of MN is the
(i − k, j − p)th entry of CF + DH).
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Theorem 3.2.3

Theorem 3.2.3

Theorem 3.2.3. Each of the three elementary row operations on n ×m
matrix A can be accomplished by multiplication on the left by an
elementary matrix which is formed by performing the same elementary row
operation on the n × n identity matrix. Each of the three elementary
column operations on n ×m matrix A can be accomplished by
multiplication on the right by an elementary matrix which is formed by
performing the same elementary column operation on the m ×m identity
matrix.

Proof. Let A = [aij ] be n ×m.
First, consider row interchange. Rp ↔ Rq. Form elementary matrix Epq by
interchanging the pth row and qth row of n × n identity matrix In:

In

Rp↔Rq

˜ Epq = [eij ]. So we have eij = 0 for i ∈ {1, 2, . . . , n} \ {p, q} and
i 6= j , and eii = 1 for i ∈ {1, 2, . . . , n} \ {p, q}.

Now for i = p we have
epj = 0 for j 6= q, and epq = 1.
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Theorem 3.2.3

Theorem 3.2.3 (continued 1)

Proof (continued). For i = q we have eqj = 0 for j 6= p, and eqp = 1.
Let B = EpqA = [bij ]. Then B is n ×m and for i ∈ {1, 2, . . . , n} \ {p, q}
we have bij =

∑n
k=1 eikakj = aij , so for these values of i , row i of B is the

same as row i of A. For i = p, we have bpj =
∑n

k=1 epkakj = aqj , so the
pth row of B is the same as the qth row of A. For i = q, we have
bqj =

∑n
k=1 eqkakj = apj , so the qth row of B is the same as the pth row

of A. That is, A
Rp↔Rq

˜ EpqA, as claimed.

Second, consider row scaling, Rp → sRp where s 6= 0. Form elementary
matrix Esp by multiplying the pth row of n × n identity matrix In by

nonzero scalar s: In

Rp→sRp

˜ Esp = [eij ]. So we have eij = 0 for
i ∈ {1, 2, . . . , n} \ {p} and i 6= j , and eii = 1 for i ∈ {1, 2, . . . , n} \ {p}.
Now for i = p we have epj = 0 for j 6= p and epp = s. Let
B = EspA = [bij ].
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Theorem 3.2.3

Theorem 3.2.3 (continued 2)

Proof (continued). Then B is n ×m and for i ∈ {1, 2, . . . , n} \ {p},
bij =

∑n
k=1 eikakj = aij , so for these values of i , the ith row of B is the

same as the ith row of A. For i = p, bpj =
∑n

k=1 epkakj = sapj , so the pth

row of B is s times the pth row of A. That is, A
Rp→sRp

˜ EspA, as claimed.

Third, consider row addition: Rp → Rp + sRq. We leave this as Exercise
3.D.

The proof for elementary column operations is similar.
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Theorem 3.2.4

Theorem 3.2.4

Theorem 3.2.4. For n × n matrices A and B, det(AB) = det(A)det(B).

Proof. We have

det(A)det(B) = det

([
A 0
−In B

])
by Theorem 3.1.G

= det

([
A 0
−In B

] [
In B
0 In

])
by Theorem 3.1.H since([

In B
0 In

])
is upper triangular with diagonal entries 1

= det

([
A AB
−In 0

])
by Theorem 3.2.2.

Now if we swap rows i and n + i for i = 1, 2, . . . , n of

[
A AB
−In 0

]
then

we get

[
−In 0
A AB

]
and by Theorem 3.1.C, . . .
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Theorem 3.2.4

Theorem 3.2.4 (continued)

Theorem 3.2.4. For n × n matrices A and B, det(AB) = det(A)det(B).

Proof (continued). . . .

(−1)ndet

([
−In 0
A AB

])
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Theorem 3.2.7

Theorem 3.2.7

Theorem 3.2.7. Let A and B be n × n matrices. Then
tr(A⊗ B) = tr(A)tr(B).

Proof. From (∗), the diagonal entries of A⊗ B are
a1+b(i−1)/nc,1+b(i−1)/ncbi−nb(i−1)/nc,i−nb(i−1)/nc for i ∈ {1, 2, . . . , n2}. For
i ∈ {1 + (k − 1)n, 2 + (k − 1)n, . . . , kn} we have
1 + b(i − 1)/nc = 1 + (k − 1) = k and
i − nb(i − 1)/nc = i − n(k − 1) ∈ {1, 2, . . . , n}, and for these values of i ,
a1+b(i−1)/nc,1+b(i−1)/ncbi−nb(i−1)/nc,i−nb(i−1)/nc = akkbi−n(k−1),i−n(k−1).

So

tr(A⊗ B) =
n2∑
i=1

a1+b(i−1)/nc,1+b(i−1)/ncbi−nb(i−1)/nc,i−nb(i−1)/nc

=
n∑

k=1

kn∑
i=1+(k−1)n

akkbi−n(k−1),i−n(k−1) =
n∑

k=1

akk

n∑
i=1

bii = tr(A)tr(B).

() Theory of Matrices June 5, 2020 16 / 22



Theorem 3.2.7

Theorem 3.2.7

Theorem 3.2.7. Let A and B be n × n matrices. Then
tr(A⊗ B) = tr(A)tr(B).

Proof. From (∗), the diagonal entries of A⊗ B are
a1+b(i−1)/nc,1+b(i−1)/ncbi−nb(i−1)/nc,i−nb(i−1)/nc for i ∈ {1, 2, . . . , n2}. For
i ∈ {1 + (k − 1)n, 2 + (k − 1)n, . . . , kn} we have
1 + b(i − 1)/nc = 1 + (k − 1) = k and
i − nb(i − 1)/nc = i − n(k − 1) ∈ {1, 2, . . . , n}, and for these values of i ,
a1+b(i−1)/nc,1+b(i−1)/ncbi−nb(i−1)/nc,i−nb(i−1)/nc = akkbi−n(k−1),i−n(k−1). So

tr(A⊗ B) =
n2∑
i=1

a1+b(i−1)/nc,1+b(i−1)/ncbi−nb(i−1)/nc,i−nb(i−1)/nc

=
n∑

k=1

kn∑
i=1+(k−1)n

akkbi−n(k−1),i−n(k−1) =
n∑

k=1

akk

n∑
i=1

bii = tr(A)tr(B).

() Theory of Matrices June 5, 2020 16 / 22



Theorem 3.2.7

Theorem 3.2.7

Theorem 3.2.7. Let A and B be n × n matrices. Then
tr(A⊗ B) = tr(A)tr(B).

Proof. From (∗), the diagonal entries of A⊗ B are
a1+b(i−1)/nc,1+b(i−1)/ncbi−nb(i−1)/nc,i−nb(i−1)/nc for i ∈ {1, 2, . . . , n2}. For
i ∈ {1 + (k − 1)n, 2 + (k − 1)n, . . . , kn} we have
1 + b(i − 1)/nc = 1 + (k − 1) = k and
i − nb(i − 1)/nc = i − n(k − 1) ∈ {1, 2, . . . , n}, and for these values of i ,
a1+b(i−1)/nc,1+b(i−1)/ncbi−nb(i−1)/nc,i−nb(i−1)/nc = akkbi−n(k−1),i−n(k−1). So

tr(A⊗ B) =
n2∑
i=1

a1+b(i−1)/nc,1+b(i−1)/ncbi−nb(i−1)/nc,i−nb(i−1)/nc

=
n∑

k=1

kn∑
i=1+(k−1)n

akkbi−n(k−1),i−n(k−1) =
n∑

k=1

akk

n∑
i=1

bii = tr(A)tr(B).

() Theory of Matrices June 5, 2020 16 / 22



Theorem 3.2.8. Properties of the Inner Product of Matrices

Theorem 3.2.8

Theorem 3.2.8. Properties of the Inner Product of Matrices.
Let A, B, and C be matrices conformable for the addition and inner
products given below. Then

(1) If A 6= 0 then 〈A,A〉 > 0 and 〈0,A〉 = 〈A, 0〉 = 〈0, 0〉 = 0.

(2) 〈A,B〉 = 〈B,A〉.
(3) 〈sA,B〉 = s〈A,B〉 = 〈A, sB〉 for scalar s ∈ R.

(4) 〈(A + B),C 〉 = 〈A,C 〉+ 〈B,C 〉 and
〈C , (A + B)〉 = 〈C ,A〉+ 〈C ,B〉.

(5) 〈A,B〉 = tr(ATB).

(6) 〈A,B〉 = 〈AT ,BT 〉.
(7) Schwarz Inequality: For n ×m matrices A and B,

|〈A,B〉| = 〈A,A〉1/2〈B,B〉1/2.

Proof. We leave the proofs of (5) and (7) as an exercise.
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Theorem 3.2.8. Properties of the Inner Product of Matrices

Theorem 3.2.8 (continued 1)

(1) If A 6= 0 then 〈A,A〉 > 0 and 〈0,A〉 = 〈A, 0〉 = 〈0, 0〉 = 0.

Proof. (1) Let the column vectors of n ×m matrix A be a1, a2, . . . , am. If
A 6= 0 then for some 1 ≤ k ≤ m we have ‖ak‖ > 0. So

〈A,A〉 =
m∑

j=1

aT
j aj =

m∑
j=1

〈aj , aj〉 =
m∑

j=1

‖aj‖2 ≥ ‖ak‖2 > 0.

The columns of the n ×m zero matrix are all 0 vectors, say 01, 02, . . . , 0m,
and so

〈A, 0〉 =
m∑

j=1

aT
j 0j = 0 =

m∑
j=1

0T
j aj = 〈0,A〉,

and 〈0, 0〉 =
m∑

j=1

0T
j 0j = 0.
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Theorem 3.2.8. Properties of the Inner Product of Matrices

Theorem 3.2.8 (continued 2)

(2) 〈A,B〉 = 〈B,A〉.
(3) 〈sA,B〉 = s〈A,B〉 = 〈A, sB〉 for scalar s ∈ R.

Proof. (2) Let the column vectors of n ×m matrices A and B be
a1, a2, . . . , am and b1, b2, . . . , bm, respectively. Then

〈A,B〉 =
m∑

j=1

aT
j bj =

m∑
j=1

〈aj , bj〉

=
m∑

j=1

〈bj , aj〉 by Theorem 2.1.6(2)

=
m∑

j=1

bT
j aj = 〈B,A〉.

(3) Let the column vectors of n ×m matrix A be a1, a2, . . . , am and let
s ∈ R be a scalar. Then the column vectors of sA are sa1, sa2, . . . , sam and
so . . .
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Theorem 3.2.8. Properties of the Inner Product of Matrices

Theorem 3.2.8 (continued 3)

(3) 〈sA,B〉 = s〈A,B〉 = 〈A, sB〉 for scalar s ∈ R.

Proof (continued). . . .

〈sA,B〉 =
m∑

j=1

(saj)
Tbj =

m∑
j=1

saT
j bj = s

m∑
j=1

aT
j bj = s〈A,B〉.

Also

〈A, sB〉 = 〈sB,A〉 by part (2)

= s〈B,A〉 as just shown

= s〈A,B〉 by part (2).
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Theorem 3.2.8. Properties of the Inner Product of Matrices

Theorem 3.2.8 (continued 4)

(4) 〈(A + B),C 〉 = 〈A,C 〉+ 〈B,C 〉 and 〈C , (A + B)〉 = 〈C ,A〉+ 〈C ,B〉.

Proof. (4) Let A,B,C be n ×m matrices with column vectors
a1, a2, . . . , am, b1, b2, . . . , bm, and c1, c2, . . . , cm, respectively. Then the
columns of A + B are a1 + b1, a2 + b2, . . . , am + bm and

〈(A + B),C 〉 =
m∑

j=1

(aj + bj)
T cj =

m∑
j=1

(aT
j + bT

j )cj =
m∑

j=1

(aT
j cj + bT

j cj)

=
m∑

j=1

aT
j cj +

m∑
j=1

bT
j cj = 〈A,C 〉+ 〈B,C 〉.

Next,

〈C , (A + B)〉 = 〈(A + B),C 〉 by part (2)

= 〈A,C 〉+ 〈B,C 〉 as just shown

= 〈C ,A〉+ 〈C ,B〉 by part (2).
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Theorem 3.2.8. Properties of the Inner Product of Matrices

Theorem 3.2.8 (continued 5)

(6) 〈A,B〉 = 〈AT ,BT 〉.

Proof. (6) Let A = [aij ], AT = [at
ij ], B = [bij ], and BT = [bt

ij ] be n ×m
matrices (so at

ij = aji and bt
ij = bji ) and denote the columns of A as aj , the

columns of B as bj , the columns of AT as at
j , and the columns of BT as

bt
j . Then

〈A,B〉 =
m∑

j=1

aT
j bj =

m∑
j=1

(
n∑

i=1

aijbij

)

=
m∑

i=1

 n∑
j=1

ajibji

 interchanging i and j

=
n∑

j=1

(
m∑

i=1

ajibji

)
=

n∑
j=1

(
m∑

i=1

at
ijb

t
ij

)
=

n∑
j=1

(at
j )

Tbt
j = 〈AT ,BT 〉.
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