Theory of Matrices

Chapter 3. Basic Properties of Matrices

3.3. Matrix Rank and the Inverse of a Full Rank Matrix—Proofs of Theorems

Lemma 3.3.1 (continued)

Lemma 3.3.1. Let $\{a^i\}_{i=1}^k = \{[a_1^i, a_2^i, \dots, a_n^i]\}_{i=1}^k$ be a set of vectors in \mathbb{R}^n and let $\pi \in S_n$. Then the set of vectors $\{a^i\}_{i=1}^k$ is linearly independent if and only if the set of vectors $\{[a_{\pi(1)}^i, a_{\pi(2)}^i, \dots, a_{\pi(n)}^i]\}_{i=1}^k$ is linearly independent. That is, permuting all the entries in a set of vectors by the same permutation preserves the linear dependence/independence of the set.

Proof (continued). So the set of vectors $\{b^i\}_{i=1}^k = \{[a^i_{\pi(1)}, a^i_{\pi(2)}, \dots, a^i_{\pi(n)}]\}_{i=1}^k$ is linearly independent as well. Similarly, if $\{a^i\}$ is linearly dependent then $\{b^i\}$ is linearly dependent.

Lemma 3.3.1

Lemma 3.3.1. Let $\{a^i\}_{i=1}^k = \{[a_1^i, a_2^i, \dots, a_n^i]\}_{i=1}^k$ be a set of vectors in \mathbb{R}^n and let $\pi \in S_n$. Then the set of vectors $\{a^i\}_{i=1}^k$ is linearly independent if and only if the set of vectors $\{[a_{\pi(1)}^i, a_{\pi(2)}^i, \dots, a_{\pi(n)}^i]\}_{i=1}^k$ is linearly independent. That is, permuting all the entries in a set of vectors by the same permutation preserves the linear dependence/independence of the set.

Proof. Set $\{a^i\}_{i=1}^k$ is linearly independent if and only if $\sum_{i=1}^k s_i a^i = 0$ for scalars s_1, s_2, \ldots, s_k implies $s_1 = s_2 = \cdots = s_k = 0$. Now $\sum_{i=1}^k s_i a^i = 0$ implies that $\sum_{i=1}^k s_i a_j^i = 0$ for j = 1, 2, ..., n. So this system of n linear equations (in k unknowns s_i for i = 1, 2, ..., k) has only one solution if and only if the system of n linear equations in k unknowns $\sum_{i=1}^{k} s_i a_{\pi(j)}^i = 0$ for j = 1, 2, ..., n has only one solution, namely $s_1 = s_2 = \cdots = s_k = 0$. That is, if and only if the vector equation $\sum_{i=1}^k s_i b^i = 0$, where $b^i = [a^i_{\pi(1)}, a^i_{\pi(2)}, \dots, a^i_{\pi(n)}]$ for $i = 1, 2, \dots, k$, has only one solution, namely $s_1 = s_2 = \cdots s_k = 0$.

Theorem 3.3.2

Theorem 3.3.2. Let A be an $n \times m$ matrix. Then the row rank of A equals the column rank of A. This common quantity is called the rank of Α.

Proof. Let the row rank of A be p and let the column rank of A be q. Rearrange the rows of A to form matrix B so that the first p rows of matrix B are linearly independent (so B = PA where P is some permutation matrix). Since A and B have the same rows, they have equal row rank. By Lemma 3.3.1, the column rank of A equals the column rank of B (by interchanging row i and j of A, we are interchanging all of the ith entries with the *i*th entries in the column vectors of A). So we can partition B as $B = \begin{pmatrix} B_1 \\ B_2 \end{pmatrix}$ where the p rows of B_1 are linearly independent and the

n-p rows of B_2 are (each) linear combinations of the rows of B_1 . So with the rows of B_1 as r_1, r_2, \ldots, r_p and the rows of B_2 as $r_{p+1}, r_{p+2}, \ldots, r_n$, we have scalars $s_{\ell i}$ where $r_{\ell} = \sum_{i=1}^{p} s_{\ell i} r_{i}$ for $\ell = p+1, p+2, \ldots, n$.

Theory of Matrices

Theorem 3.3.2 (continued)

Proof (continued). Then with S the $(n-p) \times p$ matrix with entries $s_{\ell i}$, $S = [s_{\ell i}]$, we have $B_2 = SB_1$. So $B = \begin{bmatrix} B_1 \\ SB_1 \end{bmatrix}$. We claim now that the column rank of B is the same as the column rank of B_1 .

With $s = [s_1, s_2, \ldots, s_m]^T$ as a vector of m scalars, we have Bs = 0 if and only if $\begin{bmatrix} B_1 \\ SB_1 \end{bmatrix} s = \begin{bmatrix} B_1s \\ SB_1s \end{bmatrix} = 0$ if and only if $B_1s = 0$. That is, a linear combination of the columns of B is 0 if and only if the corresponding linear combination of the columns of B_1 is 0. So the column rank of B is the same as the column rank of B_1 , and so both are the same as the column rank of A (namely, q). Since the columns of B_1 are vectors in \mathbb{R}^p then $q \leq p$.

Similarly, we can rearrange the columns of A and partition the resulting matrix to show that $p \le q$. Therefore the row rank, p, of matrix A equals the column rank, q, of matrix A.

ory of Matrices June 12, 2020 6 / 3

Theorem 3.3

Theorem 3.3.3 (continued)

Theorem 3.3.3. If P and Q are products of elementary matrices then rank(PAQ) = rank(A).

Proof (continued). Let $P = E_{psq}$ where $I_n \overset{R_p \to R_p + sR_q}{\longleftarrow} E_{psq}$. Then for r_1, r_2, \ldots, r_n the rows of A, we have that $r_1, r_2, \ldots, r_{p-1}, r_p + sr_q, r_{p+1}, \ldots, r_n$ are the rows of $E_{psq}A$. Now

$$\sum_{i=1}^{p-1} s_i r_i + s_p (r_p + s r_q) + \sum_{i=p+1}^n s_i r_i = \sum_{i=1}^{q-1} s_i r_i + (s_p s + s_q) r_q + \sum_{i=q+1}^n s_i r_i$$

for any scalars s_1, s_2, \ldots, s_n . So r_1, r_2, \ldots, r_n and $r_1, r_2, \ldots, r_{p-1}, r_p + sr_q, r_{p+1}, \ldots, r_n$ satisfy precisely the same dependence/independence relations. Therefore $\operatorname{rank}(E_{psq}A) = \operatorname{rank}(A)$.

Theorem 3.3.3

Theorem 3.3.3. If P and Q are products of elementary matrices then rank(PAQ) = rank(A).

Proof. We show the result holds for P a single elementary matrix. The

result for Q a single elementary matrix follows similarly and the general result then follows by induction. Let $P=E_{pq}$ where I_n E_{pq} . Then $E_{pq}A$ has the same rows as A and so $\operatorname{rank}(E_{pq}A)=\operatorname{rank}(A)$. Let $P=E_{sp}$ where I_n E_{sp} where $s\neq 0$. Then with r_1,r_2,\ldots,r_n as the rows of A, we have that $r_1,r_2,\ldots,r_{p-1},sr_p,r_{p+1},\ldots,r_n$ are the rows of $E_{sp}A$. Now

$$\sum_{i=1}^n s_i r_i = \sum_{i=1}^{p-1} s_i r_i + (s_p/s)(sr_p) + \sum_{i=p+1}^n s_i r_i$$

for any scalars s_1, s_2, \ldots, s_n . So r_1, r_2, \ldots, r_n and $r_1, r_2, \ldots, r_{p-1}, sr_p, r_{p+1}, \ldots, r_n$ satisfy precisely the same dependence/independence relations. Therefore $\operatorname{rank}(E_{sp}A) = \operatorname{rank}(A)$.

June 12, 2020 7 / 3

Theorem 3

Theorem 3.3.4

Theorem 3.3.4. Let A be a matrix partitioned as $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$. Then

- (i) $rank(A_{ij}) \leq rank(A)$ for $i, j \in \{1, 2\}$.
- (ii) $\operatorname{rank}(A) \leq \operatorname{rank}([A_{11}|A_{12}]) + \operatorname{rank}([A_{21}|A_{22}]).$
- $\text{(iii) } \operatorname{rank}(A) \leq \operatorname{rank}\left(\left[\begin{array}{c}A_{11}\\A_{21}\end{array}\right]\right) + \operatorname{rank}\left(\left[\begin{array}{c}A_{12}\\A_{22}\end{array}\right]\right).$
- (iv) If $\mathcal{V}([A_{11}|A_{12}]^T) \perp \mathcal{V}([A_{21}|A_{22}]^T)$ then $\operatorname{rank}(A) = \operatorname{rank}([A_{11}|A_{12}]) + \operatorname{rank}([A_{21}|A_{22}])$ and if $\mathcal{V}\left(\left[\begin{array}{c}A_{11}\\A_{21}\end{array}\right]\right) \perp \mathcal{V}\left(\left[\begin{array}{c}A_{12}\\A_{22}\end{array}\right]\right)$ then

$$\operatorname{\mathsf{rank}}(A) = \operatorname{\mathsf{rank}}\left(\left[egin{array}{c} A_{11} \\ A_{21} \end{array}
ight]
ight) + \operatorname{\mathsf{rank}}\left(\left[egin{array}{c} A_{12} \\ A_{22} \end{array}
ight]
ight).$$

Theory of Matrices June 12, 2020

Theory of Matrices

luna 12 2020

Theorem 3.3.4 (continued 1)

(i) $rank(A_{ii}) < rank(A)$ for $i, j \in \{1, 2\}$.

Proof. (i) Since the set of rows of $[A_{11}|A_{12}]$ is a subset of the set of rows of A, then by Exercise 2.1.G(i), rank($[A_{11}|A_{12}]$) \leq rank(A). Similarly, the set of columns of $\begin{vmatrix} A_{11} \\ A_{21} \end{vmatrix}$ is a subset of the set of columns of A and so $\operatorname{rank}\left(\left|\begin{array}{c}A_{11}\\A_{21}\end{array}\right|\right) \leq \operatorname{rank}(A).$ Also, $\operatorname{rank}([A_{21}|A_{22}]) \leq \operatorname{rank}(A)$ and $\operatorname{rank}\left(\left|\begin{array}{c}A_{12}\\A_{22}\end{array}\right|\right) \leq \operatorname{rank}(A).$ Next, the set of columns of A_{11} is a subset of the set of columns of $[A_{11}|A_{12}]$ and so rank $(A_{11}) \leq \operatorname{rank}([A_{11}|A_{12}])$ (and similarly rank $(A_{12}) < \text{rank}([A_{11}|A_{12}])$. Therefore $rank(A_{11}) \le rank(A_{11}|A_{12}|) \le rank(A)$ and $rank(A_{12}) \le rank(A_{11}|A_{12}|)$ $\leq \operatorname{rank}(A)$. Similarly, $\operatorname{rank}(A_{21}) \leq \operatorname{rank}(A_{21}|A_{22}|) \leq \operatorname{rank}(A)$ and $rank(A_{22}) \le rank(A_{21}|A_{22}|) \le rank(A)$.

Theorem 3.3.4 (continued 3)

(iv) If
$$\mathcal{V}([A_{11}|A_{12}]^T) \perp \mathcal{V}([A_{21}|A_{22}]^T)$$
 then
$$\operatorname{rank}(A) = \operatorname{rank}([A_{11}|A_{12}]) + \operatorname{rank}([A_{21}|A_{22}])$$
 and if $\mathcal{V}\left(\left[\begin{array}{c}A_{11}\\A_{21}\end{array}\right]\right) \perp \mathcal{V}\left(\left[\begin{array}{c}A_{12}\\A_{22}\end{array}\right]\right)$ then
$$\operatorname{rank}(A) = \operatorname{rank}\left(\left[\begin{array}{c}A_{11}\\A_{21}\end{array}\right]\right) + \operatorname{rank}\left(\left[\begin{array}{c}A_{12}\\A_{22}\end{array}\right]\right).$$

Proof (continued). (iv) Let R be the set of rows of A, R_1 the set of rows of $[A_{11}|A_{12}]$, and R_2 the set of rows of $[A_{21}|A_{22}]$. Then $\mathcal{V}([A_{11}|A_{12}]^T)$ is the row space of $[A_{11}|A_{12}]$ and $\mathcal{V}([A_{21}|A_{22}]^T)$ is the row space of $[A_{21}|A_{22}]$. So the row space of A is $\mathcal{V}([A_{11}|A_{12}]^T) + \mathcal{V}(A_{21}|A_{22}]^T)$ (see page 13 of the text). Since $\mathcal{V}([A_{21}|A_{22}]^T) \perp \mathcal{V}([A_{21}|A_{22}]^T)$ by hypothesis, then the row space of A is $\mathcal{V}([A_{11}|A_{12}]^T) \oplus \mathcal{V}([A_{21}|A_{22}])$. By Exercise 2.1.G(iii), rank $(A) = \dim(\mathcal{V}([A_{11}|A_{12}]^T)) + \dim(\mathcal{V}([A_{21}|A_{22}]^T))$ $= \operatorname{rank}([A_{11}|A_{12}]) + \operatorname{rank}([A_{11}|A_{12}])$

Theorem 3.3.4 (continued 2)

$$\begin{aligned} \textbf{(ii)} \ \operatorname{rank}(A) &\leq \operatorname{rank}([A_{11}|A_{12}]) + \operatorname{rank}([A_{21}|A_{22}]). \\ \textbf{(iii)} \ \operatorname{rank}(A) &\leq \operatorname{rank}\left(\left[\begin{array}{c}A_{11}\\A_{21}\end{array}\right]\right) + \operatorname{rank}\left(\left[\begin{array}{c}A_{12}\\A_{22}\end{array}\right]\right). \end{aligned}$$

Proof (continued). (ii) Let R be the set of rows of A, R_1 the set of rows of $[A_{11}|A_{12}]$, and R_2 the set of rows of $[A_{21}|A_{22}]$. Then $R = R_1 \cup R_2$ and by Exercise 2.1.G(ii), $\dim(\text{span}(R)) \leq \dim(\text{span}(R_1)) + \dim(\text{span}(R_2))$. That is, $rank(A) \leq rank([A_{11}|A_{12}]) + rank([A_{21}|A_{22}])$. (iii) Let C be the set of columns of A, C_1 be the set of columns of $\begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}$, and C_2 be the set of columns of $\begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix}$. Then $C = C_1 \cup C_2$ and by Exercise 2.1.G(ii), $\dim(\operatorname{span}(C)) \leq \dim(\operatorname{span}(C_1)) + \dim(\operatorname{span}(C_2))$. That is,

 $\operatorname{rank}(A) \leq \operatorname{rank}\left(\left|\begin{array}{c}A_{11}\\A_{21}\end{array}\right|\right) + \operatorname{rank}\left(\left|\begin{array}{c}A_{12}\\A_{22}\end{array}\right|\right).$

Theorem 3.3.4 (continued 4)

Proof (continued). (iv) Let C be the set of columns of A, C_1 the set of columns of $\begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}$, and C_2 the set of columns of $\begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix}$. Then $\mathcal{V}\left(\left[\begin{array}{c}A_{11}\\A_{21}\end{array}\right]\right)$ is the column space of $\left[\begin{array}{c}A_{11}\\A_{21}\end{array}\right]$ and $\mathcal{V}\left(\left[\begin{array}{c}A_{12}\\A_{22}\end{array}\right]\right)$ is the column space of $\begin{vmatrix} A_{12} \\ A_{22} \end{vmatrix}$. So the columns space of A is $\mathcal{V}\left(\left|\begin{array}{c}A_{11}\\A_{21}\end{array}\right|\right)+\mathcal{V}\left(\left|\begin{array}{c}A_{12}\\A_{22}\end{array}\right|\right)$. Since $\mathcal{V}\left(\left|\begin{array}{c}A_{11}\\A_{21}\end{array}\right|\right)\perp\mathcal{V}\left(\left|\begin{array}{c}A_{12}\\A_{22}\end{array}\right|\right)$ by hypothesis, then the column space of A is $\mathcal{V}\left(\left|\begin{array}{c}A_{11}\\A_{21}\end{array}\right|\right) \oplus \mathcal{V}\left(\left|\begin{array}{c}A_{12}\\A_{22}\end{array}\right|\right)$. By Exercise 2.1.G(iii), $\operatorname{rank}(A) = \dim \left(\mathcal{V} \left(\left| \begin{array}{c} A_{11} \\ A_{21} \end{array} \right| \right) \right) + \dim \left(\mathcal{V} \left(\left| \begin{array}{c} A_{12} \\ A_{22} \end{array} \right| \right) \right) =$ $\operatorname{rank}\left(\left|\begin{array}{c}A_{11}\\A_{21}\end{array}\right|\right)+\operatorname{rank}\left(\left|\begin{array}{c}A_{12}\\A_{22}\end{array}\right|\right).$

Theorem 3.3.5

Theorem 3.3.5. Let A be an $n \times k$ matrix and B be a $k \times m$ matrix. Then $rank(AB) \le min\{rank(A), rank(B)\}$.

Proof. Let the columns of A be a_1, a_2, \ldots, a_k , the columns of B be b_1, b_2, \ldots, b_m , and the columns of AB be c_1, c_2, \ldots, c_m . Recall (see the note on page 5 of the class notes for Section 3.2) that if $x \in \mathbb{R}^k$ then Ax is a linear combination of the columns of A; that is, $Ax \in \mathcal{V}(A)$. Now from the definition of matrix multiplication, we have $c_i = Ab_i$ for $i = 1, 2, \ldots, m$ so that $c_i = Ab_i \in \mathcal{V}(A)$ for $i = 1, 2, \ldots, m$. So every linear combination of the columns of AB is also a linear combination of the columns of A, and $\mathcal{V}(AB)$ is a subspace of $\mathcal{V}(A)$. Hence $\mathrm{rank}(AB) \leq \mathrm{rank}(A)$. By Theorem 3.3.2, $\mathrm{rank}(A) = \mathrm{rank}(A^T)$, $\mathrm{rank}(B) = \mathrm{rank}(B^T)$, and $\mathrm{rank}(AB) = \mathrm{rank}(AB)^T$). So the previous argument shows that

$$rank(AB) = rank((AB)^T) = rank(B^TA^T) \le rank(B^T) = rank(B).$$

Therefore, $rank(AB) \le min\{rank(A), rank(B)\}.$

une 12, 2020 14

14 / 36

()

incory or i

June 12, 202

15 / 3

Theorem 3.3

Theorem 3.3.6 (continued 1)

Proof (continued). By Theorem 3.3.4(iii),

$$\operatorname{rank}\left(\left[\begin{array}{cc}A & B\\0 & 0\end{array}\right]\right) \leq \operatorname{rank}\left(\left[\begin{array}{c}A\\0\end{array}\right]\right) + \operatorname{rank}\left(\left[\begin{array}{c}B\\0\end{array}\right]\right)$$

and so, combining these last two results,

$$\operatorname{rank}\left(\left[\begin{array}{cc}A+B&0\\0&0\end{array}\right]\right)\leq\operatorname{rank}\left(\left[\begin{array}{c}A\\0\end{array}\right]\right)+\operatorname{rank}\left(\left[\begin{array}{c}B\\0\end{array}\right]\right).$$

Now the 0 matrices in the second rows of these matrices do not effect ranks. That is, rank $\begin{pmatrix} A+B&0\\0&0 \end{pmatrix}$ = rank([A+B|0]),

 $\operatorname{rank}\left(\left[\begin{array}{c}A\\0\end{array}\right]\right)=\operatorname{rank}(A), \text{ and } \operatorname{rank}\left(\left[\begin{array}{c}B\\0\end{array}\right]\right)=\operatorname{rank}(B) \text{ (this can be justified by Theorem 3.3.4(iv) since } \operatorname{rank}(0)=0).$ Similarly, $\operatorname{rank}(\left[A+B\mid 0\right])=\operatorname{rank}(A+B).$ Therefore,

$$rank(A + B) \le rank(A) + rank(B)$$
. (*)

Theorem 3.3.6

Theorem 3.3.6. Let A and B be $n \times m$ matrices. Then

$$|\operatorname{rank}(A) - \operatorname{rank}(B)| \le \operatorname{rank}(A + B) \le \operatorname{rank}(A) + \operatorname{rank}(B).$$

Proof. By Theorem 3.2.2 we have

$$\begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I_m & 0 \\ I_m & 0 \end{bmatrix} = \begin{bmatrix} AI_m + BI_m & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} A + B & 0 \\ 0 & 0 \end{bmatrix}$$

(or, eliminating the 0 matrices as Gentle does, $[A \mid B] \begin{bmatrix} I_m \\ I_m \end{bmatrix} = A + B$). So by Theorem 3.3.5,

$$\begin{aligned} \operatorname{rank}\left(\left[\begin{array}{cc}A+B&0\\0&0\end{array}\right]\right) & \leq \min\left\{\operatorname{rank}\left(\left[\begin{array}{cc}A&B\\0&0\end{array}\right]\right),\operatorname{rank}\left(\left[\begin{array}{cc}I_{m}&0\\I_{m}&0\end{array}\right]\right)\right\} \\ & \leq \operatorname{rank}\left(\left[\begin{array}{cc}A&B\\0&0\end{array}\right]\right). \end{aligned}$$

Theorem

Theorem 3.3.6 (continued 2)

Theorem 3.3.6. Let A and B be $n \times m$ matrices. Then

$$|\mathsf{rank}(A) - \mathsf{rank}(B)| \le \mathsf{rank}(A + B) \le \mathsf{rank}(A) + \mathsf{rank}(B).$$

Proof (continued). With the second inequality established, we have

$$rank(A + B) \le rank(A) + rank(B)$$
. (*)

Next, A = (A + B) - B, so by (*) we have

$$rank(A) = rank((A + B) - B) \le rank(A + B) + rank(-B)$$

or

$$rank(A+B) \ge rank(A) - rank(-B) = rank(A) - rank(B)$$

since rank(-B) = rank(B). Similarly (interchanging A and B), $rank(A + B) \ge rank(B) - rank(A)$. Therefore, $rank(A + B) \ge |rank(A) - rank(B)|$.

The

Theory of Matrices

June 12, 202

Theory of Matric

June 12, 2020

Theorem 3.3.7

Theorem 3.3.8

Theorem 3.3.8. $n \times m$ matrix A, where n < m, has a right inverse if and only if A is of full row rank n. $n \times m$ matrix A, where m < n, has a left

Proof. Let A be an $n \times m$ matrix where n < m and let A be of full row

so that there is $x_i \in \mathbb{R}^m$ such that $Ax_i = e_i$ for i = 1, 2, ..., n. With X an

 $AX = I_n$. Also, by Theorem 3.3.6, $n = \text{rank}(I_n) \le \min\{\text{rank}(A), \text{rank}(X)\}$

Furthermore, $AX = I_n$ has a solution only if A has full row rank n since the *n* columns of I_n are linearly independent. That is, A has a right inverse

rank (that is, rank(A) = n). Then the column space of A, $\mathcal{V}(A)$, is of dimension n and each e_i , where e_i is the ith unit vector in \mathbb{R}^n , is in $\mathcal{V}(A)$

 $m \times n$ matrix with columns x_i and the columns of I_n as e_i , we have

where rank(A) = n, so rank(X) = n and X is of full column rank.

Theorem 3.3.7

Theorem 3.3.7. Let A be an $n \times n$ full rank matrix. Then $(A^{-1})^T = (A^T)^{-1}$.

Proof. First, A^T is also $n \times n$ and full rank by Theorem 3.3.2. We have

$$A^{T}(A^{-1})^{T} = (A^{-1}A)^{T}$$
 by Theorem 3.2.1(1)
= $\mathcal{I}^{T} = \mathcal{I}$,

so a right inverse of A^T is $(A^{-1})^T$. Since A is full rank and square then, as discussed above, $(A^T)^{-1} = (A^{-1})^T$.

> if and only if A is of full row rank. The result similarly follows for the left inverse claim.

inverse if and only if A has full column rank m.

Theorem 3.3.9

Theorem 3.3.9. If A is an $n \times m$ matrix of rank r > 0 then there are matrices P and Q, both products of elementary matrices, such that PAQis the equivalent canonical form of A, $PAQ = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$.

Proof. We prove this by induction. Since rank(A) > 0 then some $a_{ii} \neq 0$. We move this into position (1,1) by interchanging row 1 and i and interchanging columns 1 and j to produce $E_{1i}AE_{1i}^c$ (we use superscripts of 'c' to denote column operations). Then divide the first row by a_{ii} to produce an entry of 1 in the (1,1) position (we denote the corresponding elementary matrix as $E_{(1/a_{ii})1}$) to produce $B = E_{(1/a_{ii})1}E_{1i}AE_{1i}^c$. Next we "eliminate" the entries in the first column of B under the (1,1) entry with the elementary row operations $R_k \to R_k - b_{k1}R_1$ for $2 \le k \le n$ (we denote the corresponding elementary row matrices as $E_{k(-b_{n1})1}$ for $2 \le k \le n$) to produce

$$C = E_{n(-b_{n1})1}E_{(n-1)(-b_{(n-1)1})1}\cdots E_{2(-b_{21})1}B.$$

Theorem 3.3.9 (continued 1)

Proof (continued). Similarly we eliminate the entries in the first row of C to the right of the (1,1) entry with the elementary column operations $C_k \to C_k - c_{1k}C_1$ (with the corresponding elementary matrices $E_{n(-c_{1n})1}^c$) to produce

$$CE_{2(-c_{12})1}^c E_{3(-c_{13})1}^c \cdots E_{n(-c_{1n})1}^c$$

We now have a matrix of the form $P_1AQ_1=\begin{bmatrix}I_1&0_{R_1}\\0_{C_1}&X_1\end{bmatrix}$ where 0_{R_1} is $1 \times (n-1)$, 0_{C_1} is $(n-1) \times 1$, and X is $(n-1) \times (n-1)$. Also, P_1 and Q_1 are products of elementary matrices. By Theorem 3.3.3,

$$\operatorname{rank}(A) = \operatorname{rank}(P_1 A Q_1) = r$$
. Since $\mathcal{V}\left(\left[\begin{array}{c}I_1\\0_{C_1}\end{array}\right]\right) \perp \mathcal{V}\left(\left[\begin{array}{c}0_{R_1}\\X_1\end{array}\right]\right)$ then by

Theorem 3.3.4(iv)

Theorem 3.3.8

$$r = \operatorname{rank}\left(\left[egin{array}{c} I_1 \ 0_{\mathcal{C}_1} \end{array}
ight]
ight) + \operatorname{rank}\left(\left[egin{array}{c} 0_{R_1} \ X_1 \end{array}
ight]
ight) = 1 + \operatorname{rank}\left(\left[egin{array}{c} 0_{R_1} \ X_1 \end{array}
ight]
ight) ext{ and so }$$
 rank $\left(\left[egin{array}{c} 0_{R_1} \ X_1 \end{array}
ight]
ight) = r - 1.$

Theory of Matrices

Theorem 3.3.9 (continued 2)

Proof (continued). So $rank(X_1) = r - 1$ (also by Theorem 3.3.4(iv), if you like). If r - 1 > 0 then we can similarly find P_2 and Q_2 products of elementary matrices such that

$$P_2 P_1 A Q_1 Q_2 = \begin{bmatrix} I_2 & 0_{R_2} \\ 0_{C_2} & X_2 \end{bmatrix}$$

and rank $(X_2) = r - 2$. Continuing this process we can produce

$$P_r P_{r-1} \cdots P_1 A Q_1 Q_2 \cdots Q_r = \begin{bmatrix} I_r & 0_{R_r} \\ 0_{C_r} & X_r \end{bmatrix}$$

where X_r has rank 0; that is, where X_r is a matrix of all 0's. So

$$P_r P_{r-1} \cdots P_1 A Q_1 Q_2 \cdots Q_r = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix},$$

as claimed.

Theory of Matrices

June 12, 2020 22 /

Theory of Matric

ne 12, 2020

23 / 3

Theorem 3.3.1

Julie 12, 2020 22 /

Theorem 3.3.12

Theorem 3.3.12. If A is a full column rank matrix and B is conformable for the multiplication AB, then rank(AB) = rank(B). If A is a full row rank matrix and C is conformable for the multiplication CA, then rank(CA) = rank(C).

Proof. Let A be $n \times m$ and of full column rank $m \le n$. By Theorem 3.3.8, A has a left inverse A_L^{-1} where $A_L^{-1}A = I_m$. By Theorem 3.3.5, $\operatorname{rank}(AB) \le \min\{\operatorname{rank}(A), \operatorname{rank}(B)\} \le \operatorname{rank}(B)$. Now $B = I_mB = A_L^{-1}AB$, so by Theorem 3.3.5 $\operatorname{rank}(B) \le \min\{\operatorname{rank}(A_L^{-1}), \operatorname{rank}(AB)\} \le \operatorname{rank}(AB)$, and so $\operatorname{rank}(AB) = \operatorname{rank}(B)$.

Next let A be $n \times m$ and of row column rank $n \le m$. By Theorem 3.3.8, A has a right inverse A_R^{-1} where $AA_R^{-1} = I_n$. By Theorem 3.3.5, $\operatorname{rank}(CA) \le \operatorname{rank}(C)$. Now $C = CI_n = CAA_R^{-1}$, so by Theorem 3.3.5 $\operatorname{rank}(C) \le \operatorname{rank}(CA)$ and so $\operatorname{rank}(CA) = \operatorname{rank}(C)$.

Theorem 3.3.11

Theorem 3.3.11. If A is a square full rank matrix (that is, nonsingular) and if B and C are conformable matrices for the multiplications AB and CA then rank(AB) = rank(B) and rank(CA) = rank(C).

Proof. By Theorem 3.3.5,

 $\operatorname{rank}(AB) \leq \min\{\operatorname{rank}(A), \operatorname{rank}(B)\} \leq \operatorname{rank}(B)$. Also, $B = A^{-1}AB$ so by Theorem 3.3.5, $\operatorname{rank}(B) \leq \min\{\operatorname{rank}(A^{-1}), \operatorname{rank}(AB)\} \leq \operatorname{rank}(AB)$. So $\operatorname{rank}(B) = \operatorname{rank}(AB)$.

Similarly, $rank(CA) \le rank(C)$ and $C = CAA^{-1}$ so $rank(C) \le rank(CA)$ and hence rank(C) = rank(CA).

Theorem 3.3.13

Theorem 3.3.13. Let C be $n \times n$ and positive definite and let A be $n \times m$.

- (1) If C is positive definite and A is of full column rank $m \le n$ then $A^T CA$ is positive definite.
- (2) If $A^T CA$ is positive definite then A is of full column rank $m \le n$.

Proof. (1) Let $x \in \mathbb{R}^m$, where $x \neq 0$, and let y = Ax. So y is a linear combination of the columns of A and since A is of full column rank (so that the columns of A form a basis for the column space of A) and $x \neq 0$ implies $y \neq 0$. Since C is hypothesized to be positive definite,

$$x^{T}(A^{T}CA)x = (Ax)^{T}C(Ax) = y^{T}Cy > 0.$$

Also, $A^T CA$ is $m \times m$ and symmetric since $(A^T CA)^T = A^T C^T (A^T)^T = A^T CA$. Therefore $A^T CA$ is positive definite.

() Theory of Matrices June 12, 2020 24 / 36 () Theory of Matrices June 12, 2020 25 / 3

Theorem 3.3.13

Theorem 3.3.14. Properties of $A^T A$

Theorem 3.3.13 (continued)

Theorem 3.3.13. Let C be $n \times n$ and positive definite and let A be $n \times m$.

- (1) If C is positive definite and A is of full column rank $m \le n$ then $A^T CA$ is positive definite.
- (2) If $A^T CA$ is positive definite then A is of full column rank $m \le n$.

Proof (continued). (2) ASSUME not; assume that A is not of full column rank. Then the columns of A are not linearly independent and so with a_1, a_2, \ldots, a_m as the columns of A, there are scalars x_1, x_2, \ldots, x_m not all 0, such that $x_1a_1 + x_2a_2 + \cdots + x_ma_m = 0$. But then $x \in \mathbb{R}^m$ with entries x_i satisfies $x \neq 0$ and Ax = 0. Therefore $x^T(A^TCA)x = (x^TA^TC)(Ax) = (x^TA^TC)0 = 0$, and so A^TCA is not positive definite, a CONTRADICTION. So the assumption that A is not of full column rank is false. Hence, A is of full column rank.

Theorem 3.3.14

Theorem 3.3.14. Properties of A^TA .

Let A be an $n \times m$ matrix.

- (1) $A^T A = 0$ if and only if A = 0.
- (2) $A^T A$ is nonnegative definite.
- (3) $A^T A$ is positive definite if and only if A is of full column rank.
- (4) $(A^T A)B = (A^T A)C$ if and only if AB = AC, and $B(A^T A) = C(A^T A)$ if and only if $BA^T = CA^T$.
- (5) $A^T A$ is of full rank if and only if A is of full column rank.
- (6) $\operatorname{rank}(A^T A) = \operatorname{rank}(A)$.

The product A^TA is called a *Gramian matrix*.

Proof. (1) If A = 0 then $A^T = 0$ and $A^T A = 00 = 0$. If $A^T A = 0$ then $\operatorname{tr}(A^T A) = 0$. Now the (i,j) entry of $A^T A$ is $\sum_{k=1}^n a_{ik}^t a_{kj} = \sum_{k=1}^n a_{ki} a_{kj}$ and so the diagonal (i,i) entry is $\sum_{k=1}^n a_{ki}^2$. Then

$$0 = \operatorname{tr}(A^T A) = \sum_{i=1}^m \sum_{k=1}^n a_{ki}^2 = \sum_{i=1}^m \sum_{j=1}^n a_{ji}^2 = \sum_{j=1}^m \sum_{i=1}^n a_{ij}^2 \dots$$

()

Theory of Matrices

lune 12, 2020 26 / 36

Theor

June 12, 2020 27 / 36

Theorem 3.3.14. Properties of $A^T A$

Theorem 3.3.14 (continued 1)

Proof (continued). ... and so $a_{ij} = 0$ for all $1 \le i \le n$ and $1 \le j \le m$; that is, A = 0.

(2) For any $y \in \mathbb{R}^m$ we have

$$y^{T}(A^{T}A)y = (Ay)^{T}(Ay) = ||Ay||^{2} \ge 0.$$

(3) From (2), $y^T(A^TA)y = \|Ay\|^2$, so $y^T(A^TA)y = 0$ if and only if $\|Ay\| = 0$. Now Ay is a linear combination of the columns of A so if A is of full column rank then Ay = 0 if and only if y = 0. That is, if A is of full column rank then for $y \neq 0$ we have $y^T(A^TA)y = \|Ay\|^2 > 0$ and A^TA is positive definite.

If A is not of full column rank then the columns of A are not linearly independent and with a_1, a_2, \ldots, a_n as the columns of A, there are scalars y_1, y_2, \ldots, y_n , not all 0, such that $y_1 a_1 + y_2 a_2 + \cdots + y_n a_n = 0$. Then the $y \in \mathbb{R}^n$ with entries y_i we have $y \neq 0$ and Ay = 0. Then $y^T(A^TA)y = ||Ay||^2 = 0$, and so A^TA is not positive definite.

Theorem 3.3.14 (continued 2)

Proof (continued). (4) Suppose $A^TAB = A^TAC$. Then

 $A^TAB - A^TAC = 0$ or $A^TA(B-C) = 0$, and so $(B^T-C^T)A^TA(B-C) = 0$. Hence $(A(B-C))^T(A(B-C)) = 0$ and by Part (1), A(B-C) = 0. That is, AB = AC. Conversely, if AB = AC then $A^TAB = A^TAC$. Therefore $A^TAB = A^TAC$ if and only if AB = AC. Now suppose $BA^TA = CA^TA$. Then $BA^TA - CA^TA = 0$ or $(B-C)A^TA = 0$, and so $(B-C)A^TA(B^T-C^T) = 0$. Hence $((B-C)A^T)((B-C)A^T)^T = 0$ and by Part (1), $(B-C)A^T = 0$. That is, $BA^T = CA^T$. Conversely, if $BA^T = CA^T$ then $BA^TA = CA^TA$. Therefore $BA^TA = CA^TA$ if and only if $BA^T = CA^T$.

(5) Suppose A is of full column rank $m \le n$. Then by Theorem 3.3.12, $\operatorname{rank}(A^TA) = \operatorname{rank}(A) = m$. Since A^TA is $m \times m$, then A^TA is of full rank.

() Theory of Matrices June 12, 2020 28 / 36 () Theory of Matrices June 12, 2020 29 / 36

Theorem 3.3.14 (continued 3)

Proof (continued). Now suppose A^TA if of full rank m. Then by Theorem 3.3.5, $m = \operatorname{rank}(A^T A) < \min \{ \operatorname{rank}(A^T), \operatorname{rank}(A) \} < \operatorname{rank}(A)$, and since A is $n \times m$ then A must be of full column rank m.

(6) Let rank(A) = r. If r = 0 then A = 0 and so $A^T A = 0$ and $rank(A^TA) = 0$ and the claim holds. If r > 0, then the columns of A can be permuted so that the first r columns are linearly independent. That is, there is a permutation matrix Q such that $AQ = [A_1 A_2]$ where A_1 is an $n \times r$ matrix of rank r (and by Theorem 3.3.3, rank(AQ) = rank(A) = r). So A_1 is of full column rank and so each column of A_2 is in the column space of A_1 . So there is $r \times (m-r)$ matrix B such that $A_2 = A_1 B$. Then $AQ = [A_1 A_2] = [A_1 I_r A_1 B] = A_1 [I_r B]$. Hence $(AQ)^T = (A_1[I_r B])^T = \begin{bmatrix} I_r \\ B^T \end{bmatrix} A_1^T$ and

$$(AQ)^T = (A_1[I_r B])^T = \begin{bmatrix} I_r \\ B^T \end{bmatrix} A_1^T \text{ and}$$

 $(AQ)^T (AQ) = \begin{bmatrix} I_r \\ B^T \end{bmatrix} A_1^T A_1[I_r B]. \text{ Define } T = \begin{bmatrix} I_r & 0 \\ -B^T & I_{m-r} \end{bmatrix}.$

Theorem 3.3.14 (continued 4)

Proof (continued). Then T is $m \times m$ and of full rank m (as is T^T), so by Theorem 3.3.12

$$rank(A^{T}A) = rank((AQ)^{T}(AQ))$$

$$= rank(T(AQ)^{T}(AQ)) = rank(T(AQ)^{T}(AQ)T^{T}). \quad (*)$$

Now

$$T(AQ)^{T} = \begin{bmatrix} I_{r} & 0 \\ -B^{T} & I_{m-r} \end{bmatrix} \begin{bmatrix} I_{r} \\ B^{T} \end{bmatrix} A_{1}^{T} = \begin{bmatrix} I_{r}I_{r} + 0B^{T} \\ -B^{T}I_{r} + I_{m-r}B^{T} \end{bmatrix} A_{1}^{T}$$
$$= \begin{bmatrix} I_{r} \\ 0 \end{bmatrix} A_{1}^{T} = \begin{bmatrix} A_{1}^{T} \\ 0 \end{bmatrix}$$

and

$$(AQ)T^T = (T(AQ)^T)^T = \begin{bmatrix} A_1^T \\ 0 \end{bmatrix}^T = [A_1 \ 0].$$

Theorem 3.3.14 (continued 5)

Proof (continued). So

$$T(AQ)^T(AQ)T^T = \begin{bmatrix} A_1^T \\ 0 \end{bmatrix} [A_1 \ 0] = \begin{bmatrix} A_1^T A_1 & 0 \\ 0 & 0 \end{bmatrix}$$

(the matrix products are justified by Theorem 3.2.2). So by (*),

$$\operatorname{rank}(A^TA) = \operatorname{rank}\left(\left[\begin{array}{cc} A_1^TA_1 & 0 \\ 0 & 0 \end{array}\right]\right) = \operatorname{rank}(A_1^TA_1).$$

Since A_1 is of full column rank r, by Part (5) $A_1^T A_1$ is of full rank r. So $rank(A^TA) = rank(A_1^TA_1) = r = rank(A)$, as claimed.

Theorem 3.3.15

Theorem 3.3.15. If A is a $n \times n$ matrix and B is $n \times \ell$ then $rank(AB) \ge rank(A) + rank(B) - n$.

Proof. Let r = rank(A). By Theorem 3.3.9, there are $n \times n$ matrices Pand Q which are products of elementary matrices such that

$$PAQ = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$$
. Let $C = P^{-1} \begin{bmatrix} 0 & 0 \\ 0 & I_{n-r} \end{bmatrix} Q^{-1}$ and then

$$A+C=P^{-1}\left[\begin{array}{cc} I_r & 0 \\ 0 & 0 \end{array}\right]Q^{-1}+P^{-1}\left[\begin{array}{cc} 0 & 0 \\ 0 & I_{n-r} \end{array}\right]Q^{-1}=P^{-1}I_nQ^{-1}=P^{-1}Q^{-1}.$$

Now P^{-1} and Q^{-1} are of full rank n (see the notes before the definition of inverse matrix), so by Theorem 3.3.11,

$$\operatorname{rank}(C) = \operatorname{rank}\left(\left[\begin{array}{cc} 0 & 0 \\ 0 & I_{n-r} \end{array}\right]\right) = \operatorname{rank}(I_{n-r}) = n - \operatorname{rank}(A). \tag{*}$$

Theory of Matrices Theory of Matrices

Theorem 3.3.15 (continued)

Theorem 3.3.16

Theorem 3.3.15. If A is a $n \times n$ matrix and B is $n \times \ell$ then rank(AB) > rank(A) + rank(B) - n.

Proof (continued). So for $n \times \ell$ matrix B,

rank(
$$B$$
) = rank($P^{-1}Q^{-1}B$) by Theorem 3.3.11
= rank($AB + CB$) since $A + C = P^{-1}Q^{-1}$
 \leq rank(AB) + rank(CB) by Theorem 3.3.6
 \leq rank(AB) + rank(C) by Theorem 3.3.5
= rank(AB) + n - rank(A) by (*).

So rank(A) + rank(B) - n < rank(AB).

Theorem 3.3.16. $n \times n$ matrix A is invertible if and only if $det(A) \neq 0$.

Proof. By Theorem 3.2.4, det(AB) = det(A)det(B), so if A^{-1} exists then $det(A) = 1/det(A^{-1})$ and so $det(A) \neq 0$.

Conversely, if $det(A) \neq 0$ then by Theorem 3.1.3, $A^{-1} = (1/det(A))adj(A)$ and A is invertible.

Theorem 3.3.18

Theorem 3.3.18. If A and B are $n \times n$ full rank matrices then the Kronecker product satisfies $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}$.

Proof. Since A and B are full rank, then A^{-1} and B^{-1} exist. Let $A = [a_{ij}]$ and $A^{-1} = [c_{ii}]$. Then $(A \otimes B)(A^{-1} \otimes B^{-1})$

$$= \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}B & a_{n2}B & \cdots & a_{nn}B \end{bmatrix} \begin{bmatrix} c_{11}B^{-1} & c_{12}B^{-1} & \cdots & c_{1n}B^{-1} \\ c_{21}B^{-1} & c_{22}B^{-1} & \cdots & c_{2n}B^{-1} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1}B^{-1} & c_{n2}B^{-1} & \cdots & c_{nn}B^{-1} \end{bmatrix}$$

$$= \left[\sum_{k=1}^{n} a_{ik}c_{kj}I_{n} \right] \text{ since } (a_{ik}B)(c_{kj}B^{-1}) = a_{ik}c_{kj}I_{n}$$

$$= I_{n^{2}},$$

and so
$$A^{-1} \otimes B^{-1} = (A \otimes B)^{-1}$$
.

June 12, 2020