Theory of Matrices

Chapter 3. Basic Properties of Matrices
3.3. Matrix Rank and the Inverse of a Full Rank Matrix—Proofs of
Theorems
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Lemma 3.3.1. Let {2’} , = {[a},3},..., n]}
R and let m € Sp. Then the set of vectors {a'}k _; is linearly independent
if and only if the set of vectors {[aﬂ(l)7 @) 7T(n)]}lz1 is linearly
independent. That is, permuting all the entries in a set of vectors by the
same permutation preserves the linear dependence/independence of the
set.

be a set of vectors in

Proof (continued) So the set of vectors
{bi}k {[a )32 > An(n) ]} ", is linearly independent as well.

SimiIarIy, if {a' } is Imearly dependent then {b'} is linearly dependent. [
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Lemma 3.3.1

Lemma 3.3.1

Lemma 3.3.1. Let {a'}K | = {[ai,a},... n]}, , be a set of vectors in
R" and let ™ € Sp,. Then the set of vectors {a'}k _; is linearly independent
if and only if the set of vectors {[aﬂ(l)7 @) 7T(n)]}lz1 is linearly
independent. That is, permuting all the entries in a set of vectors by the
same permutation preserves the linear dependence/independence of the
set.

Proof. Set {a'}%_, is linearly mdependent if and only if Z, 1 sia’ = 0 for
scalars s1,5p,...,5, implies s = sp = = s, = 0. Now Z,Zl sia' =0
implies that Zf‘zl S;aj’: =0forj=1, 2, ..., Nn. So this system of n linear
equations (in k unknowns s; for i = 1,2, ..., k) has only one solution if
and only if the system of n linear equations in k unknowns

Zf;l s,'a;(j) =0 for j=1,2,...,n has only one solution, namely

s =s=---=s,=0. That is, if and only if the vector equation
Zf:l sib' =0, where b’ = [‘3;7(1)»3%(2)7 . ,a;T(n)] for i =1,2,...,k, has
only one solution, namely s; = sp = --- s, =

Theory of Matrices June 12, 2020 3/36

Theorem 3.3.2

Theorem 3.3.2. Let A be an n X m matrix. Then the row rank of A

equals the column rank of A. This common quantity is called the rank of
A.

Proof. Let the row rank of A be p and let the column rank of A be gq.
Rearrange the rows of A to form matrix B so that the first p rows of matrix
B are linearly independent (so B = PA where P is some permutation
matrix). Since A and B have the same rows, they have equal row rank. By
Lemma 3.3.1, the column rank of A equals the column rank of B (by
interchanging row i and j of A, we are interchanging all of the ith entries
with the jth entries in the column vectors of A). So we can partition B as

B= [ gl } where the p rows of Bj are linearly independent and the
2

n — p rows of B, are (each) linear combinations of the rows of B;. So with
the rows of By as ri, 1, ..., rp and the rows of By as rpy1, rp42, ..., rm, We
have scalars s;; where r; = >°F_ syrifor {=p+1,p+2,...,n
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Theorem 3.3.2 (continued) Theorem 3.3.3

Proof (continued). Then with S the (n — p) x p matrix with entries sy;, Theorem 3.3.3. If P and Q are products of elementary matrices then

k(PAQ) = rank(A).
S = [s¢i], we have B, = SB;. So B = { B rank(PAQ) = rank(4)
5B Proof. We show the result holds for P a single elementary matrix. The

column rank of B is the same as the column rank of Bj. result for @ a single elementary matrix follows similarly and the general

Rs—R
ith s — T —0i Ra 2R
With s = [s1, 2, .. ’Sm]B as a vector of m scalars, we have Bs = 0 if and result then follows by induction. Let P = E,q where [, Epq. Then
1S

only if [ SBB ] s = [ SBs ] = 0 if and only if Bys = 0. That is, a linear EpgA has the same rows as A and so rank(EpqA) = rank(A). Let P = Eg,
1 1

}. We claim now that the

Rp—sR,
c.ombinatlor? of.the columns of B is 0 if a.nd only if the corresponding . where I, — E., where s 0. Then with ry, 12, .., ry as the rows of A,
linear combination of the columns of By is 0. So the column rank of B is we have that ry, o, . . . rp—175rp7 Foi1,- .., are the rows of Es,A. Now
the same as the column rank of By, and so both are the same as the
column rank of A (namely, g). Since the columns of Bj are vectors in RP .
( Y. q) 1 Zs,-r, Zs,r, + (sp/s)(srp) + Z Sili
then g < p. )
Similarly, we can rearrange the columns of A and partition the resulting for any scalars s1,%,...,5,. Sor,rm,...,r,and
matrix to show that p < q. Therefore the row rank, p, of matrix A equals M1,y .y [p—1,Sp, Ipt1, - - - » Iy Satisfy precisely the same
the column rank, g, of matrix A. L] dependence/independence relations. Therefore rank(EspA) = rank(A).
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Theorem 3.3.3 (continued) Theorem 3.3.4
. : . A1 Ar
Theorem 3.3.3. If P and Q are products of elementary matrices then Theorem 3.3.4. Let A be a matrix partitioned as A = A Ao |
rank(PAQ) = rank(A). Then b
Proof (continued). Let P — E bere | Rp—=Rptskq £ Thenf (i) rank(Aj) < rank(A) for i,j € {1,2}.
root (continued). Let F = Ep5q Where /j psq- en for .
<
r,r,...,r the rows of A, we have that (ii) rank(A) < rank([A11|A12]) + rank([Az1] Azz])-
M, r,...,Mp—1,rp + Srq, rp+1, .- ., Iy are the rows of EpsqA. Now (iii) rank(A) < rank ({ Anl }) + rank <{ A1 })
- A1 Ao
pt (iv) If V([A11]A12]T) L V([A21|A2]T) th
11|A12 21]A22 en
Zs;ri-l-sp(rp-i-srq)-i— Z Siri = ZSIH ‘|‘(Sp5+5q rq + Z Siti rank(A) _ rank([A11|A12])-|—rank([A21|A22]) and if
i=1 i=p+1 i=q+1 All A12
V(L )2y (A ]) e
for any scalars s1,s,...,5,. So i, r,...,r, and 21 22
r,rn,...,M—1,rp + Srq, fp41, - . ., I satisfy precisely the same
dependence/independence relations. Therefore rank(A) = rank ({ A }) + rank <{ Ar2 }) ,
rank(EpsqA) = rank(A). O Azl Az
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Theorem 3.3.4

Theorem 3.3.4 (continued 1)

(i) rank(Aj) < rank(A) for i,j € {1,2}.

Proof. (i) Since the set of rows of [A11]|A12] is a subset of the set of rows
of A, then by Exercise 2.1.G(i), rank([A11|A12]) < rank(A). Similarly, the

A1l
Az1

rank ([ ﬁ” D < rank(A). Also, rank([A21|A2]) < rank(A) and
21

set of columns of is a subset of the set of columns of A and so

rank ([ le }) < rank(A). Next, the set of columns of Aj; is a subset of
22

the set of columns of [A11|A12] and so rank(A11) < rank([A11]A12]) (and
similarly rank(A12) < rank([A11]|A12])). Therefore

rank(A11) < rank(A11|A12]) < rank(A) and rank(A12) < rank(A11|A12])
< rank(A). Similarly, rank(A21) < rank(A21|A22]) < rank(A) and
rank(Azz2) < rank(Az1|A2]) < rank(A).
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Theorem 3.3.4

Theorem 3.3.4 (continued 2)

(II) rank(A) < rank([A11|A12]) + rank([A21|A22]).

0 ) <o 20 ]) o ([ 27])

Proof (continued). (ii) Let R be the set of rows of A, R; the set of rows
of [A11|A12], and R, the set of rows of [A21]|A2]. Then R = Ry U R, and
by Exercise 2.1.G(ii), dim(span(R)) < dim(span(R1)) + dim(span(Rz)).
That is, rank(A) < rank([A11|A12]) + rank([A21]|A22]).
(i) Let C be the set of columns of A, (i be the set of columns of

A1 A2
{Azl Ao } Then C =G UG
and by Exercise 2.1.G(ii),
dim(span(C)) < dim(span((1)) + dim(span((;)). That is,

ki <o ([ 3 ]) e ([ 27])

], and G be the set of columns of [
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Theorem 3.3.4

Theorem 3.3.4 (continued 3)

(IV) If V([A11|A12]T) 1 V([A21|A22]T) then

10/
Theorem 3.3.4

Theorem 3.3.4 (continued 4)

11/ 36

Proof (continued). (iv) Let C be the set of columns of A, C; the set of

A A
rank(A) = rank([A11|A12]) + rank([A21|A22]) columns of [ AZ ] and G, the set of columns of [ AZ } Then
: A A
and if V ({ AZ }) 1Ly ([ AZ ]) then V ([ :2;1 }) is the column space of [ 2;1 ] and V ([ :Z ]) is the
A1z :
rank(A) = rank ({ :211 }) 4 rank <{ :212 }) . column space of Ao | So the columns space of A is
21 22

Proof (continued). (iv) Let R be the set of rows of A, Ry the set of rows
of [A11|A12], and R, the set of rows of [A21|A22]. Then V([A11|A12]T) is
the row space of [A11|A12] and V([A21|Ax] ") is the row space of
[A21]|A22]. So the row space of A is V([A11]|A12]T) + V(A21|A2] ") (see
page 13 of the text). Since V([A21|A2]") L V([A21|A2]") by hypothesis,
then the row space of A is V([A11|A12]7) @ V([A21|A2]). By Exercise
2.1.G(iii), rank(A) = dim(V([A11|A12] 7)) + dim(V([A21]A22] 7))

= rank([A11|A12]) + rank([A11|A12]).

A11 A12 . A11 A12
V(L D) v(laa]) seev ([ ) v ([R2]) >
hypothesis, then the column space of Ais V ([ An ]) eV ({ Az })

By Exercise 2.1.G(iii),

ana =dim (v (| 2 ])) waim (v (| 22 ])) =
(] (5] D
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Theorem 3.3.5

Theorem 3.3.5. Let A be an n X k matrix and B be a kK x m matrix.
Then rank(AB) < min{rank(A), rank(B)}.

., ak, the columns of B be
cm- Recall (see the

Proof. Let the columns of A be aj, ay, ..
by, by, ..., by, and the columns of AB be ¢, 0, ...,

note on page 5 of the class notes for Section 3.2) that if x € R* then Ax
is a linear combination of the columns of A; that is, Ax € V(A). Now from
the definition of matrix multiplication, we have ¢; = Ab; for i =1,2,..., m

so that ¢; = Ab; € V(A) for i =1,2,..., m. So every linear combination
of the columns of AB is also a linear combination of the columns of A,
and V(AB) is a subspace of V(A). Hence rank(AB) < rank(A). By
Theorem 3.3.2, rank(A) = rank(AT), rank(B) = rank(BT), and

Theorem 3.3.6

Theorem 3.3.6. Let A and B be n x m matrices. Then

[rank(A) — rank(B)| < rank(A + B) < rank(A) + rank(B).
Proof. By Theorem 3.2.2 we have

o)l e[ a] =" o)

0 0 Im 0 0
(or, eliminating the 0 matrices as Gentle does, [A | B] { ;m ] = A+ B).
m
So by Theorem 3.3.5,

0
0

A+B 0
0 0

rank(AB) = rank((AB)T). So the previous argument shows that rank ([ A -I(; B 8 }) < min {rank ({ '8\ g }) , rank ([ ;m 8 ])}
m
rank(AB) = rank((AB)T) = rank(BT A7) < rank(BT) = rank(B). < rank <{ A B ])
Therefore, rank(AB) < min{rank(A), rank(B)}. O - 00
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Theorem 3.3.6 (continued 1) Theorem 3.3.6 (continued 2)
Proof (continued). By Theorem 3.3.4(iii), Theorem 3.3.6. Let A and B be n x m matrices. Then

rank <[ ’5\ ﬁ ]) < rank ({ ’S\ ]) + rank ([ ’(8) }) [rank(A) — rank(B)| < rank(A + B) < rank(A) + rank(B).
and so, combining these last two results, Proof (continued). With the second inequality established, we have

rank({ A-I(;B 8 ]) < rank({ /3 }) -|—rank<{ g ]) . rank(A + B) < rank(A) + rank(B). (%)
Now the 0 matrices in the second rows of these matrices do not effect Next, A= (A+ B) — B, so by (x) we have
. A+B 0
ranks. That is, rank 0 0 > = rank([A + B [ 0]), rank(A) = rank((A + B) — B) < rank(A + B) + rank(—B)
rank ({ /3 }) = rank(A), and rank ({ g ]) = rank(B) (this can be or
k(A + B) > rank(A) — rank(—B) = rank(A) — rank(B
justified by Theorem 3.3.4(iv) since rank(0) = 0). Similarly, _ rank(A + B) = ran () ran ( ) rein (A) = rank(B)
rank([A+ B | 0]) = rank(A + B). Therefore, since rank(—B) = rank(B). Similarly (interchanging A and B),
rank(A + B) > rank(B) — rank(A). Therefore,
rank(A + B) < rank(A) + rank(B). (+) rank(A + B) > |rank(A) — rank(B)|. 0
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Theorem 3.3.7

Theorem 3.3.7. Let A be an n x n full rank matrix. Then
(A—l)T — (AT)—l'

Proof. First, AT is also n x n and full rank by Theorem 3.3.2. We have

AT(A™HT = (A7'A)T by Theorem 3.2.1(1)
= I" =1,
so a right inverse of AT is (A~1)7. Since A is full rank and square then,
as discussed above, (A7) = (A™1)T. O
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Theorem 3.3.9

Theorem 3.3.9. If Ais an n x m matrix of rank r > 0 then there are
matrices P and @, both products of elementary matrices, such that PAQ

is the equivalent canonical form of A, PAQ = { g 8 ]

Proof. We prove this by induction. Since rank(A) > 0 then some a;; # 0.
We move this into position (1,1) by interchanging row 1 and i and
interchanging columns 1 and j to produce E1,-AEfj (we use superscripts of
‘c’ to denote column operations). Then divide the first row by aj; to
produce an entry of 1 in the (1,1) position (we denote the corresponding
elementary matrix as E(l/a,-j)l) to produce B = E(1/a,-j)1E1iAEfj- Next we
“eliminate” the entries in the first column of B under the (1,1) entry with
the elementary row operations Ry — Ry — by1 Ry for 2 < k < n (we denote
the corresponding elementary row matrices as Ey(_p )1 for 2 < k < n) to
produce

C = Enbm)1 E(n—1)(=bp_yy)1 - E2(=br)1 B-

Theory of Matrices

15/ %

June 12, 2020 20 / 36

Theorem 3.3.8

Theorem 3.3.8

Theorem 3.3.8. n x m matrix A, where n < m, has a right inverse if and
only if A is of full row rank n. n x m matrix A, where m < n, has a left
inverse if and only if A has full column rank m.

Proof. Let A be an n x m matrix where n < m and let A be of full row
rank (that is, rank(A) = n). Then the column space of A, V(A), is of
dimension n and each e;, where ¢; is the ith unit vector in R”, is in V(A)
so that there is x; € R™ such that Ax; = ¢; for i =1,2,...,n. With X an
m X n matrix with columns x; and the columns of /, as e;, we have

AX = I,. Also, by Theorem 3.3.6, n = rank(/,) < min{rank(A), rank(X)}
where rank(A) = n, so rank(X) = n and X is of full column rank.
Furthermore, AX = I, has a solution only if A has full row rank n since
the n columns of /, are linearly independent. That is, A has a right inverse
if and only if A is of full row rank. The result similarly follows for the left
inverse claim. []
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Theorem 3.3.9 (continued 1)

Proof (continued). Similarly we eliminate the entries in the first row of
C to the right of the (1,1) entry with the elementary column operations
Cx — Cx — c1xC1 (with the corresponding elementary matrices E,f(_cln)l)
to produce

CE2C(—C12)1E3C(—C13)1 e ;(—Cln)].'

h Og,
OC1 Xl
1x(n—1),0¢is(n—1)x1,and X is (n—1) x (n—1). Also, P; and
@1 are products of elementary matrices. By Theorem 3.3.3,

rank(A) = rank(P1AQq) = r. Since V ({ h ]) 1V ({ Or, }) then by
0c, Xi
Theorem 3.3.4(iv)

r:rank<[ 0’; }) —|—rank<[ 2511 }) :1—|—rank<[ 2’511 }) and so

OR1 _
rank X, =r—1.

We now have a matrix of the form P1AQ; = [ ] where Og, is
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Theorem 3.3.9 (continued 2)

Proof (continued). So rank(X;) = r — 1 (also by Theorem 3.3.4(iv), if
you like). If r —1 > 0 then we can similarly find P, and @, products of
elementary matrices such that

L 0
P2P1AQ1Qz = { 0w X }
2

and rank(X2) = r — 2. Continuing this process we can produce

I Og ]

PrPr—l"'PlAQ1Q2"'Qr:|:OC X

where X, has rank 0; that is, where X, is a matrix of all 0's. So

/. 0
'Dr'Dr—l"'PlAQlQZ"'Qr: l 0 O]a

as claimed. L]

Theorem 3.3.12

Theorem 3.3.12

Theory of Matrices

Theorem 3.3.12. If Ais a full column rank matrix and B is conformable
for the multiplication AB, then rank(AB) = rank(B). If Ais a full row
rank matrix and C is conformable for the multiplication CA, then
rank(CA) = rank(C).

Proof. Let A be n x m and of full column rank m < n. By Theorem 3.3.8,
A has a left inverse Azl where AZIA = I,. By Theorem 3.3.5,

rank(AB) < min{rank(A), rank(B)} < rank(B). Now B = I,,B = A 'AB,
so by Theorem 3.3.5 rank(B) < min{rank(A; '), rank(AB)} < rank(AB),
and so rank(AB) = rank(B).

Next let A be n x m and of row column rank n < m. By Theorem 3.3.8, A
has a right inverse AEl where AAE1 = 1,. By Theorem 3.3.5,

rank(CA) < rank(C). Now C = Cl, = CAAR, so by Theorem 3.3.5
rank(C) < rank(CA) and so rank(CA) = rank(C). O
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Theorem 3.3.11

Theorem 3.3.11

Theorem 3.3.11. If Ais a square full rank matrix (that is, nonsingular)
and if B and C are conformable matrices for the multiplications AB and
CA then rank(AB) = rank(B) and rank(CA) = rank(C).

Proof. By Theorem 3.3.5,

rank(AB) < min{rank(A), rank(B)} < rank(B). Also, B = A"'AB so by
Theorem 3.3.5, rank(B) < min{rank(A~1),rank(AB)} < rank(AB). So
rank(B) = rank(AB).

Similarly, rank(CA) < rank(C) and C = CAA™! so rank(C) < rank(CA)
and hence rank(C) = rank(CA). O
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Theorem 3.3.13

Theorem 3.3.13. Let C be n x n and positive definite and let A be n x m.

(1) If Cis positive definite and A is of full column rank m < n
then AT CA is positive definite.

2) If AT CA is positive definite then A is of full column rank
(
m<n.

Proof. (1) Let x € R™, where x # 0, and let y = Ax. So y is a linear
combination of the columns of A and since A is of full column rank (so
that the columns of A form a basis for the column space of A) and x # 0
implies y # 0. Since C is hypothesized to be positive definite,

xT(ATCA)x = (Ax)TC(Ax) =y Cy > 0.

Also, AT CA is m x m and symmetric since
(ATCA)T = ATCT(AT)T = AT CA. Therefore AT CA is positive definite.

Theory of Matrices

June 12, 2020 25 /36



Theorem 3.3.13 (continued)

Theorem 3.3.13. Let C be nx n and positive definite and let A be n x m.

(1) If C is positive definite and A is of full column rank m < n
then AT CA is positive definite.

(2) If AT CA is positive definite then A is of full column rank
m<n.

Proof (continued). (2) ASSUME not; assume that A is not of full
column rank. Then the columns of A are not linearly independent and so
with a1, as,...,am as the columns of A, there are scalars x1,x2, ..., Xm
not all 0, such that x;a; + xeas + -+ + xmam = 0. But then x € R™ with
entries x; satisfies x # 0 and Ax = 0. Therefore

xT(ATCA)x = (xTATC)(Ax) = (xTATC)0 =0, and so AT CA is not

positive definite, a CONTRADICTION. So the assumption that A is not of

full column rank is false. Hence, A is of full column rank. ]
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Theorem 3.3.14. Properties of AlA

Theorem 3.3.14 (continued 1)

Proof (continued).
that is, A= 0.

.andsoaj=0forall 1<i<nand 1< <m

(2) For any y € R™ we have

yT(ATA)y = (Ay)"(Ay) = |Ay|* = 0.

(3) From (2), yT(ATA)y = ||Ay||?, so yT(AT A)y = 0 if and only if
|Ay|| = 0. Now Ay is a linear combination of the columns of A so if A is
of full column rank then Ay =0 if and only if y = 0. That is, if A is of full
column rank then for y # 0 we have y T (AT A)y = ||Ay||> >0 and ATAis
positive definite.

If Ais not of full column rank then the columns of A are not linearly
independent and with ag, as, ..., a, as the columns of A, there are scalars
Y1,Y2,---,¥n, not all 0, such that y1a1 + ysar + -+ + ynan = 0. Then the
y € R" with entries y; we have y # 0 and Ay = 0. Then

yT(ATA)y = ||Ay||> =0, and so AT A is not positive definite.
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Theorem 3.3.14. Properties of A" A

Theorem 3.3.14

Theorem 3.3.14. Properties of AT A.
Let A be an n x m matrix.
(1) ATA=0if and only if A= 0.
(2) AT Ais nonnegative definite.
(3) AT Ais positive definite if and only if A is of full column rank.
(4) (ATA)B = (AT A)C if and only if AB = AC, and
B(ATA) = C(ATA) if and only if BAT = CAT.
(5) AT A'is of full rank if and only if A is of full column rank.
(6) rank(AT A) = rank(A).
The product AT A is called a Gramian matrix.
Proof. (1) If A=0 then AT =0and ATA=00=0. If ATA =0 then
tr(ATA) = 0. Now the (i, ) entry of ATA is > p_qabak =D h_q akiakj
and so the diagonal (i, i) entry is Y7 _; a.. Then

m n m n m n
_ 2 _ 2 2
=D D k=) D> #=> > aj.
i=1 k=1 i=1 j=1 j=1 i=1
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0=tr(ATA)

Theorem 3.3.14 (continued 2)

Proof (continued). (4) Suppose ATAB = ATAC. Then

ATAB — ATAC =0o0or ATA(B— C) =0, and so

(BT — CT)ATA(B — C) = 0. Hence (A(B — C))"(A(B— C)) =0 and by
Part (1), A(B— C) =0. Thatis, AB = AC. Conversely, if AB = AC then
ATAB = ATAC. Therefore ATAB = AT AC if and only if AB = AC.

Now suppose BATA= CATA. Then BATA— CATA=0 or

(B— C)ATA=0,andso (B— C)ATA(BT — C") =0. Hence

(B— C)AT)((B— C)AT)T =0 and by Part (1), (B — C)AT = 0. That
is, BAT = CAT. Conversely, if BAT = CAT then BATA = CATA.
Therefore BATA = CAT A if and only if BAT = CAT.

(5) Suppose A is of full column rank m < n. Then by Theorem 3.3.12,
rank(AT A) = rank(A) = m. Since AT Ais m x m, then AT A is of full rank.
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Theorem 3.3.14 (continued 3)

Proof (continued). Now suppose AT A if of full rank m. Then by
Theorem 3.3.5, m = rank(AT A) < min{rank(AT), rank(A)} < rank(A),
and since A is n x m then A must be of full column rank m.

(6) Let rank(A) =r. If r =0 then A= 0 and so ATA =0 and
rank(AT A) = 0 and the claim holds. If r > 0, then the columns of A can
be permuted so that the first r columns are linearly independent. That is,
there is a permutation matrix Q such that AQ = [A; Az] where A; is an

n x r matrix of rank r (and by Theorem 3.3.3, rank(AQ) = rank(A) = r).
So A is of full column rank and so each column of A is in the column
space of Aj. So there is r x (m — r) matrix B such that A = A;B. Then
AQ = [A1 A2] = [A1l, A1B] = A1[l, B]. Hence

/
(AQ)T = (All B) = | g | AT and
(AQ)T(AQ) = ’fT AT A1[l, B]. Define T = "T 01
B -B | —
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Theorem 3.3.14 (continued 5)

Proof (continued). So

Q)T = | 4 [ - | A 0

(the matrix products are justified by Theorem 3.2.2). So by (%),

ATAL 0

rank(AT A) = rank ([ o 0 D = rank(A{ Ay).

Since A; is of full column rank r, by Part (5) A{ A; is of full rank r. So

rank(AT A) = rank(A{ A1) = r = rank(A), as claimed. O
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2 /3%

Theorem 3.3.14. Properties of A" A

Theorem 3.3.14 (continued 4)

Proof (continued). Then T is m x m and of full rank m (asis TT), so
by Theorem 3.3.12

rank(AT A) = rank((AQ) T (AQ))
= rank(T(AQ)T(AQ)) = rank(T(AQ)T(AQ)TT). ()
Now

/ 0 I Il + 0BT
T(AQ)T = |: _éT /m—r :| |: BrT :| Air = |: —B-Ir—/rr-i-/m_rBT A]-.r

[t

Al
0

and

]
(AQ)TT=(T(AQ)T)T=[ } — AL 0],
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Theorem 3.3.15

Theorem 3.3.15. If Ais a n X n matrix and B is n X ¢ then
rank(AB) > rank(A) + rank(B) — n.

Proof. Let r = rank(A). By Theorem 3.3.9, there are n x n matrices P
and @ which are products of elementary matrices such that

0 5110 0 1
PAQ—lO 01.LetC—P {0 In—r]Q and then

I 0 0 0
_ p—1 r -1 -1
A+C=P {0 O]Q +P [0 o

:| Q—l — P_lan_l — P_]'Q_l.
Now P~ and Q! are of full rank n (see the notes before the definition of
inverse matrix), so by Theorem 3.3.11,

0

n—r

rank(C) = rank q 8 | D = rank(/,—,) = n —rank(A). (%)
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Theorem 3.3.15 (continued) Theorem 3.3.16

Theorem 3.3.15. If Ais a n X n matrix and B is n x ¢ then
rank(AB) > rank(A) + rank(B) — n.

Proof (continued). So for n x £ matrix B, Theorem 3.3.16. n x n matrix A is invertible if and only if det(A) # 0.
rank(B) = rank(P"*Q 'B) by Theorem 3.3.11 Proof. By Theorem 3.2.4, det(AB) = det(A)det(B), so if A~! exists then
= rank(AB 4 CB) since A+ C =P 1Q! det(A) = 1/det(A™") and so det(A) # 0.
< rank(AB) + rank(CB) by Theorem 3.3.6 Conversely, if det(A) # 0 then by Theorem 3.1.3, A~! = (1/det(A))adj(A)
< rank(AB) + rank(C) by Theorem 3.3.5 and A is invertible. O
= rank(AB) + n — rank(A) by (x).
So rank(A) + rank(B) — n < rank(AB). O
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Theorem 3.3.18

Theorem 3.3.18. If A and B are n x n full rank matrices then the
Kronecker product satisfies (A® B) ' = Al @ B~1.

Proof. Since A and B are full rank, then A~! and B! exist. Let A = [a;]
and AL = [¢;]. Then (A® B)(A~® B~1)

-3113 3125 alnB CllB_l ClgB_l ClnB_l
a1B apB -+ ayB 1B Bt o BT
B B ... B B—1 B-1 ... B—1
| 9nl an2 ann Cnl Cn2 Cnn
[ n
. -1
= Za;kckjl,, since (aixB)(cijB™") = aikcujln
Lk=1

= /,,2,

andso A '@ B !=(A®B) L O
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