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Lemma 3.3.1

Lemma 3.3.1

Lemma 3.3.1. Let {ai}k
i=1 = {[ai

1, a
i
2, . . . , a

i
n]}k

i=1 be a set of vectors in
Rn and let π ∈ Sn. Then the set of vectors {ai}k

i=1 is linearly independent
if and only if the set of vectors {[ai

π(1), a
i
π(2), . . . , a

i
π(n)]}

k
i=1 is linearly

independent. That is, permuting all the entries in a set of vectors by the
same permutation preserves the linear dependence/independence of the
set.

Proof. Set {ai}k
i=1 is linearly independent if and only if

∑k
i=1 sia

i = 0 for

scalars s1, s2, . . . , sk implies s1 = s2 = · · · = sk = 0. Now
∑k

i=1 sia
i = 0

implies that
∑k

i=1 sia
i
j = 0 for j = 1, 2, . . . , n.

So this system of n linear
equations (in k unknowns si for i = 1, 2, . . . , k) has only one solution if
and only if the system of n linear equations in k unknowns∑k

i=1 sia
i
π(j) = 0 for j = 1, 2, . . . , n has only one solution, namely

s1 = s2 = · · · = sk = 0. That is, if and only if the vector equation∑k
i=1 sib

i = 0, where bi = [ai
π(1), a

i
π(2), . . . , a

i
π(n)] for i = 1, 2, . . . , k, has

only one solution, namely s1 = s2 = · · · sk = 0.
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Lemma 3.3.1

Lemma 3.3.1 (continued)

Lemma 3.3.1. Let {ai}k
i=1 = {[ai

1, a
i
2, . . . , a

i
n]}k

i=1 be a set of vectors in
Rn and let π ∈ Sn. Then the set of vectors {ai}k

i=1 is linearly independent
if and only if the set of vectors {[ai

π(1), a
i
π(2), . . . , a

i
π(n)]}

k
i=1 is linearly

independent. That is, permuting all the entries in a set of vectors by the
same permutation preserves the linear dependence/independence of the
set.

Proof (continued). So the set of vectors
{bi}k

i=1 = {[ai
π(1), a

i
π(2), . . . , a

i
π(n)]}

k
i=1 is linearly independent as well.

Similarly, if {ai} is linearly dependent then {bi} is linearly dependent.
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Theorem 3.3.2

Theorem 3.3.2

Theorem 3.3.2. Let A be an n ×m matrix. Then the row rank of A
equals the column rank of A. This common quantity is called the rank of
A.

Proof. Let the row rank of A be p and let the column rank of A be q.

Rearrange the rows of A to form matrix B so that the first p rows of matrix
B are linearly independent (so B = PA where P is some permutation
matrix). Since A and B have the same rows, they have equal row rank. By
Lemma 3.3.1, the column rank of A equals the column rank of B (by
interchanging row i and j of A, we are interchanging all of the ith entries
with the jth entries in the column vectors of A). So we can partition B as

B =

[
B1

B2

]
where the p rows of B1 are linearly independent and the

n− p rows of B2 are (each) linear combinations of the rows of B1. So with
the rows of B1 as r1, r2, . . . , rp and the rows of B2 as rp+1, rp+2, . . . , rn, we
have scalars s`i where r` =

∑p
i=1 s`i ri for ` = p + 1, p + 2, . . . , n.
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Theorem 3.3.2

Theorem 3.3.2 (continued)

Proof (continued). Then with S the (n − p)× p matrix with entries s`i ,

S = [s`i ], we have B2 = SB1. So B =

[
B1

SB1

]
. We claim now that the

column rank of B is the same as the column rank of B1.

With s = [s1, s2, . . . , sm]T as a vector of m scalars, we have Bs = 0 if and

only if

[
B1

SB1

]
s =

[
B1s
SB1s

]
= 0 if and only if B1s = 0. That is, a linear

combination of the columns of B is 0 if and only if the corresponding
linear combination of the columns of B1 is 0. So the column rank of B is
the same as the column rank of B1, and so both are the same as the
column rank of A (namely, q). Since the columns of B1 are vectors in Rp

then q ≤ p.

Similarly, we can rearrange the columns of A and partition the resulting
matrix to show that p ≤ q. Therefore the row rank, p, of matrix A equals
the column rank, q, of matrix A.
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Theorem 3.3.3

Theorem 3.3.3

Theorem 3.3.3. If P and Q are products of elementary matrices then
rank(PAQ) = rank(A).

Proof. We show the result holds for P a single elementary matrix. The
result for Q a single elementary matrix follows similarly and the general

result then follows by induction.

Let P = Epq where In

Rq↔Rp

˜ Epq. Then
EpqA has the same rows as A and so rank(EpqA) = rank(A). Let P = Esp

where In

Rp→sRp

˜ Esp where s 6= 0. Then with r1, r2, . . . , rn as the rows of A,
we have that r1, r2, . . . , rp−1, srp, rp+1, . . . , rn are the rows of EspA. Now

n∑
i=1

si ri =

p−1∑
i=1

si ri + (sp/s)(srp) +
n∑

i=p+1

si ri

for any scalars s1, s2, . . . , sn. So r1, r2, . . . , rn and
r1, r2, . . . , rp−1, srp, rp+1, . . . , rn satisfy precisely the same
dependence/independence relations. Therefore rank(EspA) = rank(A).
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Theorem 3.3.3

Theorem 3.3.3 (continued)

Theorem 3.3.3. If P and Q are products of elementary matrices then
rank(PAQ) = rank(A).

Proof (continued). Let P = Epsq where In

Rp→Rp+sRq

˜ Epsq. Then for
r1, r2, . . . , rn the rows of A, we have that
r1, r2, . . . , rp−1, rp + srq, rp+1, . . . , rn are the rows of EpsqA. Now

p−1∑
i=1

si ri + sp(rp + srq) +
n∑

i=p+1

si ri =

q−1∑
i=1

si ri + (sps + sq)rq +
n∑

i=q+1

si ri

for any scalars s1, s2, . . . , sn. So r1, r2, . . . , rn and
r1, r2, . . . , rp−1, rp + srq, rp+1, . . . , rn satisfy precisely the same
dependence/independence relations. Therefore
rank(EpsqA) = rank(A).

() Theory of Matrices June 12, 2020 8 / 36



Theorem 3.3.3

Theorem 3.3.3 (continued)
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Theorem 3.3.4

Theorem 3.3.4

Theorem 3.3.4. Let A be a matrix partitioned as A =

[
A11 A12

A21 A22

]
.

Then

(i) rank(Aij) ≤ rank(A) for i , j ∈ {1, 2}.
(ii) rank(A) ≤ rank([A11|A12]) + rank([A21|A22]).

(iii) rank(A) ≤ rank

([
A11

A21

])
+ rank

([
A12

A22

])
.

(iv) If V([A11|A12]
T ) ⊥ V([A21|A22]

T ) then
rank(A) = rank([A11|A12]) + rank([A21|A22]) and if

V
([

A11

A21

])
⊥ V

([
A12

A22

])
then

rank(A) = rank

([
A11

A21

])
+ rank

([
A12

A22

])
.
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Theorem 3.3.4

Theorem 3.3.4 (continued 1)

(i) rank(Aij) ≤ rank(A) for i , j ∈ {1, 2}.

Proof. (i) Since the set of rows of [A11|A12] is a subset of the set of rows
of A, then by Exercise 2.1.G(i), rank([A11|A12]) ≤ rank(A).

Similarly, the

set of columns of

[
A11

A21

]
is a subset of the set of columns of A and so

rank

([
A11

A21

])
≤ rank(A). Also, rank([A21|A22]) ≤ rank(A) and

rank

([
A12

A22

])
≤ rank(A). Next, the set of columns of A11 is a subset of

the set of columns of [A11|A12] and so rank(A11) ≤ rank([A11|A12]) (and
similarly rank(A12) ≤ rank([A11|A12])). Therefore
rank(A11) ≤ rank(A11|A12]) ≤ rank(A) and rank(A12) ≤ rank(A11|A12])
≤ rank(A). Similarly, rank(A21) ≤ rank(A21|A22]) ≤ rank(A) and
rank(A22) ≤ rank(A21|A22]) ≤ rank(A).
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Theorem 3.3.4

Theorem 3.3.4 (continued 2)

(ii) rank(A) ≤ rank([A11|A12]) + rank([A21|A22]).

(iii) rank(A) ≤ rank

([
A11

A21

])
+ rank

([
A12

A22

])
.

Proof (continued). (ii) Let R be the set of rows of A, R1 the set of rows
of [A11|A12], and R2 the set of rows of [A21|A22]. Then R = R1 ∪ R2 and
by Exercise 2.1.G(ii), dim(span(R)) ≤ dim(span(R1)) + dim(span(R2)).
That is, rank(A) ≤ rank([A11|A12]) + rank([A21|A22]).
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Theorem 3.3.4

Theorem 3.3.4 (continued 3)

(iv) If V([A11|A12]
T ) ⊥ V([A21|A22]

T ) then

rank(A) = rank([A11|A12]) + rank([A21|A22])

and if V
([

A11

A21

])
⊥ V

([
A12

A22

])
then

rank(A) = rank

([
A11

A21

])
+ rank

([
A12

A22

])
.

Proof (continued). (iv) Let R be the set of rows of A, R1 the set of rows
of [A11|A12], and R2 the set of rows of [A21|A22]. Then V([A11|A12]

T ) is
the row space of [A11|A12] and V([A21|A22]

T ) is the row space of
[A21|A22]. So the row space of A is V([A11|A12]

T ) + V(A21|A22]
T ) (see

page 13 of the text).

Since V([A21|A22]
T ) ⊥ V([A21|A22]

T ) by hypothesis,
then the row space of A is V([A11|A12]

T )⊕ V([A21|A22]). By Exercise
2.1.G(iii), rank(A) = dim(V([A11|A12]

T )) + dim(V([A21|A22]
T ))

= rank([A11|A12]) + rank([A11|A12]).
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Theorem 3.3.4

Theorem 3.3.4 (continued 4)

Proof (continued). (iv) Let C be the set of columns of A, C1 the set of

columns of
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]
, and C2 the set of columns of
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A22
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V
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A11

A21
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is the column space of
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+ V
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rank(A) = dim
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A21
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V
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A21
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Theorem 3.3.5

Theorem 3.3.5

Theorem 3.3.5. Let A be an n × k matrix and B be a k ×m matrix.
Then rank(AB) ≤ min{rank(A), rank(B)}.

Proof. Let the columns of A be a1, a2, . . . , ak , the columns of B be
b1, b2, . . . , bm, and the columns of AB be c1, c2, . . . , cm.

Recall (see the
note on page 5 of the class notes for Section 3.2) that if x ∈ Rk then Ax
is a linear combination of the columns of A; that is, Ax ∈ V(A). Now from
the definition of matrix multiplication, we have ci = Abi for i = 1, 2, . . . ,m
so that ci = Abi ∈ V(A) for i = 1, 2, . . . ,m. So every linear combination
of the columns of AB is also a linear combination of the columns of A,
and V(AB) is a subspace of V(A). Hence rank(AB) ≤ rank(A). By
Theorem 3.3.2, rank(A) = rank(AT ), rank(B) = rank(BT ), and
rank(AB) = rank((AB)T ). So the previous argument shows that

rank(AB) = rank((AB)T ) = rank(BTAT ) ≤ rank(BT ) = rank(B).

Therefore, rank(AB) ≤ min{rank(A), rank(B)}.
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Theorem 3.3.6

Theorem 3.3.6

Theorem 3.3.6. Let A and B be n ×m matrices. Then

|rank(A)− rank(B)| ≤ rank(A + B) ≤ rank(A) + rank(B).

Proof. By Theorem 3.2.2 we have[
A B
0 0

] [
Im 0
Im 0

]
=

[
AIm + BIm 0

0 0

]
=

[
A + B 0

0 0

]
(or, eliminating the 0 matrices as Gentle does, [A | B]

[
Im
Im

]
= A + B).

So by Theorem 3.3.5,

rank

([
A + B 0

0 0

])
≤ min

{
rank

([
A B
0 0

])
, rank

([
Im 0
Im 0

])}
≤ rank

([
A B
0 0

])
.
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Theorem 3.3.6

Theorem 3.3.6 (continued 1)

Proof (continued). By Theorem 3.3.4(iii),

rank

([
A B
0 0

])
≤ rank

([
A
0

])
+ rank

([
B
0

])
and so, combining these last two results,

rank

([
A + B 0

0 0

])
≤ rank

([
A
0

])
+ rank

([
B
0

])
.

Now the 0 matrices in the second rows of these matrices do not effect

ranks. That is, rank

([
A + B 0

0 0

])
= rank([A + B | 0]),

rank

([
A
0

])
= rank(A), and rank

([
B
0

])
= rank(B) (this can be

justified by Theorem 3.3.4(iv) since rank(0) = 0).

Similarly,
rank([A + B | 0]) = rank(A + B). Therefore,

rank(A + B) ≤ rank(A) + rank(B). (∗)

() Theory of Matrices June 12, 2020 16 / 36



Theorem 3.3.6

Theorem 3.3.6 (continued 1)

Proof (continued). By Theorem 3.3.4(iii),

rank

([
A B
0 0

])
≤ rank

([
A
0

])
+ rank

([
B
0

])
and so, combining these last two results,

rank

([
A + B 0

0 0

])
≤ rank

([
A
0

])
+ rank

([
B
0

])
.

Now the 0 matrices in the second rows of these matrices do not effect

ranks. That is, rank

([
A + B 0

0 0

])
= rank([A + B | 0]),

rank

([
A
0

])
= rank(A), and rank

([
B
0

])
= rank(B) (this can be

justified by Theorem 3.3.4(iv) since rank(0) = 0). Similarly,
rank([A + B | 0]) = rank(A + B). Therefore,

rank(A + B) ≤ rank(A) + rank(B). (∗)
() Theory of Matrices June 12, 2020 16 / 36



Theorem 3.3.6

Theorem 3.3.6 (continued 1)
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Theorem 3.3.6

Theorem 3.3.6 (continued 2)

Theorem 3.3.6. Let A and B be n ×m matrices. Then

|rank(A)− rank(B)| ≤ rank(A + B) ≤ rank(A) + rank(B).

Proof (continued). With the second inequality established, we have

rank(A + B) ≤ rank(A) + rank(B). (∗)

Next, A = (A + B)− B, so by (∗) we have

rank(A) = rank((A + B)− B) ≤ rank(A + B) + rank(−B)

or
rank(A + B) ≥ rank(A)− rank(−B) = rank(A)− rank(B)

since rank(−B) = rank(B). Similarly (interchanging A and B),
rank(A + B) ≥ rank(B)− rank(A). Therefore,
rank(A + B) ≥ |rank(A)− rank(B)|.
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Theorem 3.3.7

Theorem 3.3.7

Theorem 3.3.7. Let A be an n × n full rank matrix. Then
(A−1)T = (AT )−1.

Proof. First, AT is also n × n and full rank by Theorem 3.3.2. We have

AT (A−1)T = (A−1A)T by Theorem 3.2.1(1)

= IT = I,

so a right inverse of AT is (A−1)T . Since A is full rank and square then,
as discussed above, (AT )−1 = (A−1)T .
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Theorem 3.3.8

Theorem 3.3.8

Theorem 3.3.8. n ×m matrix A, where n ≤ m, has a right inverse if and
only if A is of full row rank n. n ×m matrix A, where m ≤ n, has a left
inverse if and only if A has full column rank m.

Proof. Let A be an n ×m matrix where n ≤ m and let A be of full row
rank (that is, rank(A) = n). Then the column space of A, V(A), is of
dimension n and each ei , where ei is the ith unit vector in Rn, is in V(A)
so that there is xi ∈ Rm such that Axi = ei for i = 1, 2, . . . , n. With X an
m × n matrix with columns xi and the columns of In as ei , we have
AX = In.

Also, by Theorem 3.3.6, n = rank(In) ≤ min{rank(A), rank(X )}
where rank(A) = n, so rank(X ) = n and X is of full column rank.
Furthermore, AX = In has a solution only if A has full row rank n since
the n columns of In are linearly independent. That is, A has a right inverse
if and only if A is of full row rank. The result similarly follows for the left
inverse claim.
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Theorem 3.3.9

Theorem 3.3.9

Theorem 3.3.9. If A is an n ×m matrix of rank r > 0 then there are
matrices P and Q, both products of elementary matrices, such that PAQ

is the equivalent canonical form of A, PAQ =

[
Ir 0
0 0

]
.

Proof. We prove this by induction. Since rank(A) > 0 then some aij 6= 0.
We move this into position (1, 1) by interchanging row 1 and i and
interchanging columns 1 and j to produce E1iAE c

1j (we use superscripts of
‘c ’ to denote column operations). Then divide the first row by aij to
produce an entry of 1 in the (1, 1) position (we denote the corresponding
elementary matrix as E(1/aij )1) to produce B = E(1/aij )1E1iAE c

1j .

Next we
“eliminate” the entries in the first column of B under the (1, 1) entry with
the elementary row operations Rk → Rk − bk1R1 for 2 ≤ k ≤ n (we denote
the corresponding elementary row matrices as Ek(−bn1)1 for 2 ≤ k ≤ n) to
produce

C = En(−bn1)1E(n−1)(−b(n−1)1)1 · · ·E2(−b21)1B.
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Theorem 3.3.9

Theorem 3.3.9 (continued 1)

Proof (continued). Similarly we eliminate the entries in the first row of
C to the right of the (1, 1) entry with the elementary column operations
Ck → Ck − c1kC1 (with the corresponding elementary matrices E c

n(−c1n)1
)

to produce
CE c

2(−c12)1
E c

3(−c13)1
· · ·E c

n(−c1n)1
.

We now have a matrix of the form P1AQ1 =

[
I1 0R1

0C1 X1

]
where 0R1 is

1× (n − 1), 0C1 is (n − 1)× 1, and X is (n − 1)× (n − 1). Also, P1 and
Q1 are products of elementary matrices. By Theorem 3.3.3,

rank(A) = rank(P1AQ1) = r .

Since V
([

I1
0C1

])
⊥ V

([
0R1

X1

])
then by

Theorem 3.3.4(iv)

r = rank

([
I1

0C1

])
+ rank

([
0R1

X1

])
= 1 + rank

([
0R1

X1

])
and so

rank

([
0R1

X1

])
= r − 1.
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Theorem 3.3.9

Theorem 3.3.9 (continued 2)

Proof (continued). So rank(X1) = r − 1 (also by Theorem 3.3.4(iv), if
you like). If r − 1 > 0 then we can similarly find P2 and Q2 products of
elementary matrices such that

P2P1AQ1Q2 =

[
I2 0R2

0C2 X2

]
and rank(X2) = r − 2. Continuing this process we can produce

PrPr−1 · · ·P1AQ1Q2 · · ·Qr =

[
Ir 0Rr

0Cr Xr

]
where Xr has rank 0; that is, where Xr is a matrix of all 0’s. So

PrPr−1 · · ·P1AQ1Q2 · · ·Qr =

[
Ir 0
0 0

]
,

as claimed.
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Theorem 3.3.11

Theorem 3.3.11

Theorem 3.3.11. If A is a square full rank matrix (that is, nonsingular)
and if B and C are conformable matrices for the multiplications AB and
CA then rank(AB) = rank(B) and rank(CA) = rank(C ).

Proof. By Theorem 3.3.5,
rank(AB) ≤ min{rank(A), rank(B)} ≤ rank(B). Also, B = A−1AB so by
Theorem 3.3.5, rank(B) ≤ min{rank(A−1), rank(AB)} ≤ rank(AB). So
rank(B) = rank(AB).

Similarly, rank(CA) ≤ rank(C ) and C = CAA−1 so rank(C ) ≤ rank(CA)
and hence rank(C ) = rank(CA).
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Theorem 3.3.12

Theorem 3.3.12

Theorem 3.3.12. If A is a full column rank matrix and B is conformable
for the multiplication AB, then rank(AB) = rank(B). If A is a full row
rank matrix and C is conformable for the multiplication CA, then
rank(CA) = rank(C ).

Proof. Let A be n×m and of full column rank m ≤ n. By Theorem 3.3.8,
A has a left inverse A−1

L where A−1
L A = Im. By Theorem 3.3.5,

rank(AB) ≤ min{rank(A), rank(B)} ≤ rank(B).

Now B = ImB = A−1
L AB,

so by Theorem 3.3.5 rank(B) ≤ min{rank(A−1
L ), rank(AB)} ≤ rank(AB),

and so rank(AB) = rank(B).

Next let A be n×m and of row column rank n ≤ m. By Theorem 3.3.8, A
has a right inverse A−1

R where AA−1
R = In. By Theorem 3.3.5,

rank(CA) ≤ rank(C ). Now C = CIn = CAA−1
R , so by Theorem 3.3.5

rank(C ) ≤ rank(CA) and so rank(CA) = rank(C ).

() Theory of Matrices June 12, 2020 24 / 36



Theorem 3.3.12

Theorem 3.3.12

Theorem 3.3.12. If A is a full column rank matrix and B is conformable
for the multiplication AB, then rank(AB) = rank(B). If A is a full row
rank matrix and C is conformable for the multiplication CA, then
rank(CA) = rank(C ).

Proof. Let A be n×m and of full column rank m ≤ n. By Theorem 3.3.8,
A has a left inverse A−1

L where A−1
L A = Im. By Theorem 3.3.5,

rank(AB) ≤ min{rank(A), rank(B)} ≤ rank(B). Now B = ImB = A−1
L AB,

so by Theorem 3.3.5 rank(B) ≤ min{rank(A−1
L ), rank(AB)} ≤ rank(AB),

and so rank(AB) = rank(B).

Next let A be n×m and of row column rank n ≤ m. By Theorem 3.3.8, A
has a right inverse A−1

R where AA−1
R = In. By Theorem 3.3.5,

rank(CA) ≤ rank(C ). Now C = CIn = CAA−1
R , so by Theorem 3.3.5

rank(C ) ≤ rank(CA) and so rank(CA) = rank(C ).

() Theory of Matrices June 12, 2020 24 / 36



Theorem 3.3.12

Theorem 3.3.12

Theorem 3.3.12. If A is a full column rank matrix and B is conformable
for the multiplication AB, then rank(AB) = rank(B). If A is a full row
rank matrix and C is conformable for the multiplication CA, then
rank(CA) = rank(C ).

Proof. Let A be n×m and of full column rank m ≤ n. By Theorem 3.3.8,
A has a left inverse A−1

L where A−1
L A = Im. By Theorem 3.3.5,

rank(AB) ≤ min{rank(A), rank(B)} ≤ rank(B). Now B = ImB = A−1
L AB,

so by Theorem 3.3.5 rank(B) ≤ min{rank(A−1
L ), rank(AB)} ≤ rank(AB),

and so rank(AB) = rank(B).

Next let A be n×m and of row column rank n ≤ m. By Theorem 3.3.8, A
has a right inverse A−1

R where AA−1
R = In.

By Theorem 3.3.5,
rank(CA) ≤ rank(C ). Now C = CIn = CAA−1

R , so by Theorem 3.3.5
rank(C ) ≤ rank(CA) and so rank(CA) = rank(C ).

() Theory of Matrices June 12, 2020 24 / 36



Theorem 3.3.12

Theorem 3.3.12

Theorem 3.3.12. If A is a full column rank matrix and B is conformable
for the multiplication AB, then rank(AB) = rank(B). If A is a full row
rank matrix and C is conformable for the multiplication CA, then
rank(CA) = rank(C ).

Proof. Let A be n×m and of full column rank m ≤ n. By Theorem 3.3.8,
A has a left inverse A−1

L where A−1
L A = Im. By Theorem 3.3.5,

rank(AB) ≤ min{rank(A), rank(B)} ≤ rank(B). Now B = ImB = A−1
L AB,

so by Theorem 3.3.5 rank(B) ≤ min{rank(A−1
L ), rank(AB)} ≤ rank(AB),

and so rank(AB) = rank(B).

Next let A be n×m and of row column rank n ≤ m. By Theorem 3.3.8, A
has a right inverse A−1

R where AA−1
R = In. By Theorem 3.3.5,

rank(CA) ≤ rank(C ). Now C = CIn = CAA−1
R , so by Theorem 3.3.5

rank(C ) ≤ rank(CA) and so rank(CA) = rank(C ).

() Theory of Matrices June 12, 2020 24 / 36



Theorem 3.3.12

Theorem 3.3.12

Theorem 3.3.12. If A is a full column rank matrix and B is conformable
for the multiplication AB, then rank(AB) = rank(B). If A is a full row
rank matrix and C is conformable for the multiplication CA, then
rank(CA) = rank(C ).

Proof. Let A be n×m and of full column rank m ≤ n. By Theorem 3.3.8,
A has a left inverse A−1

L where A−1
L A = Im. By Theorem 3.3.5,

rank(AB) ≤ min{rank(A), rank(B)} ≤ rank(B). Now B = ImB = A−1
L AB,

so by Theorem 3.3.5 rank(B) ≤ min{rank(A−1
L ), rank(AB)} ≤ rank(AB),

and so rank(AB) = rank(B).

Next let A be n×m and of row column rank n ≤ m. By Theorem 3.3.8, A
has a right inverse A−1

R where AA−1
R = In. By Theorem 3.3.5,

rank(CA) ≤ rank(C ). Now C = CIn = CAA−1
R , so by Theorem 3.3.5

rank(C ) ≤ rank(CA) and so rank(CA) = rank(C ).

() Theory of Matrices June 12, 2020 24 / 36



Theorem 3.3.13

Theorem 3.3.13

Theorem 3.3.13. Let C be n× n and positive definite and let A be n×m.

(1) If C is positive definite and A is of full column rank m ≤ n
then ATCA is positive definite.

(2) If ATCA is positive definite then A is of full column rank
m ≤ n.

Proof. (1) Let x ∈ Rm, where x 6= 0, and let y = Ax . So y is a linear
combination of the columns of A and since A is of full column rank (so
that the columns of A form a basis for the column space of A) and x 6= 0
implies y 6= 0.

Since C is hypothesized to be positive definite,

xT (ATCA)x = (Ax)TC (Ax) = yTCy > 0.

Also, ATCA is m ×m and symmetric since
(ATCA)T = ATCT (AT )T = ATCA. Therefore ATCA is positive definite.
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Theorem 3.3.13

Theorem 3.3.13 (continued)

Theorem 3.3.13. Let C be n× n and positive definite and let A be n×m.

(1) If C is positive definite and A is of full column rank m ≤ n
then ATCA is positive definite.

(2) If ATCA is positive definite then A is of full column rank
m ≤ n.

Proof (continued). (2) ASSUME not; assume that A is not of full
column rank. Then the columns of A are not linearly independent and so
with a1, a2, . . . , am as the columns of A, there are scalars x1, x2, . . . , xm

not all 0, such that x1a1 + x2a2 + · · ·+ xmam = 0.

But then x ∈ Rm with
entries xi satisfies x 6= 0 and Ax = 0. Therefore
xT (ATCA)x = (xTATC )(Ax) = (xTATC )0 = 0, and so ATCA is not
positive definite, a CONTRADICTION. So the assumption that A is not of
full column rank is false. Hence, A is of full column rank.
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Theorem 3.3.14. Properties of AT A

Theorem 3.3.14

Theorem 3.3.14. Properties of ATA.
Let A be an n ×m matrix.

(1) ATA = 0 if and only if A = 0.
(2) ATA is nonnegative definite.
(3) ATA is positive definite if and only if A is of full column rank.
(4) (ATA)B = (ATA)C if and only if AB = AC , and

B(ATA) = C (ATA) if and only if BAT = CAT .
(5) ATA is of full rank if and only if A is of full column rank.
(6) rank(ATA) = rank(A).

The product ATA is called a Gramian matrix.
Proof. (1) If A = 0 then AT = 0 and ATA = 00 = 0. If ATA = 0 then
tr(ATA) = 0. Now the (i , j) entry of ATA is

∑n
k=1 at

ikakj =
∑n

k=1 akiakj

and so the diagonal (i , i) entry is
∑n

k=1 a2
ki . Then

0 = tr(ATA) =
m∑

i=1

n∑
k=1

a2
ki =

m∑
i=1

n∑
j=1

a2
ji =

m∑
j=1

n∑
i=1

a2
ij . . .
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Theorem 3.3.14. Properties of AT A

Theorem 3.3.14 (continued 1)

Proof (continued). . . . and so aij = 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m;
that is, A = 0.

(2) For any y ∈ Rm we have

yT (ATA)y = (Ay)T (Ay) = ‖Ay‖2 ≥ 0.

(3) From (2), yT (ATA)y = ‖Ay‖2, so yT (ATA)y = 0 if and only if
‖Ay‖ = 0. Now Ay is a linear combination of the columns of A so if A is
of full column rank then Ay = 0 if and only if y = 0. That is, if A is of full
column rank then for y 6= 0 we have yT (ATA)y = ‖Ay‖2 > 0 and ATA is
positive definite.
If A is not of full column rank then the columns of A are not linearly
independent and with a1, a2, . . . , an as the columns of A, there are scalars
y1, y2, . . . , yn, not all 0, such that y1a1 + y2a2 + · · ·+ ynan = 0. Then the
y ∈ Rn with entries yi we have y 6= 0 and Ay = 0. Then
yT (ATA)y = ‖Ay‖2 = 0, and so ATA is not positive definite.
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Theorem 3.3.14. Properties of AT A

Theorem 3.3.14 (continued 2)

Proof (continued). (4) Suppose ATAB = ATAC . Then

ATAB − ATAC = 0 or ATA(B − C ) = 0, and so
(BT − CT )ATA(B − C ) = 0. Hence (A(B − C ))T (A(B − C )) = 0 and by
Part (1), A(B − C ) = 0. That is, AB = AC . Conversely, if AB = AC then
ATAB = ATAC . Therefore ATAB = ATAC if and only if AB = AC .
Now suppose BATA = CATA. Then BATA− CATA = 0 or
(B − C )ATA = 0, and so (B − C )ATA(BT − CT ) = 0. Hence
((B − C )AT )((B − C )AT )T = 0 and by Part (1), (B − C )AT = 0. That
is, BAT = CAT . Conversely, if BAT = CAT then BATA = CATA.
Therefore BATA = CATA if and only if BAT = CAT .

(5) Suppose A is of full column rank m ≤ n. Then by Theorem 3.3.12,
rank(ATA) = rank(A) = m. Since ATA is m×m, then ATA is of full rank.
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Theorem 3.3.14. Properties of AT A

Theorem 3.3.14 (continued 3)

Proof (continued). Now suppose ATA if of full rank m. Then by
Theorem 3.3.5, m = rank(ATA) ≤ min{rank(AT ), rank(A)} ≤ rank(A),
and since A is n ×m then A must be of full column rank m.

(6) Let rank(A) = r . If r = 0 then A = 0 and so ATA = 0 and
rank(ATA) = 0 and the claim holds. If r > 0, then the columns of A can
be permuted so that the first r columns are linearly independent. That is,
there is a permutation matrix Q such that AQ = [A1 A2] where A1 is an
n × r matrix of rank r (and by Theorem 3.3.3, rank(AQ) = rank(A) = r).

So A1 is of full column rank and so each column of A2 is in the column
space of A1. So there is r × (m − r) matrix B such that A2 = A1B. Then
AQ = [A1 A2] = [A1Ir A1B] = A1[Ir B]. Hence

(AQ)T = (A1[Ir B])T =

[
Ir

BT

]
AT

1 and

(AQ)T (AQ) =

[
Ir

BT

]
AT

1 A1[Ir B]. Define T =

[
Ir 0

−BT Im−r

]
.
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Theorem 3.3.14. Properties of AT A

Theorem 3.3.14 (continued 4)

Proof (continued). Then T is m ×m and of full rank m (as is TT ), so
by Theorem 3.3.12

rank(ATA) = rank((AQ)T (AQ))

= rank(T (AQ)T (AQ)) = rank(T (AQ)T (AQ)TT ). (∗)

Now

T (AQ)T =

[
Ir 0

−BT Im−r

] [
Ir

BT

]
AT

1 =

[
Ir Ir + 0BT

−BT Ir + Im−rB
T

]
AT

1

=

[
Ir
0

]
AT

1 =

[
AT

1

0

]
and

(AQ)TT = (T (AQ)T )T =

[
AT

1

0

]T

= [A1 0].
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Theorem 3.3.14. Properties of AT A

Theorem 3.3.14 (continued 5)

Proof (continued). So

T (AQ)T (AQ)TT =

[
AT

1

0

]
[A1 0] =

[
AT

1 A1 0
0 0

]
(the matrix products are justified by Theorem 3.2.2). So by (∗),

rank(ATA) = rank

([
AT

1 A1 0
0 0

])
= rank(AT

1 A1).

Since A1 is of full column rank r , by Part (5) AT
1 A1 is of full rank r . So

rank(ATA) = rank(AT
1 A1) = r = rank(A), as claimed.
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Theorem 3.3.14 (continued 5)
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Theorem 3.3.15

Theorem 3.3.15

Theorem 3.3.15. If A is a n × n matrix and B is n × ` then
rank(AB) ≥ rank(A) + rank(B)− n.

Proof. Let r = rank(A). By Theorem 3.3.9, there are n × n matrices P
and Q which are products of elementary matrices such that

PAQ =

[
Ir 0
0 0

]
. Let C = P−1

[
0 0
0 In−r

]
Q−1 and then

A+C = P−1

[
Ir 0
0 0

]
Q−1+P−1

[
0 0
0 In−r

]
Q−1 = P−1InQ

−1 = P−1Q−1.

Now P−1 and Q−1 are of full rank n (see the notes before the definition of
inverse matrix), so by Theorem 3.3.11,

rank(C ) = rank

([
0 0
0 In−r

])
= rank(In−r ) = n − rank(A). (∗)
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Theorem 3.3.15

Theorem 3.3.15 (continued)

Theorem 3.3.15. If A is a n × n matrix and B is n × ` then
rank(AB) ≥ rank(A) + rank(B)− n.

Proof (continued). So for n × ` matrix B,

rank(B) = rank(P−1Q−1B) by Theorem 3.3.11

= rank(AB + CB) since A + C = P−1Q−1

≤ rank(AB) + rank(CB) by Theorem 3.3.6

≤ rank(AB) + rank(C ) by Theorem 3.3.5

= rank(AB) + n − rank(A) by (∗).

So rank(A) + rank(B)− n ≤ rank(AB).
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Theorem 3.3.15 (continued)
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Theorem 3.3.16

Theorem 3.3.16

Theorem 3.3.16. n × n matrix A is invertible if and only if det(A) 6= 0.

Proof. By Theorem 3.2.4, det(AB) = det(A)det(B), so if A−1 exists then
det(A) = 1/det(A−1) and so det(A) 6= 0.

Conversely, if det(A) 6= 0 then by Theorem 3.1.3, A−1 = (1/det(A))adj(A)
and A is invertible.
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Theorem 3.3.18

Theorem 3.3.18

Theorem 3.3.18. If A and B are n × n full rank matrices then the
Kronecker product satisfies (A⊗ B)−1 = A−1 ⊗ B−1.

Proof. Since A and B are full rank, then A−1 and B−1 exist. Let A = [aij ]
and A−1 = [cij ]. Then (A⊗ B)(A−1 ⊗ B−1)

=


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

an1B an2B · · · annB




c11B
−1 c12B

−1 · · · c1nB
−1

c21B
−1 c22B

−1 · · · c2nB
−1

...
...

. . .
...

cn1B
−1 cn2B

−1 · · · cnnB
−1


=

[
n∑

k=1

aikckj In

]
since (aikB)(ckjB

−1) = aikckj In

= In2 ,

and so A−1 ⊗ B−1 = (A⊗ B)−1.
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= In2 ,

and so A−1 ⊗ B−1 = (A⊗ B)−1.
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Theorem 3.3.18

Theorem 3.3.18

Theorem 3.3.18. If A and B are n × n full rank matrices then the
Kronecker product satisfies (A⊗ B)−1 = A−1 ⊗ B−1.

Proof. Since A and B are full rank, then A−1 and B−1 exist. Let A = [aij ]
and A−1 = [cij ]. Then (A⊗ B)(A−1 ⊗ B−1)

=


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

. . .
...

an1B an2B · · · annB




c11B
−1 c12B

−1 · · · c1nB
−1

c21B
−1 c22B

−1 · · · c2nB
−1

...
...

. . .
...

cn1B
−1 cn2B

−1 · · · cnnB
−1


=

[
n∑

k=1

aikckj In

]
since (aikB)(ckjB

−1) = aikckj In

= In2 ,

and so A−1 ⊗ B−1 = (A⊗ B)−1.
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