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Lemma 3.3.1

Lemma 3.3.1

Lemma 3.3.1. Let {a'}k ; = {[a], b, ... n]}, 1 be a set of vectors in
R" and let m € S,,. Then the set of vectors {a'}k 1 is Imearly independent
if and only if the set of vectors {[a a;r(z) A n)]} “ , is linearly

independent. That is, permuting all the entries in a set of vectors by the

same permutation preserves the linear dependence/independence of the
set.
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Lemma 3.3.1

Lemma 3.3.1

Lemma 3.3.1. Let {a'}k ; = {[a], b, ... n]}, 1 be a set of vectors in
R" and let m € S,,. Then the set of vectors {a'}k 1 is Imearly independent

if and only if the set of vectors {[a a;r(z) A n)]} “ , is linearly

independent. That is, permuting all the entries in a set of vectors by the

same permutation preserves the linear dependence/independence of the
set.

Proof. Set {a'}X_, is linearly independent if and only if Z, 1 sia’ = 0 for
scalars s1,5,...,5, implies s =sp = --- = 5, = 0. Now Zi:l s;a =0
implies that Zf'(:l s,-aj’: =0forj=12...,n
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Lemma 3.3.1

Lemma 3.3.1

Lemma 3.3.1. Let {a'}k ; = {[a], b, ... n]}, 1 be a set of vectors in
R" and let m € S,,. Then the set of vectors {a'}k 1 is Imearly independent
if and only if the set of vectors {[a a;r(z) A n)]} “ , is linearly

independent. That is, permuting all the entries in a set of vectors by the
same permutation preserves the linear dependence/independence of the
set.

Proof. Set {a'}X_, is linearly independent if and only if Z, 1 sia’ = 0 for

scalars s1,5,...,5, implies s =sp = --- = 5, = 0. Now Zi:l s;a =0
implies that Zf'(:l s,-aj’: =0forj=1,2,...,n. So this system of n linear
equations (in k unknowns s; for i = 1,2,..., k) has only one solution if
and onIy if the system of n linear equations in k unknowns
S | sia (J) =0 for j =1,2,...,n has only one solution, namely
S1 =S5 = =5, =0. That is, if and only if the vector equation

k j - j - - .
Yoiqsib = 0, where b’ = [3;(1)73;(2)7 el a;r(n)] fori=1,2,..., k, has
only one solution, namely s = s =---5, =0

Theory of Matrices June 12,2020 3 /36



Lemma 3.3.1 (continued)

Lemma 3.3.1. Let {a'}s , = {[a], ), ... ,,]} * , be a set of vectors in
R" and let m € S,,. Then the set of vectors {a' }k_l is linearly independent
if and only if the set of vectors {[a aﬂ(z) A n)]}, 1 is linearly

independent. That is, permuting all the entries in a set of vectors by the

same permutation preserves the linear dependence/independence of the
set.

Proof (contmued) So the set of vectors
{b'}k = {[a YRRREE n)]} *, is linearly independent as well.
Similarly, if {a’ } is I|near|y dependent then {b'} is linearly dependent. [
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Theorem 3.3.2

Theorem 3.3.2. Let A be an n x m matrix. Then the row rank of A
equals the column rank of A. This common quantity is called the rank of
A.
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Theorem 3.3.2

Theorem 3.3.2. Let A be an n x m matrix. Then the row rank of A
equals the column rank of A. This common quantity is called the rank of
A.

Proof. Let the row rank of A be p and let the column rank of A be q.
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Theorem 3.3.2

Theorem 3.3.2. Let A be an n X m matrix. Then the row rank of A

equals the column rank of A. This common quantity is called the rank of
A.

Proof. Let the row rank of A be p and let the column rank of A be q.
Rearrange the rows of A to form matrix B so that the first p rows of matrix
B are linearly independent (so B = PA where P is some permutation
matrix). Since A and B have the same rows, they have equal row rank. By
Lemma 3.3.1, the column rank of A equals the column rank of B (by
interchanging row i and j of A, we are interchanging all of the ith entries
with the jth entries in the column vectors of A).
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Theorem 3.3.2

Theorem 3.3.2. Let A be an n X m matrix. Then the row rank of A

equals the column rank of A. This common quantity is called the rank of
A.

Proof. Let the row rank of A be p and let the column rank of A be q.
Rearrange the rows of A to form matrix B so that the first p rows of matrix
B are linearly independent (so B = PA where P is some permutation
matrix). Since A and B have the same rows, they have equal row rank. By
Lemma 3.3.1, the column rank of A equals the column rank of B (by
interchanging row i and j of A, we are interchanging all of the ith entries
with the jth entries in the column vectors of A). So we can partition B as

B = [ gl } where the p rows of Bj are linearly independent and the
2

n — p rows of By are (each) linear combinations of the rows of B;. So with
the rows of By as ri, r, ..., r, and the rows of By as rpi1, rp42, ..., r, We
have scalars sy; where r, = Zle spiriford =p+1,p+2,...,n.
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Theorem 3.3.2 (continued)

Proof (continued). Then with S the (n — p) X p matrix with entries sg;,

B
S = [s¢;], we have B, = SB;. So B = { Séll

column rank of B is the same as the column rank of Bj.

. We claim now that the
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Theorem 3.3.2 (continued)

Proof (continued). Then with S the (n — p) X p matrix with entries sy;,

B
S = [s¢;], we have B, = SB;. So B = { Séll

column rank of B is the same as the column rank of Bj.

. We claim now that the

With s = [s1,5),...,5m] " as a vector of m scalars, we have Bs = 0 if and
. Bl . Bls . . . . . .
only if [ B, ] s = [ SBys ] =0 if and only if Bys = 0. That is, a linear

combination of the columns of B is 0 if and only if the corresponding
linear combination of the columns of By is 0. So the column rank of B is
the same as the column rank of By, and so both are the same as the
column rank of A (namely, g). Since the columns of By are vectors in RP
then g < p.
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Theorem 3.3.2 (continued)

Proof (continued). Then with S the (n — p) X p matrix with entries sy;,

B
S = [s¢;], we have B, = SB;. So B = { Séll

column rank of B is the same as the column rank of Bj.

. We claim now that the

With s = [s1,5),...,5m] " as a vector of m scalars, we have Bs = 0 if and
only if [ SBBll ] s = [ 5881155 ] =0 if and only if Bys = 0. That is, a linear
combination of the columns of B is 0 if and only if the corresponding
linear combination of the columns of By is 0. So the column rank of B is
the same as the column rank of By, and so both are the same as the
column rank of A (namely, g). Since the columns of By are vectors in RP
then g < p.

Similarly, we can rearrange the columns of A and partition the resulting
matrix to show that p < g. Therefore the row rank, p, of matrix A equals
the column rank, g, of matrix A. O
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Theorem 3.3.3

Theorem 3.3.3. If P and Q are products of elementary matrices then
rank(PAQ) = rank(A).
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Theorem 3.3.3

Theorem 3.3.3. If P and Q are products of elementary matrices then
rank(PAQ) = rank(A).

Proof. We show the result holds for P a single elementary matrix. The
result for @ a single elementary matrix follows similarly and the general

result then follows by induction.
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Theorem 3.3.3

Theorem 3.3.3. If P and Q are products of elementary matrices then
rank(PAQ) = rank(A).
Proof. We show the result holds for P a single elementary matrix. The

result for @ a single elementary matrix follows similarly and the general
Rq—Rp

result then follows by induction. Let P = E,q where I, - Epg. Then

EpgA has the same rows as A and so rank(EpgA) = rank(A). Let P = E,

Rp—sRp
where [, Esp where s £ 0. Then with r1, 2, ..., r, as the rows of A,
we have that ri, r, ..., rp—1, S, fpt1, ..., Iy are the rows of Eg,A.
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Theorem 3.3.3

Theorem 3.3.3. If P and Q are products of elementary matrices then
rank(PAQ) = rank(A).

Proof. We show the result holds for P a single elementary matrix. The

result for @ a single elementary matrix follows similarly and the general
Rq—Rp

result then follows by induction. Let P = E,q where I, - Epg. Then

EpgA has the same rows as A and so rank(EpgA) = rank(A). Let P = E,

Rp—sRp
where [, Esp where s £ 0. Then with r1, 2, ..., r, as the rows of A,
we have that ri, o, ... rp_l,srp, p+1,-- -, I are the rows of E,A. Now

n
E siri = g siti + (sp/s)(srp) + g Siti
i=1

i=p+1
for any scalars s1, s, ..., sy So mn,r,...,r and
My, ... rp—1,50p, lp+1,- - -, In satisfy precisely the same
dependence/independence relations. Therefore rank(EspA) = rank(A).
Theory of Matrices June 12, 2020 7 /36



Theorem 3.3.3

Theorem 3.3.3 (continued)

Theorem 3.3.3. If P and Q are products of elementary matrices then
rank(PAQ) = rank(A).

Rp—Rp+sRq

Proof (continued). Let P = E,gq where I, Epsq- Then for
rn,r,...,r the rows of A, we have that

My, oy fp—1,lp + Srq, Fp41, - - ., Iy are the rows of EpgqA.
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Theorem 3.3.3 (continued)

Theorem 3.3.3. If P and Q are products of elementary matrices then
rank(PAQ) = rank(A).

Rp— Rp+sRg
Proof (continued). Let P = E,, where [, ~  Epsg. Then for
rn,r,...,r the rows of A, we have that
M,y ... fp—1,lp + Srq, rpt1, - .., Iy are the rows of EpsqA. Now

p—1

n gqg—1 n
Zs;r,- + sp(rp + srq) + Z sifi = Zs;r,- + (Sps + sq)rq + Z Sifi
i=1

i=1 i=p+1 i=q+1

for any scalars s1,52,...,8,. So ri,r, ..., r, and

M, 0, ... fp—1,fp + Srq, rpt1, - .., Iy satisfy precisely the same
dependence/independence relations. Therefore

rank(EpsqA) = rank(A). O
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Theorem 3.3.4

A A

Theorem 3.3.4. Let A be a matrix partitioned as A = [
Axr Ax

Then
(i) rank(Aj) < rank(A) for i,j € {1,2}.
(ii) rank(A) < rank([A11|A12]) + rank([A21]A22]).

(iii) rank(A) < rank <[ ﬁ; D + rank ([ Qz D

(iv) 1f V([A11]A12]T) L V([A21|A2] ") then
rank(A) = rank([A11|A12]) + rank([A21]A22]) and if

V([ ]) v ([ az]) e

i =ene([ 1)) e ([ 52 ])

|

Theory of Matrices June 12, 2020
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Theorem 3.3.4 (continued 1)

(i) rank(Aj;) < rank(A) for i,j € {1,2}.
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Theorem 3.3.4 (continued 1)

(i) rank(Aj;) < rank(A) for i,j € {1,2}.

Proof. (i) Since the set of rows of [A11|A12] is a subset of the set of rows
of A, then by Exercise 2.1.G(i), rank([A11]A12]) < rank(A).
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Theorem 3.3.4 (continued 1)

(i) rank(Aj;) < rank(A) for i,j € {1,2}.

Proof. (i) Since the set of rows of [A11|A12] is a subset of the set of rows
of A, then by Exercise 2.1.G(i), rank([A11]A12]) < rank(A). Similarly, the

set of columns of 211 is a subset of the set of columns of A and so
21
rank ([ 211 }) < rank(A). Also, rank([A21|A22]) < rank(A) and
21

rank ([ ﬁ\‘z D < rank(A).
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Theorem 3.3.4 (continued 1)

(i) rank(Aj;) < rank(A) for i,j € {1,2}.

Proof. (i) Since the set of rows of [A11|A12] is a subset of the set of rows
of A, then by Exercise 2.1.G(i), rank([A11]A12]) < rank(A). Similarly, the

set of columns of 211 is a subset of the set of columns of A and so
21
rank ([ 211 }) < rank(A). Also, rank([A21|A22]) < rank(A) and
21

rank ([ 212 }) < rank(A). Next, the set of columns of Aj; is a subset of
22

the set of columns of [A11]|A12] and so rank(Ai11) < rank([A11|A12]) (and
similarly rank(A12) < rank([A11]|A12])). Therefore

rank(A11) < rank(A11]|A12]) < rank(A) and rank(Ai2) < rank(A11|A12])
< rank(A).
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Theorem 3.3.4 (continued 1)

(i) rank(Aj;) < rank(A) for i,j € {1,2}.

Proof. (i) Since the set of rows of [A11|A12] is a subset of the set of rows
of A, then by Exercise 2.1.G(i), rank([A11]A12]) < rank(A). Similarly, the

set of columns of 211 is a subset of the set of columns of A and so
21
rank ([ 211 }) < rank(A). Also, rank([A21|A22]) < rank(A) and
21

rank ([ 212 }) < rank(A). Next, the set of columns of Aj; is a subset of
22

the set of columns of [A11]|A12] and so rank(Ai11) < rank([A11|A12]) (and
similarly rank(A12) < rank([A11]|A12])). Therefore
rank(A11) < rank(A11]|A12]) < rank(A) and rank(Ai2) < rank(A11|A12])
< rank(A). Similarly, rank(A21) < rank(Az1|A22]) < rank(A) and
rank(A22) < rank(Az1]A2]) < rank(A).
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Theorem 3.3.4 (continued 2)

(ii) rank(A) < rank([A11]A12]) + rank([A21|A2]).

(iii) rank(A) < rank ([ ﬁ\‘i D + rank <[ 22 D .

Theory of Matrices June 12, 2020
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Theorem 3.3.4 (continued 2)

(ii) rank(A) < rank([A11|A12]) + rank([A21]Az]).
(iii) rank(A) < rank ([ ﬁ\‘i D + rank <[ 22 D .

Proof (continued). (ii) Let R be the set of rows of A, R; the set of rows
of [A11]A12], and Ry the set of rows of [A21]|A2]. Then R = Ry U R, and
by Exercise 2.1.G(ii), dim(span(R)) < dim(span(R1)) + dim(span(Rz)).
That is, rank(A) < rank([All\Alg]) + rank([A21|A22]).

11/ 36
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Theorem 3.3.4 (continued 2)

(ii) rank(A) < rank([A11]A12]) + rank([A21|A2]).

(iii) rank(A) < rank ([ ﬁ\‘i D + rank <[ 22 D .

Proof (continued). (ii) Let R be the set of rows of A, R; the set of rows

of [A11]A12], and Ry the set of rows of [A21]|A2]. Then R = Ry U R, and

by Exercise 2.1.G(ii), dim(span(R)) < dim(span(R1)) + dim(span(Rz)).

That is, rank(A) < rank([All\Alg]) + rank([A21|A22]).

(i) Let C be the set of columns of A, C; be the set of columns of

[ An } and G be the set of columns of [ A2 ] Then C = GGU G
Az Az

and by Exercise 2.1.G(ii),

dim(span(C)) < dim(span(C;)) + dim(span((2)). That is,

v <o ([ 4 ]) e ([ 27])

Theory of Matrices June 12,2020 11/ 36



Theorem 3.3.4 (continued 3)

(iv) If V([A11|A12]T) L V([Azl‘Agz]T) then
rank(A) = rank([A11]A12]) + rank([A21]A2])

and ifv([ Qi D LV([ QZ D then
rank(A) = rank ([ ﬁi D + rank ({ QZ D
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Theorem 3.3.4 (continued 3)

(iv) If V([A11|A12]T) L V([Azl‘Agz]T) then
rank(A) = rank([A11]A12]) + rank([A21]A2])

and ifv([ Qi D LV([ QZ D then
rank(A) = rank ([ ﬁi D + rank ({ QZ D

Proof (continued). (iv) Let R be the set of rows of A, Ry the set of rows
of [A11|A12], and R the set of rows of [A21|A22]. Then V([A11|A12]T) is
the row space of [A11]|A12] and V([A21|A2] ") is the row space of
[A21]A2]. So the row space of A is V([A11|A12]T) + V(A1 |Ax]") (see
page 13 of the text).

Theory of Matrices June 12,2020 12/ 36



Theorem 3.3.4 (continued 3)

(iv) If V([A11|A12]T) L V([Azl‘Agz]T) then
rank(A) = rank([A11]A12]) + rank([A21]A2])

and ifv([ Qi D LV([ QZ D then
rank(A) = rank ([ ﬁi D + rank ({ QZ D

Proof (continued). (iv) Let R be the set of rows of A, Ry the set of rows
of [A11|A12], and R the set of rows of [A21|A22]. Then V([A11|A12]T) is
the row space of [A11]|A12] and V([A21|A2] ") is the row space of
[A21]A2]. So the row space of A is V([A11|A12]T) + V(A1 |Ax]") (see
page 13 of the text). Since V([A21|A2]") L V([A21]A2]T) by hypothesis,
then the row space of A is V([A11|A12] ") @ V([A21|A22]). By Exercise
2.1.G(iii), rank(A) = dim(V([A11|A12] 7)) + dim(V([A21]A2] 7))
= rank([A11|A12]) + rank([All\Alg]).

Theory of Matrices June 12,2020 12 /36



Theorem 3.3.4 (continued 4)

Proof (continued). (iv) Let C be the set of columns of A, C; the set of

columns of An , and G, the set of columns of [ Ar ] Then
A21 A22

V <[ ﬁi ]) is the column space of [ 22 } and V ([ QZ }) is the

A1z

column space of
A
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Theorem 3.3.4 (continued 4)

Proof (continued). (iv) Let C be the set of columns of A, C; the set of

columns of An , and G, the set of columns of [ Ar ] Then
A21 A22

V <[ ﬁi ]) is the column space of [ 22 } and V ([ QZ }) is the

A1z
A

V([ D) ([ an]) smev (LA ]) <o ([ 22 ]) o

hypothesis, then the column space of Ais V < Au oV Arz )
Ao A

column space of . So the columns space of A is
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Theorem 3.3.4 (continued 4)

Proof (continued). (iv) Let C be the set of columns of A, C; the set of

columns of An } and G the set of columns of A2 ] Then
A1 A
A1 - A1 } ([ A1z }) ,
)% s the column space of and V s the
<[ Ay ]) ! ! P [ A2 A !
column space of ﬁu . So the columns space of A is
22

V([ D) ([ an]) smev (LA ]) <o ([ 22 ]) o

hypothesis, then the column space of Ais V <[ An }) eV ({ Arz })
A2 Ao
By Exercise 2.1.G(iii),

ity (v ([ 20 ])) vem ([ 22])) -
([ o ) o[ 47 :
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Theorem 3.3.5

Theorem 3.3.5. Let A be an n X k matrix and B be a k X m matrix.
Then rank(AB) < min{rank(A), rank(B)}.
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Theorem 3.3.5

Theorem 3.3.5. Let A be an n X k matrix and B be a k X m matrix.

Then rank(AB) < min{rank(A), rank(B)}.

Proof. Let the columns of A be ay, as,..., ak, the columns of B be
b1, by, ..., by, and the columns of AB be c1,¢p,...,Cn.
Theory of Matrices June 12, 2020
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Theorem 3.3.5

Theorem 3.3.5. Let A be an n X k matrix and B be a k X m matrix.
Then rank(AB) < min{rank(A), rank(B)}.

Proof. Let the columns of A be ay, as,..., ak, the columns of B be

b1, by, ..., by, and the columns of AB be c1, ¢y, ..., cm. Recall (see the
note on page 5 of the class notes for Section 3.2) that if x € R then Ax
is a linear combination of the columns of A; that is, Ax € V(A). Now from
the definition of matrix multiplication, we have ¢; = Ab; for i =1,2,...,m
so that ¢; = Ab; € V(A) for i =1,2,...,m. So every linear combination
of the columns of AB is also a linear combination of the columns of A,
and V(AB) is a subspace of V(A). Hence rank(AB) < rank(A).
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Theorem 3.3.5

Theorem 3.3.5. Let A be an n X k matrix and B be a k X m matrix.
Then rank(AB) < min{rank(A), rank(B)}.

Proof. Let the columns of A be ay, as,..., ak, the columns of B be

b1, by, ..., by, and the columns of AB be c1, ¢y, ..., cm. Recall (see the
note on page 5 of the class notes for Section 3.2) that if x € R then Ax
is a linear combination of the columns of A; that is, Ax € V(A). Now from
the definition of matrix multiplication, we have ¢; = Ab; for i =1,2,...,
so that ¢; = Ab; € V(A) for i =1,2,...,m. So every linear combination
of the columns of AB is also a linear combination of the columns of A,
and V(AB) is a subspace of V(A). Hence rank(AB) < rank(A). By
Theorem 3.3.2, rank(A) = rank(AT), rank(B) = rank(BT), and
rank(AB) = rank((AB)T). So the previous argument shows that

m

rank(AB) = rank((AB)T) = rank(BT A7) < rank(BT) = rank(B).

Therefore, rank(AB) < min{rank(A), rank(B)}. O

Theory of Matrices June 12, 2020 14 / 36



Theorem 3.3.6

Theorem 3.3.6. Let A and B be n x m matrices. Then

[rank(A) — rank(B)| < rank(A + B) < rank(A) + rank(B).
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Theorem 3.3.6

Theorem 3.3.6. Let A and B be n x m matrices. Then

[rank(A) — rank(B)| < rank(A + B) < rank(A) + rank(B).

Proof. By Theorem 3.2.2 we have

A B Im 0| | Aln+Bl, 0| | A+B O
0 O Im 0] 0 0| 0 O

(or, eliminating the 0 matrices as Gentle does, [A | B] [ ;m ] =A+B).
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Theorem 3.3.6

Theorem 3.3.6. Let A and B be n x m matrices. Then
[rank(A) — rank(B)| < rank(A + B) < rank(A) + rank(B).

Proof. By Theorem 3.2.2 we have

A B Im 0| | Aln+Bl, 0| | A+B O
0 O Im 0] 0 0| 0 O

(or, eliminating the 0 matrices as Gentle does, [A | B] [ ;m ] =A+B).
So by Theorem 3.3.5,

([ 257 1) <[4 2 ) o[ 2 2])
grankqg\ gD
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Theorem 3.3.6 (continued 1)

Proof (continued). By Theorem 3.3.4(iii),

([ 8]) 2o ([4]) ([ 2])

and so, combining these last two results,

o (45 3] ([ 2] 2])
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Theorem 3.3.6 (continued 1)

Proof (continued). By Theorem 3.3.4(iii),

([ 8]) 2o ([4]) ([ 2])

and so, combining these last two results,

o (457 3] ([ 2] o 2])

Now the 0 matrices in the second rows of these matrices do not effect

A‘(’)‘B 8 ):rank([A+B|0])v

rank ([ /3 ]) = rank(A), and rank <[ g }) = rank(B) (this can be
justified by Theorem 3.3.4(iv) since rank(0) = 0).

ranks. That is, rank
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Theorem 3.3.6 (continued 1)

Proof (continued). By Theorem 3.3.4(iii),

([ 8]) 2o ([4]) ([ 2])

and so, combining these last two results,

o (457 3] ([ 2] o 2])

Now the 0 matrices in the second rows of these matrices do not effect

A‘(’)‘B 8 ):rank([A+B|0])v

rank ([ g‘ D — rank(A), and rank <[ g D — rank(B) (this can be

justified by Theorem 3.3.4(iv) since rank(0) = 0). Similarly,
rank([A+ B | 0]) = rank(A + B). Therefore,

rank(A 4+ B) < rank(A) + rank(B). (%)
Theory of Matrices June 12, 2020 16 / 36

ranks. That is, rank



Theorem 3.3.6 (continued 2)

Theorem 3.3.6. Let A and B be n x m matrices. Then

[rank(A) — rank(B)| < rank(A + B) < rank(A) + rank(B).

Proof (continued). With the second inequality established, we have
rank(A + B) < rank(A) + rank(B). (%)
Next, A= (A+ B) — B, so by (%) we have
rank(A) = rank((A+ B) — B) < rank(A + B) + rank(—B)

or
rank(A + B) > rank(A) — rank(—B) = rank(A) — rank(B)

since rank(—B) = rank(B).
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Theorem 3.3.6 (continued 2)
Theorem 3.3.6. Let A and B be n x m matrices. Then

[rank(A) — rank(B)| < rank(A + B) < rank(A) + rank(B).

Proof (continued). With the second inequality established, we have
rank(A + B) < rank(A) + rank(B). (%)
Next, A= (A+ B) — B, so by (%) we have
rank(A) = rank((A+ B) — B) < rank(A + B) + rank(—B)

or
rank(A + B) > rank(A) — rank(—B) = rank(A) — rank(B)
since rank(—B) = rank(B). Similarly (interchanging A and B),
rank(A 4+ B) > rank(B) — rank(A). Therefore,
rank(A + B) > |rank(A) — rank(B)|. O
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Theorem 3.3.7

Theorem 3.3.7. Let A be an n x n full rank matrix. Then
(A—l)T — (AT)—l.
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Theorem 3.3.7

Theorem 3.3.7. Let A be an n x n full rank matrix. Then
(A—l)T — (AT)—l.

Proof. First, AT is also n x n and full rank by Theorem 3.3.2. We have

AT(AHT = (AA)T by Theorem 3.2.1(1)
= 717 =7,

so a right inverse of AT is (A71)7. Since A is full rank and square then,
as discussed above, (A7)~ = (A71)T. O
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Theorem 3.3.8

Theorem 3.3.8. n x m matrix A, where n < m, has a right inverse if and
only if A is of full row rank n. n x m matrix A, where m < n, has a left
inverse if and only if A has full column rank m.
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Theorem 3.3.8

Theorem 3.3.8. n x m matrix A, where n < m, has a right inverse if and
only if A is of full row rank n. n x m matrix A, where m < n, has a left
inverse if and only if A has full column rank m.

Proof. Let A be an n X m matrix where n < m and let A be of full row
rank (that is, rank(A) = n). Then the column space of A, V(A), is of
dimension n and each e;, where ¢; is the ith unit vector in R”, is in V(A)
so that there is x; € R™ such that Ax; = ¢; for i =1,2,...,n. With X an

m X n matrix with columns x; and the columns of /, as ¢;, we have
AX = 1,.
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Theorem 3.3.8

Theorem 3.3.8. n x m matrix A, where n < m, has a right inverse if and
only if A is of full row rank n. n x m matrix A, where m < n, has a left
inverse if and only if A has full column rank m.

Proof. Let A be an n X m matrix where n < m and let A be of full row
rank (that is, rank(A) = n). Then the column space of A, V(A), is of
dimension n and each e;, where ¢; is the ith unit vector in R”, is in V(A)
so that there is x; € R™ such that Ax; = ¢; for i =1,2,...,n. With X an
m X n matrix with columns x; and the columns of /, as ¢;, we have

AX = I,. Also, by Theorem 3.3.6, n = rank(/,) < min{rank(A), rank(X)}
where rank(A) = n, so rank(X) = n and X is of full column rank.
Furthermore, AX = I, has a solution only if A has full row rank n since
the n columns of 1, are linearly independent. That is, A has a right inverse
if and only if A is of full row rank. The result similarly follows for the left
inverse claim. O
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Theorem 3.3.9

Theorem 3.3.9. If Ais an n X m matrix of rank r > 0 then there are
matrices P and @, both products of elementary matrices, such that PAQ

is the equivalent canonical form of A, PAQ = [ g 8 }
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Theorem 3.3.9

Theorem 3.3.9. If Ais an n X m matrix of rank r > 0 then there are
matrices P and @, both products of elementary matrices, such that PAQ

is the equivalent canonical form of A, PAQ = [ g 8 }

Proof. We prove this by induction. Since rank(A) > 0 then some aj; # 0.
We move this into position (1, 1) by interchanging row 1 and i and
interchanging columns 1 and j to produce Eq;AE; (we use superscripts of
‘c’ to denote column operations). Then divide the first row by aj;j to
produce an entry of 1 in the (1,1) position (we denote the corresponding
elementary matrix as E(l/a,-j)l) to produce B = E(1/a,j)1 E1,-AEfj.
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Theorem 3.3.9

Theorem 3.3.9. If Ais an n X m matrix of rank r > 0 then there are
matrices P and @, both products of elementary matrices, such that PAQ

is the equivalent canonical form of A, PAQ = [ g 8 }
Proof. We prove this by induction. Since rank(A) > 0 then some aj; # 0.
We move this into position (1, 1) by interchanging row 1 and i and
interchanging columns 1 and j to produce Eq;AE; (we use superscripts of
‘c’ to denote column operations). Then divide the first row by aj;j to
produce an entry of 1 in the (1,1) position (we denote the corresponding
elementary matrix as E(l/a,-j)l) to produce B = E(1/a,j)1 E1,-AEfj. Next we
“eliminate” the entries in the first column of B under the (1,1) entry with
the elementary row operations Ry — Rk — bi1 Ry for 2 < k < n (we denote
the corresponding elementary row matrices as Ey(_p,;)1 for 2 < k < n) to
produce

C = En(—bn)1 E(n-1)(=bp_1y)1 "~ Ea(~bu)1 B-
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Theorem 3.3.9 (continued 1)

Proof (continued). Similarly we eliminate the entries in the first row of
C to the right of the (1, 1) entry with the elementary column operations

Cx — Cx — a1k G1 (with the corresponding elementary matrices Erf(_qn)l)
to produce
CEZC(*Clz)lE3C(*Cls)1 e Erf(fcl,,)l-
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Theorem 3.3.9 (continued 1)

Proof (continued). Similarly we eliminate the entries in the first row of
C to the right of the (1, 1) entry with the elementary column operations

Cx — Cx — a1k G1 (with the corresponding elementary matrices EC( o )1)
to produce
CES( o)1 Es(—emt En(—aumt-

h OR1
0, } where Op, is

1x(n—1),0¢ is(n—1)x1,and X is (n—1) x (n—l) Also, P; and
@1 are products of elementary matrices. By Theorem 3.3.3,

rank(A) = rank(P1AQy) = r.

We now have a matrix of the form P1AQ: = [
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Theorem 3.3.9 (continued 1)

Proof (continued). Similarly we eliminate the entries in the first row of
C to the right of the (1, 1) entry with the elementary column operations
Cx — Cx — a1k G1 (with the corresponding elementary matrices E,f(_qn)l)
to produce

CES( o)1 B3yt Eny

n(—cin)l"

h Og,
0 X1
1x(n—=1),0¢ is(n—1)x1,and X is (n—1) x (n—1). Also, P; and
@1 are products of elementary matrices. By Theorem 3.3.3,

rank(A) = rank(P1AQy) = r. Since V ({ h }) Y ({ O, }) then by
Oq X1
Theorem 3.3.4(iv)

rzrank([ 0’; }) +rank<[ g?ll ]) :1+rank<[ 2(R11 ]) and so

rank

—c13)

We now have a matrix of the form PAQ; = [ where Op, is

X, =r—1.
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Theorem 3.3.9 (continued 2)

Proof (continued). So rank(X;) = r — 1 (also by Theorem 3.3.4(iv), if
you like). If r —1 > 0 then we can similarly find P, and Q2 products of
elementary matrices such that

L 0
PoPAGO: = | O
2

and rank(Xz) = r — 2.
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Theorem 3.3.9 (continued 2)

Proof (continued). So rank(X;) = r — 1 (also by Theorem 3.3.4(iv), if
you like). If r —1 > 0 then we can similarly find P, and Q2 products of
elementary matrices such that

L 0
PoPAGO: = | O
2

and rank(X2) = r — 2. Continuing this process we can produce

I, Og ]

PPr1-- PLAQ1 @2+ Qr = [ 0c X

where X, has rank 0; that is, where X, is a matrix of all 0's. So

/. 0
PPy PLAQ1 Q2+ Qr = { 0 0],

as claimed. ]
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Theorem 3.3.11

Theorem 3.3.11. If A is a square full rank matrix (that is, nonsingular)
and if B and C are conformable matrices for the multiplications AB and
CA then rank(AB) = rank(B) and rank(CA) = rank(C).
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Theorem 3.3.11

Theorem 3.3.11. If A is a square full rank matrix (that is, nonsingular)
and if B and C are conformable matrices for the multiplications AB and
CA then rank(AB) = rank(B) and rank(CA) = rank(C).

Proof. By Theorem 3.3.5,

rank(AB) < min{rank(A), rank(B)} < rank(B). Also, B = A"1AB so by
Theorem 3.3.5, rank(B) < min{rank(A~1),rank(AB)} < rank(AB). So
rank(B) = rank(AB).
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Theorem 3.3.11

Theorem 3.3.11. If A is a square full rank matrix (that is, nonsingular)
and if B and C are conformable matrices for the multiplications AB and
CA then rank(AB) = rank(B) and rank(CA) = rank(C).

Proof. By Theorem 3.3.5,

rank(AB) < min{rank(A), rank(B)} < rank(B). Also, B = A"1AB so by
Theorem 3.3.5, rank(B) < min{rank(A~1),rank(AB)} < rank(AB). So
rank(B) = rank(AB).

Similarly, rank(CA) < rank(C) and C = CAA~! so rank(C) < rank(CA)
and hence rank(C) = rank(CA). O
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Theorem 3.3.12

Theorem 3.3.12

Theorem 3.3.12. If A is a full column rank matrix and B is conformable
for the multiplication AB, then rank(AB) = rank(B). If Ais a full row

rank matrix and C is conformable for the multiplication CA, then
rank(CA) = rank(C).
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Theorem 3.3.12

Theorem 3.3.12. If Ais a full column rank matrix and B is conformable
for the multiplication AB, then rank(AB) = rank(B). If Ais a full row
rank matrix and C is conformable for the multiplication CA, then
rank(CA) = rank(C).

Proof. Let A be n x m and of full column rank m < n. By Theorem 3.3.8,
A has a left inverse A, where A 'A = I,,. By Theorem 3.3.5,
rank(AB) < min{rank(A), rank(B)} < rank(B).
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Theorem 3.3.12

Theorem 3.3.12. If Ais a full column rank matrix and B is conformable
for the multiplication AB, then rank(AB) = rank(B). If Ais a full row
rank matrix and C is conformable for the multiplication CA, then
rank(CA) = rank(C).

Proof. Let A be n x m and of full column rank m < n. By Theorem 3.3.8,
A has a left inverse A, where A 'A = I,,. By Theorem 3.3.5,

rank(AB) < min{rank(A), rank(B)} < rank(B). Now B = I,B = AZIAB,
so by Theorem 3.3.5 rank(B) < min{rank(A; '), rank(AB)} < rank(AB),
and so rank(AB) = rank(B).
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Theorem 3.3.12

Theorem 3.3.12. If Ais a full column rank matrix and B is conformable
for the multiplication AB, then rank(AB) = rank(B). If Ais a full row
rank matrix and C is conformable for the multiplication CA, then
rank(CA) = rank(C).

Proof. Let A be n x m and of full column rank m < n. By Theorem 3.3.8,
A has a left inverse A, where A 'A = I,,. By Theorem 3.3.5,

rank(AB) < min{rank(A), rank(B)} < rank(B). Now B = I,B = AZIAB,
so by Theorem 3.3.5 rank(B) < min{rank(A; '), rank(AB)} < rank(AB),
and so rank(AB) = rank(B).

Next let A be n x m and of row column rank n < m. By Theorem 3.3.8, A
has a right inverse AEl where AAE1 = I,.
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Theorem 3.3.12

Theorem 3.3.12. If Ais a full column rank matrix and B is conformable
for the multiplication AB, then rank(AB) = rank(B). If Ais a full row
rank matrix and C is conformable for the multiplication CA, then
rank(CA) = rank(C).

Proof. Let A be n x m and of full column rank m < n. By Theorem 3.3.8,
A has a left inverse A, where A 'A = I,,. By Theorem 3.3.5,

rank(AB) < min{rank(A), rank(B)} < rank(B). Now B = I,B = AZIAB,
so by Theorem 3.3.5 rank(B) < min{rank(A; '), rank(AB)} < rank(AB),
and so rank(AB) = rank(B).

Next let A be n x m and of row column rank n < m. By Theorem 3.3.8, A
has a right inverse AEl where AAE1 = I,. By Theorem 3.3.5,

rank(CA) < rank(C). Now C = Cl, = CAAZ!, so by Theorem 3.3.5
rank(C) < rank(CA) and so rank(CA) = rank(C). O
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Theorem 3.3.13

Theorem 3.3.13. Let C be n x n and positive definite and let A be n x m.

(1) If C is positive definite and A is of full column rank m < n
then AT CA is positive definite.

(2) If ATCA is positive definite then A is of full column rank
m < n.
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Theorem 3.3.13

Theorem 3.3.13. Let C be n x n and positive definite and let A be n x m.
(1) If C is positive definite and A is of full column rank m < n
then AT CA is positive definite.
(2) If AT CA is positive definite then A is of full column rank
m < n.

Proof. (1) Let x € R™, where x # 0, and let y = Ax. So y is a linear
combination of the columns of A and since A is of full column rank (so
that the columns of A form a basis for the column space of A) and x # 0

implies y # 0.

June 12, 2020 25 / 36
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Theorem 3.3.13

Theorem 3.3.13. Let C be n x n and positive definite and let A be n x m.
(1) If C is positive definite and A is of full column rank m < n
then AT CA is positive definite.
(2) If AT CA is positive definite then A is of full column rank
m < n.

Proof. (1) Let x € R™, where x # 0, and let y = Ax. So y is a linear
combination of the columns of A and since A is of full column rank (so
that the columns of A form a basis for the column space of A) and x # 0
implies y # 0. Since C is hypothesized to be positive definite,

xT(AT CA)x = (Ax)T C(Ax) = yT Cy > 0.

Also, ATCA is m x m and symmetric since
(ATCA)T = ATCT(AT)T = AT CA. Therefore AT CA is positive definite.
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Theorem 3.3.13 (continued)

Theorem 3.3.13. Let C be n x n and positive definite and let A be n x m.

(1) If Cis positive definite and A is of full column rank m < n
then AT CA is positive definite.

(2) If AT CA is positive definite then A is of full column rank
m < n.
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Theorem 3.3.13 (continued)

Theorem 3.3.13. Let C be n x n and positive definite and let A be n x m.
(1) If Cis positive definite and A is of full column rank m < n
then AT CA is positive definite.
(2) If AT CA is positive definite then A is of full column rank
m < n.

Proof (continued). (2) ASSUME not; assume that A is not of full
column rank. Then the columns of A are not linearly independent and so
with a1, as, ..., an as the columns of A, there are scalars xi, x0, ..., Xm
not all 0, such that xya;1 + x0ap + - - - + xpam = 0.
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Theorem 3.3.13 (continued)

Theorem 3.3.13. Let C be n x n and positive definite and let A be n x m.

(1) If Cis positive definite and A is of full column rank m < n
then AT CA is positive definite.

(2) If AT CA is positive definite then A is of full column rank
m < n.

Proof (continued). (2) ASSUME not; assume that A is not of full
column rank. Then the columns of A are not linearly independent and so
with a1, as, ..., an as the columns of A, there are scalars xi, x0, ..., Xm
not all 0, such that xja1 + x0a> + -+ + xmam = 0. But then x € R™ with
entries x; satisfies x # 0 and Ax = 0. Therefore

xT(ATCA)x = (xTATC)(Ax) = (xTATC)0 =0, and so AT CA is not
positive definite, a CONTRADICTION. So the assumption that A is not of
full column rank is false. Hence, A is of full column rank. O
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Theorem 3.3.14

Theorem 3.3.14. Properties of AT A.

Let A be an n X m matrix.
(1) ATA=0if and only if A= 0.
(2) AT A is nonnegative definite.
(3) AT Ais positive definite if and only if A is of full column rank.
(4) (ATA)B = (ATA)C if and only if AB = AC, and

B(ATA) = C(ATA) if and only if BAT = CAT.

(5) AT A is of full rank if and only if A is of full column rank.
(6) rank(AT A) = rank(A).

The product AT A is called a Gramian matrix.
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Theorem 3.3.14

Theorem 3.3.14. Properties of AT A.
Let A be an n x m matrix.
(1) ATA=0if and only if A= 0.
(2) AT A is nonnegative definite.
(3) AT Ais positive definite if and only if A is of full column rank.
(4) (ATA)B = (ATA)C if and only if AB = AC, and
B(ATA) = C(ATA) if and only if BAT = CAT.
(5) AT A is of full rank if and only if A is of full column rank.
(6) rank(AT A) = rank(A).
The product AT A is called a Gramian matrix.
Proof. (1) If A=0then AT =0and ATA=00=0. If ATA=0 then
tr(ATA) = 0. Now the (i,j) entry of ATAis S"0_; abay = > 1_; akiak
and so the diagonal (i, i) entry is >7_; a%,. Then

0=tr(A ZZak, ZZaJ%:ZZa?j...

i=1 k=1 i=1 j=1 j=1 i=1
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Theorem 3.3.14 (continued 1)

Proof (continued). ...andso aj =0forall1</<nand1<;<m;
that is, A=0.
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Theorem 3.3.14 (continued 1)

Proof (continued). ...andso aj =0forall1</<nand1<;<m;
that is, A=0.

(2) For any y € R™ we have
yT(ATA)y = (Ay)T (Ay) = | Ay|* > 0.
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Theorem 3.3.14 (continued 1)

Proof (continued). ...andso aj =0forall1</<nand1<;<m;
that is, A=0.

(2) For any y € R™ we have
y (AT A)y = (Ay)T(Ay) = |Ay|I* > 0.
(3) From (2), yT(ATA)y = ||Ay||?, so y (AT A)y = 0 if and only if
||Ay|| = 0. Now Ay is a linear combination of the columns of A so if A is
of full column rank then Ay = 0 if and only if y = 0. That is, if A is of full

column rank then for y # 0 we have y T (ATA)y = ||Ay||> > 0 and AT A 'is
positive definite.
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Theorem 3.3.14 (continued 1)

Proof (continued). ...andso aj =0forall1</<nand1<;<m;
that is, A=0.

(2) For any y € R™ we have
yT(ATA)y = (Ay)T (Ay) = | Ay|* > 0.

(3) From (2), yT(ATA)y = ||Ay||?, so y (AT A)y = 0 if and only if
||Ay|| = 0. Now Ay is a linear combination of the columns of A so if A is
of full column rank then Ay = 0 if and only if y = 0. That is, if A is of full
column rank then for y # 0 we have y T (ATA)y = ||Ay||> > 0 and AT A 'is
positive definite.
If Ais not of full column rank then the columns of A are not linearly
independent and with aj, as, ..., a, as the columns of A, there are scalars
Y1, ¥2,...,¥n, not all 0, such that y1a; + y2as + -+ 4+ ypa, = 0. Then the
y € R” with entries y; we have y # 0 and Ay = 0. Then
yT(ATA)y = ||Ay||> =0, and so AT A is not positive definite.
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Theorem 3.3.14 (continued 2)

Proof (continued). (4) Suppose ATAB = ATAC. Then

ATAB — ATAC =0o0or ATA(B— C)=0, and so

(BT — CT)ATA(B — C) = 0. Hence (A(B — C))"(A(B — C)) =0 and by
Part (1), A(B— C) =0. Thatis, AB = AC. Conversely, if AB = AC then
ATAB = ATAC. Therefore ATAB = ATAC if and only if AB = AC.
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Theorem 3.3.14 (continued 2)

Proof (continued). (4) Suppose ATAB = ATAC. Then

ATAB — ATAC =0o0or ATA(B— C)=0, and so

(BT — CT)ATA(B — C) = 0. Hence (A(B — C))"(A(B — C)) =0 and by
Part (1), A(B— C) =0. Thatis, AB = AC. Conversely, if AB = AC then
ATAB = ATAC. Therefore ATAB = ATAC if and only if AB = AC.

Now suppose BATA = CATA. Then BATA— CATA=0or
(B—C)ATA=0, and so (B— C)ATA(BT — C") = 0. Hence

(B— C)AT)((B— C)AT)T =0 and by Part (1), (B — C)AT =0. That
is, BAT = CAT. Conversely, if BAT = CAT then BATA = CATA.
Therefore BATA = CAT A if and only if BAT = CAT.
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Theorem 3.3.14 (continued 2)

Proof (continued). (4) Suppose ATAB = ATAC. Then

ATAB — ATAC =0o0or ATA(B— C)=0, and so

(BT — CT)ATA(B — C) = 0. Hence (A(B — C))"(A(B — C)) =0 and by
Part (1), A(B— C) =0. Thatis, AB = AC. Conversely, if AB = AC then
ATAB = ATAC. Therefore ATAB = ATAC if and only if AB = AC.

Now suppose BATA = CATA. Then BATA— CATA=0or
(B—C)ATA=0, and so (B— C)ATA(BT — C") = 0. Hence

(B— C)AT)((B— C)AT)T =0 and by Part (1), (B — C)AT =0. That
is, BAT = CAT. Conversely, if BAT = CAT then BATA = CATA.
Therefore BATA = CAT A if and only if BAT = CAT.

(5) Suppose A is of full column rank m < n. Then by Theorem 3.3.12,
rank(AT A) = rank(A) = m. Since AT Ais m x m, then AT A'is of full rank.
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Theorem 3.3.14 (continued 3)

Proof (continued). Now suppose AT A if of full rank m. Then by
Theorem 3.3.5, m = rank(AT A) < min{rank(AT), rank(A)} < rank(A),
and since A is n X m then A must be of full column rank m.
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Theorem 3.3.14 (continued 3)

Proof (continued). Now suppose AT A if of full rank m. Then by
Theorem 3.3.5, m = rank(AT A) < min{rank(AT), rank(A)} < rank(A),
and since A is n X m then A must be of full column rank m.

(6) Let rank(A) =r. If r=0then A=0and so ATA =0 and
rank(AT A) = 0 and the claim holds. If r > 0, then the columns of A can
be permuted so that the first r columns are linearly independent. That is,
there is a permutation matrix Q such that AQ = [A; Az] where A; is an
n x r matrix of rank r (and by Theorem 3.3.3, rank(AQ) = rank(A) = r).
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Theorem 3.3.14 (continued 3)

Proof (continued). Now suppose AT A if of full rank m. Then by
Theorem 3.3.5, m = rank(AT A) < min{rank(AT), rank(A)} < rank(A),
and since A is n X m then A must be of full column rank m.

(6) Let rank(A) =r. If r=0then A=0and so ATA =0 and
rank(AT A) = 0 and the claim holds. If r > 0, then the columns of A can
be permuted so that the first r columns are linearly independent. That is,
there is a permutation matrix Q such that AQ = [A; Az] where A; is an
n x r matrix of rank r (and by Theorem 3.3.3, rank(AQ) = rank(A) = r).
So Aj is of full column rank and so each column of A, is in the column
space of A;. So there is r x (m — r) matrix B such that A, = A1 B. Then
Q = [A1 A2] = [Allr AlB] Al[l B] Hence

(AQ)T = (Aill B)T = | g | AT and
(AQ)T(AQ) — |: BIFT :| AlTAl[/r B] Define T = |: 7Ié-,- /mO,r :|
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Theorem 3.3.14 (continued 4)

Proof (continued). Then T is m x m and of full rank m (asis T'), so
by Theorem 3.3.12

rank(AT A) = rank((AQ) " (AQ))
= rank(T(AQ)T(AQ)) = rank(T(AQ)T(AQ)TT). ()
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Theorem 3.3.14 (continued 4)

Proof (continued). Then T is m x m and of full rank m (asis T'), so
by Theorem 3.3.12

rank(AT A) = rank((AQ) " (AQ))
=rank(T(AQ)T(AQ)) = rank(T(AQ)T(AQ)TT). (%)

Now

I 0 I Il +0BT
T(AQ)T—[_ HBT]AI—[ Al

BT In_, -B"l, 4+ I,_,BT
[ Y AT
Lo la-1%]
and
AT T
BT =TT = | g | ~ o
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Theorem 3.3.14 (continued 5)

Proof (continued). So

T(AQ)T(AQ)TT = [ AolT } A 0] = { AlTOAl 8 ]

(the matrix products are justified by Theorem 3.2.2).
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Theorem 3.3.14 (continued 5)

Proof (continued). So

T(AQ)T(AQ)TT = [ AolT } A 0] = { AlTOAl 8 ]

(the matrix products are justified by Theorem 3.2.2). So by (x),
T
rank(AT A) = rank <[ A10A1 8 ]) = rank(A] Ay).

Since A; is of full column rank r, by Part (5) A A; is of full rank r. So
rank(AT A) = rank(A] A1) = r = rank(A), as claimed. O
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Theorem 3.3.15

Theorem 3.3.15. If Ais a n X n matrix and B is n x ¢ then
rank(AB) > rank(A) + rank(B) — n.
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Theorem 3.3.15

Theorem 3.3.15

Theorem 3.3.15. If Ais a n X n matrix and B is n x ¢ then
rank(AB) > rank(A) + rank(B) — n.

Proof. Let r = rank(A). By Theorem 3.3.9, there are n x n matrices P
and @ which are products of elementary matrices such that

|0 5110 0 1
PAQ_[O 0].LetC—P [O Inr}Q and then

A+C=p! [ - } Ql+p1 [ . } Q1= pPl,Qt=Plo L
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Theorem 3.3.15

Theorem 3.3.15. If Ais a n X n matrix and B is n x ¢ then
rank(AB) > rank(A) + rank(B) — n.

Proof. Let r = rank(A). By Theorem 3.3.9, there are n x n matrices P
and @ which are products of elementary matrices such that

|0 5110 0 1
PAQ_[O 0].LetC—P [O Inr}Q and then

A+C=p! [ - } Ql+p1 [ . } Q1= pPl,Qt=Plo L

Now P~! and @1 are of full rank n (see the notes before the definition of
inverse matrix), so by Theorem 3.3.11,

rank(C) = rank ([ 8 0

In—r

D = rank(lp_,) = n — rank(A). ()
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Theorem 3.3.15 (continued)

Theorem 3.3.15. If Ais a n x n matrix and B is n x ¢ then
rank(AB) > rank(A) + rank(B) — n.

Proof (continued). So for n x ¢ matrix B,
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Theorem 3.3.15 (continued)

Theorem 3.3.15. If Ais a n x n matrix and B is n x ¢ then
rank(AB) > rank(A) + rank(B) — n.

Proof (continued). So for n x ¢ matrix B,

rank(B) rank(P~*Q@1B) by Theorem 3.3.11
rank(AB + CB) since A+ C = P71Q!

(
(
rank(AB) + rank(CB) by Theorem 3.3.6
(
(

IN A

rank(AB) + rank(C) by Theorem 3.3.5
rank(AB) + n — rank(A) by (x).

So rank(A) + rank(B) — n < rank(AB).
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Theorem 3.3.16

Theorem 3.3.16. n x n matrix A is invertible if and only if det(A) # 0.
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Theorem 3.3.16

Theorem 3.3.16. n x n matrix A is invertible if and only if det(A) # 0.

Proof. By Theorem 3.2.4, det(AB) = det(A)det(B), so if A~! exists then
det(A) = 1/det(A™!) and so det(A) # 0.
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Theorem 3.3.16

Theorem 3.3.16

Theorem 3.3.16. n x n matrix A is invertible if and only if det(A) # 0.

Proof. By Theorem 3.2.4, det(AB) = det(A)det(B), so if A~! exists then
det(A) = 1/det(A™!) and so det(A) # 0.

Conversely, if det(A) # 0 then by Theorem 3.1.3, A=! = (1/det(A))adj(A)
and A is invertible. U

Theory of Matrices
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Theorem 3.3.18

Theorem 3.3.18. If A and B are n x n full rank matrices then the
Kronecker product satisfies (A® B)™! = A~ @ B~L.
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Theorem 3.3.18

Theorem 3.3.18

Theorem 3.3.18. If A and B are n x n full rank matrices then the
Kronecker product satisfies (A® B)™! = A~ @ B~L.

Proof. Since A and B are full rank, then A=! and B! exist. Let A = [aj]
and A™1 =[¢;]. Then (A® B)(A"1® B™1)
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Theorem 3.3.18

Theorem 3.3.18

Theorem 3.3.18. If A and B are n x n full rank matrices then the
Kronecker product satisfies (A® B)™! = A~ @ B~L.

Proof. Since A and B are full rank, then A=! and B! exist. Let A = [aj]
and A™1 =[¢;]. Then (A® B)(A"1® B™1)

ainB apB -+ ainB Cllel Clngl Clanl
a1B a»nB -+ ay,B Cng_l 6228_1 Can_l
B B ... B B-1 B-1 ... B1

L 9nl an2 ann Cn1 Cn2 Cnn

[ n

2 : : -1

= a,'kaJ'/n since (a,-kB)(cij ) = a,'kaj/n
Lk=1

= I,
andso A”'@ B! =(A® B)"L O
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