Theory of Matrices

Chapter 3. Basic Properties of Matrices 3.3. Matrix Rank and the Inverse of a Full Rank Matrix—Proofs of Theorems

Table of contents

- [Lemma 3.3.1](#page-2-0)
- 2 [Theorem 3.3.2](#page-6-0)
- 3 [Theorem 3.3.3](#page-13-0)
- 4 [Theorem 3.3.4](#page-19-0)
- 5 [Theorem 3.3.5](#page-34-0)
- 6 [Theorem 3.3.6](#page-38-0)
- 7 [Theorem 3.3.7](#page-46-0)
- 8 [Theorem 3.3.8](#page-48-0)
- 9 [Theorem 3.3.9](#page-51-0)
- Theorem $3.3.11$
- [Theorem 3.3.12](#page-62-0)
- [Theorem 3.3.13](#page-67-0)
- 13 [Theorem 3.3.14. Properties of](#page-73-0) $A^T A$
	- [Theorem 3.3.15](#page-89-0)
	- Theorem $3.3.16$
		- [Theorem 3.3.18](#page-97-0)

Lemma 3.3.1

Lemma 3.3.1. Let $\{a^i\}_{i=1}^k = \{[a^i_1,a^i_2,\ldots,a^i_n]\}_{i=1}^k$ be a set of vectors in \mathbb{R}^n and let $\pi \in S_n$. Then the set of vectors $\{a^i\}_{i=1}^k$ is linearly independent if and only if the set of vectors $\{[a_{\pi(1)}^i, a_{\pi(2)}^i, \ldots, a_{\pi(n)}^i]\}_{i=1}^k$ is linearly independent. That is, permuting all the entries in a set of vectors by the same permutation preserves the linear dependence/independence of the set.

Proof. Set $\{a^i\}_{i=1}^k$ is linearly independent if and only if $\sum_{i=1}^k s_i a^i = 0$ for scalars s_1, s_2, \ldots, s_k implies $s_1 = s_2 = \cdots = s_k = 0$. Now $\sum_{i=1}^k s_i a^i = 0$ implies that $\sum_{i=1}^k s_i a_j^i = 0$ for $j = 1, 2, \ldots, n$.

Lemma 3.3.1

Lemma 3.3.1. Let $\{a^i\}_{i=1}^k = \{[a^i_1,a^i_2,\ldots,a^i_n]\}_{i=1}^k$ be a set of vectors in \mathbb{R}^n and let $\pi \in S_n$. Then the set of vectors $\{a^i\}_{i=1}^k$ is linearly independent if and only if the set of vectors $\{[a_{\pi(1)}^i, a_{\pi(2)}^i, \ldots, a_{\pi(n)}^i]\}_{i=1}^k$ is linearly independent. That is, permuting all the entries in a set of vectors by the same permutation preserves the linear dependence/independence of the set.

Proof. Set $\{a^i\}_{i=1}^k$ is linearly independent if and only if $\sum_{i=1}^k s_i a^i = 0$ for scalars s_1, s_2, \ldots, s_k implies $s_1 = s_2 = \cdots = s_k = 0$. Now $\sum_{i=1}^k s_i a^i = 0$ implies that $\sum_{i=1}^k s_i a_j^i = 0$ for $j=1,2,\ldots,n.$ So this system of n linear equations (in k unknowns s_i for $i=1,2,\ldots,k)$ has only one solution if $\sum_{i=1}^k s_i a^i_{\pi(j)} = 0$ for $j=1,2,\ldots,n$ has only one solution, namely and only if the system of n linear equations in k unknowns $s_1 = s_2 = \cdots = s_k = 0$. That is, if and only if the vector equation $\sum_{i=1}^k s_i b^i = 0$, where $b^i = [a^i_{\pi(1)}, a^i_{\pi(2)}, \ldots, a^i_{\pi(n)}]$ for $i=1,2,\ldots,k$, has only one solution, namely $s_1 = s_2 = \cdots s_k = 0$.

Lemma 3.3.1

Lemma 3.3.1. Let $\{a^i\}_{i=1}^k = \{[a^i_1,a^i_2,\ldots,a^i_n]\}_{i=1}^k$ be a set of vectors in \mathbb{R}^n and let $\pi \in S_n$. Then the set of vectors $\{a^i\}_{i=1}^k$ is linearly independent if and only if the set of vectors $\{[a_{\pi(1)}^i, a_{\pi(2)}^i, \ldots, a_{\pi(n)}^i]\}_{i=1}^k$ is linearly independent. That is, permuting all the entries in a set of vectors by the same permutation preserves the linear dependence/independence of the set.

Proof. Set $\{a^i\}_{i=1}^k$ is linearly independent if and only if $\sum_{i=1}^k s_i a^i = 0$ for scalars s_1, s_2, \ldots, s_k implies $s_1 = s_2 = \cdots = s_k = 0$. Now $\sum_{i=1}^k s_i a^i = 0$ implies that $\sum_{i=1}^k s_i a_j^i = 0$ for $j = 1, 2, \ldots, n$. So this system of n linear equations (in k unknowns s_i for $i=1,2,\ldots,k)$ has only one solution if $\sum_{i=1}^k s_i a^j_{\pi(j)} = 0$ for $j=1,2,\ldots,n$ has only one solution, namely and only if the system of n linear equations in k unknowns $s_1 = s_2 = \cdots = s_k = 0$. That is, if and only if the vector equation $\sum_{i=1}^k s_i b^i = 0$, where $b^i = [a^i_{\pi(1)}, a^i_{\pi(2)}, \ldots, a^i_{\pi(n)}]$ for $i=1,2,\ldots,k$, has only one solution, namely $s_1 = s_2 = \cdots s_k = 0$.

Lemma 3.3.1 (continued)

Lemma 3.3.1. Let $\{a^i\}_{i=1}^k = \{[a^i_1,a^i_2,\ldots,a^i_n]\}_{i=1}^k$ be a set of vectors in \mathbb{R}^n and let $\pi \in S_n$. Then the set of vectors $\{a^i\}_{i=1}^k$ is linearly independent if and only if the set of vectors $\{[a_{\pi(1)}^i, a_{\pi(2)}^i, \ldots, a_{\pi(n)}^i]\}_{i=1}^k$ is linearly independent. That is, permuting all the entries in a set of vectors by the same permutation preserves the linear dependence/independence of the set.

Proof (continued). So the set of vectors $\{b^i\}_{i=1}^k=\{[a^i_{\pi(1)},a^i_{\pi(2)},\ldots,a^i_{\pi(n)}]\}_{i=1}^k$ is linearly independent as well. Similarly, if $\{a^i\}$ is linearly dependent then $\{b^i\}$ is linearly dependent.

Theorem 3.3.2. Let A be an $n \times m$ matrix. Then the row rank of A equals the column rank of A. This common quantity is called the rank of A.

Proof. Let the row rank of A be p and let the column rank of A be q.

Theorem 3.3.2. Let A be an $n \times m$ matrix. Then the row rank of A equals the column rank of A. This common quantity is called the rank of \mathcal{A}_{\cdot}

Proof. Let the row rank of A be p and let the column rank of A be q. Rearrange the rows of A to form matrix B so that the first p rows of matrix B are linearly independent (so $B = PA$ where P is some permutation matrix). Since A and B have the same rows, they have equal row rank. By Lemma 3.3.1, the column rank of A equals the column rank of B (by interchanging row i and \tilde{j} of A, we are interchanging all of the *i*th entries with the *j*th entries in the column vectors of A).

Theorem 3.3.2. Let A be an $n \times m$ matrix. Then the row rank of A equals the column rank of A. This common quantity is called the rank of A.

Proof. Let the row rank of A be p and let the column rank of A be q. Rearrange the rows of A to form matrix B so that the first p rows of matrix B are linearly independent (so $B = PA$ where P is some permutation matrix). Since A and B have the same rows, they have equal row rank. By Lemma 3.3.1, the column rank of A equals the column rank of B (by interchanging row i and \tilde{j} of A, we are interchanging all of the *i*th entries with the jth entries in the column vectors of A). So we can partition B as

 $B=\left[\begin{array}{c} B_1 \ B_2 \end{array}\right]$ $B₂$ where the ρ rows of B_1 are linearly independent and the

 $n - p$ rows of B_2 are (each) linear combinations of the rows of B_1 . So with the rows of B_1 as r_1, r_2, \ldots, r_p and the rows of B_2 as $r_{p+1}, r_{p+2}, \ldots, r_n$, we have scalars $s_{\ell i}$ where $r_{\ell} = \sum_{i=1}^{p} s_{\ell i} r_i$ for $\ell = p + 1, p + 2, \ldots, n$.

Theorem 3.3.2. Let A be an $n \times m$ matrix. Then the row rank of A equals the column rank of A. This common quantity is called the rank of A.

Proof. Let the row rank of A be p and let the column rank of A be q. Rearrange the rows of A to form matrix B so that the first p rows of matrix B are linearly independent (so $B = PA$ where P is some permutation matrix). Since A and B have the same rows, they have equal row rank. By Lemma 3.3.1, the column rank of A equals the column rank of B (by interchanging row i and \tilde{j} of A, we are interchanging all of the *i*th entries with the jth entries in the column vectors of A). So we can partition B as $B=\left[\begin{array}{c} B_1 \ B_2 \end{array}\right]$ $B₂$ $\Big\}$ where the ρ rows of B_1 are linearly independent and the $n - p$ rows of B_2 are (each) linear combinations of the rows of B_1 . So with the rows of B_1 as r_1, r_2, \ldots, r_p and the rows of B_2 as $r_{p+1}, r_{p+2}, \ldots, r_n$, we have scalars $s_{\ell i}$ where $r_{\ell} = \sum_{i=1}^{p} s_{\ell i} r_i$ for $\ell = p + 1, p + 2, \ldots, n$.

Proof (continued). Then with S the $(n-p) \times p$ matrix with entries $s_{\ell i}$, $\mathcal{S} = [s_{\ell i}]$, we have $B_2 = \mathcal{S}B_1$. So $B = \left[\begin{array}{c} B_1 \ \mathcal{S} B_2 \end{array}\right]$ $SB₁$ $\big]$. We claim now that the column rank of B is the same as the column rank of B_1 .

With $s=[s_1,s_2,\ldots,s_m]^T$ as a vector of m scalars, we have $Bs=0$ if and only if $\left[\begin{array}{c} B_1 \ B_2 \end{array}\right]$ $SB₁$ $s = \begin{bmatrix} B_1 s \\ c B \end{bmatrix}$ $SB₁s$ $\Big] = 0$ if and only if $B_1s = 0$. That is, a linear combination of the columns of B is 0 if and only if the corresponding linear combination of the columns of B_1 is 0. So the column rank of B is the same as the column rank of B_1 , and so both are the same as the column rank of A (namely, q). Since the columns of B_1 are vectors in \mathbb{R}^p then $q < p$.

Proof (continued). Then with S the $(n-p) \times p$ matrix with entries $s_{\ell i}$, $\mathcal{S} = [s_{\ell i}]$, we have $B_2 = \mathcal{S}B_1$. So $B = \left[\begin{array}{c} B_1 \ \mathcal{S} B_2 \end{array}\right]$ $SB₁$ $\big]$. We claim now that the column rank of B is the same as the column rank of B_1 .

With $s=[s_1,s_2,\ldots,s_m]^T$ as a vector of m scalars, we have $B\overline{s}=0$ if and only if $\begin{bmatrix} B_1 \ C_2 \end{bmatrix}$ $SB₁$ $s = \begin{bmatrix} B_1 s \\ c B \end{bmatrix}$ $SB₁$ s $\Big] = 0$ if and only if $B_1s = 0.$ That is, a linear combination of the columns of B is 0 if and only if the corresponding linear combination of the columns of B_1 is 0. So the column rank of B is the same as the column rank of B_1 , and so both are the same as the column rank of A (namely, q). Since the columns of B_1 are vectors in \mathbb{R}^p then $q \leq p$.

Similarly, we can rearrange the columns of A and partition the resulting matrix to show that $p \leq q$. Therefore the row rank, p, of matrix A equals the column rank, q, of matrix A.

Proof (continued). Then with S the $(n-p) \times p$ matrix with entries $s_{\ell i}$, $\mathcal{S} = [s_{\ell i}]$, we have $B_2 = \mathcal{S}B_1$. So $B = \left[\begin{array}{c} B_1 \ \mathcal{S} B_2 \end{array}\right]$ $SB₁$ $\big]$. We claim now that the column rank of B is the same as the column rank of B_1 .

With $s=[s_1,s_2,\ldots,s_m]^T$ as a vector of m scalars, we have $B\overline{s}=0$ if and only if $\left[\begin{array}{c} B_1 \ C B_2 \end{array}\right]$ $SB₁$ $s = \begin{bmatrix} B_1 s \\ c B \end{bmatrix}$ $SB₁$ s $\Big] = 0$ if and only if $B_1s = 0.$ That is, a linear combination of the columns of B is 0 if and only if the corresponding linear combination of the columns of B_1 is 0. So the column rank of B is the same as the column rank of B_1 , and so both are the same as the column rank of A (namely, q). Since the columns of B_1 are vectors in \mathbb{R}^p then $q \leq p$.

Similarly, we can rearrange the columns of A and partition the resulting matrix to show that $p \leq q$. Therefore the row rank, p, of matrix A equals the column rank, q , of matrix A .

Theorem 3.3.3. If P and Q are products of elementary matrices then rank(PAQ) = rank(A).

Proof. We show the result holds for P a single elementary matrix. The result for Q a single elementary matrix follows similarly and the general

result then follows by induction.

Theorem 3.3.3. If P and Q are products of elementary matrices then rank(PAQ) = rank(A).

Proof. We show the result holds for P a single elementary matrix. The result for Q a single elementary matrix follows similarly and the general $R_{\alpha} \leftrightarrow R_{\alpha}$

result then follows by induction. Let $P = E_{pq}$ where $I_n \overbrace{E_{pq}}^{R_q \leftrightarrow R_p} E_{pq}$. Then $E_{pa}A$ has the same rows as A and so rank $(E_{pa}A)$ = rank (A) . Let $P = E_{sp}$ where I_n $\overbrace{E_{sp}}$ where $s \neq 0$. Then with r_1, r_2, \ldots, r_n as the rows of A, $R_n \rightarrow sR_n$ we have that $r_1, r_2, \ldots, r_{p-1}, s r_p, r_{p+1}, \ldots, r_n$ are the rows of $E_{sp}A$.

Theorem 3.3.3. If P and Q are products of elementary matrices then rank(PAQ) = rank(A).

Proof. We show the result holds for P a single elementary matrix. The result for Q a single elementary matrix follows similarly and the general result then follows by induction. Let $P = E_{pq}$ where $I_n \overbrace{E_{pq}}^{R_q \leftrightarrow R_p} E_{pq}$. Then $R_a \leftrightarrow R_b$ $E_{pq}A$ has the same rows as A and so rank($E_{pq}A$) = rank(A). Let $P = E_{sp}$ where I_n $R_p \rightarrow sR_p$ E_{sp} where $s \neq 0$. Then with r_1, r_2, \ldots, r_n as the rows of A, we have that $r_1,r_2,\ldots,r_{p-1},sr_p,r_{p+1},\ldots,r_n$ are the rows of $E_{sp}A$. Now

$$
\sum_{i=1}^{n} s_i r_i = \sum_{i=1}^{p-1} s_i r_i + (s_p/s)(sr_p) + \sum_{i=p+1}^{n} s_i r_i
$$

for any scalars s_1, s_2, \ldots, s_n . So r_1, r_2, \ldots, r_n and $r_1, r_2, \ldots, r_{p-1}, s r_p, r_{p+1}, \ldots, r_n$ satisfy precisely the same dependence/independence relations. Therefore rank($E_{\rm SD}A$) = rank(A).

Theorem 3.3.3. If P and Q are products of elementary matrices then rank(PAQ) = rank(A).

Proof. We show the result holds for P a single elementary matrix. The result for Q a single elementary matrix follows similarly and the general result then follows by induction. Let $P = E_{pq}$ where $I_n \overbrace{E_{pq}}^{R_q \leftrightarrow R_p} E_{pq}$. Then $R_a \leftrightarrow R_b$ $E_{pq}A$ has the same rows as A and so rank($E_{pq}A$) = rank(A). Let $P = E_{sp}$ where $I_n \overbrace{E_{sp}}^{R_p\rightarrow sR_p}$ where $s\neq 0$. Then with r_1,r_2,\ldots,r_n as the rows of A, $R_p \rightarrow sR_p$

we have that $r_1,r_2,\ldots,r_{p-1},sr_p,r_{p+1},\ldots,r_n$ are the rows of $E_{sp}A$. Now

$$
\sum_{i=1}^n s_i r_i = \sum_{i=1}^{p-1} s_i r_i + (s_p/s)(sr_p) + \sum_{i=p+1}^n s_i r_i
$$

for any scalars s_1, s_2, \ldots, s_n . So r_1, r_2, \ldots, r_n and $r_1, r_2, \ldots, r_{p-1}, s r_p, r_{p+1}, \ldots, r_n$ satisfy precisely the same dependence/independence relations. Therefore rank($E_{\rm SD}A$) = rank(A).

Theorem 3.3.3. If P and Q are products of elementary matrices then rank(PAQ) = rank(A).

Proof (continued). Let $P = E_{psq}$ where I_n $R_p \rightarrow R_p + sR_q$ E_{psq} . Then for r_1, r_2, \ldots, r_n the rows of A, we have that $r_1,r_2,\ldots,r_{p-1},r_p + s r_q,r_{p+1},\ldots,r_n$ are the rows of $E_{psq}A$. Now

$$
\sum_{i=1}^{p-1} s_i r_i + s_p (r_p + s r_q) + \sum_{i=p+1}^{n} s_i r_i = \sum_{i=1}^{q-1} s_i r_i + (s_p s + s_q) r_q + \sum_{i=q+1}^{n} s_i r_i
$$

for any scalars s_1, s_2, \ldots, s_n . So r_1, r_2, \ldots, r_n and $r_1, r_2, \ldots, r_{n-1}, r_p + s r_q, r_{p+1}, \ldots, r_n$ satisfy precisely the same dependence/independence relations. Therefore rank $(E_{psq}A)$ = rank (A) .

Theorem 3.3.3. If P and Q are products of elementary matrices then rank(PAQ) = rank(A).

Proof (continued). Let $P = E_{psq}$ where I_n $R_p \rightarrow R_p + sR_q$ E_{nsq} . Then for r_1, r_2, \ldots, r_n the rows of A, we have that $r_1,r_2,\ldots,r_{p-1},r_p + s r_q,r_{p+1},\ldots,r_n$ are the rows of $E_{psq}A$. Now

$$
\sum_{i=1}^{p-1} s_i r_i + s_p (r_p + s r_q) + \sum_{i=p+1}^{n} s_i r_i = \sum_{i=1}^{q-1} s_i r_i + (s_p s + s_q) r_q + \sum_{i=q+1}^{n} s_i r_i
$$

for any scalars s_1, s_2, \ldots, s_n . So r_1, r_2, \ldots, r_n and $r_1, r_2, \ldots, r_{p-1}, r_p + s r_q, r_{p+1}, \ldots, r_n$ satisfy precisely the same dependence/independence relations. Therefore rank($E_{psq}A$) = rank(A).

Theorem 3.3.4. Let A be a matrix partitioned as $A = \begin{bmatrix} A_{11} & A_{12} \ A_{21} & A_{22} \end{bmatrix}$. Then

(i) rank(A_{ij})
$$
\leq
$$
 rank(A) for $i, j \in \{1, 2\}$.
\n(ii) rank(A) \leq rank([A₁₁|A₁₂]) + rank([A₂₁|A₂₂]).
\n(iii) rank(A) \leq rank($\begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}$) + rank($\begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix}$).
\n(iv) If $V([A_{11}|A_{12}]^T) \perp V([A_{21}|A_{22}]^T)$ then
\nrank(A) = rank([A₁₁|A₁₂]) + rank([A₂₁|A₂₂]) and if
\n $V(\begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}) \perp V(\begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix})$ then
\nrank(A) = rank($\begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}$) + rank($\begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix}$).

(i) rank $(A_{ii}) \le$ rank (A) for $i, j \in \{1, 2\}$.

Proof. (i) Since the set of rows of $[A_{11}|A_{12}]$ is a subset of the set of rows of A, then by Exercise 2.1. $G(i)$, rank $([A_{11}|A_{12}]) \le$ rank (A) .

(i) rank (A_{ii}) < rank (A) for $i, j \in \{1, 2\}$.

Proof. (i) Since the set of rows of $[A_{11}|A_{12}]$ is a subset of the set of rows of A, then by Exercise 2.1.G(i), $rank([A_{11}|A_{12}]) \le rank(A)$. Similarly, the

set of columns of $\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]$ is a subset of the set of columns of A and so $\textsf{rank}\left[\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]\right)\leq \textsf{rank}(A).$ Also, $\textsf{rank}([A_{21}|A_{22}])\leq \textsf{rank}(A)$ and rank $\left(\left[\begin{array}{c} A_{12}\ A_{22} \end{array}\right]\right)\leq {\mathsf{rank}}({\mathcal{A}}).$

(i) rank (A_{ii}) < rank (A) for $i, j \in \{1, 2\}$.

Proof. (i) Since the set of rows of $[A_{11}|A_{12}]$ is a subset of the set of rows of A, then by Exercise 2.1.G(i), rank($[A_{11}|A_{12}]$) \leq rank(A). Similarly, the set of columns of $\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]$ is a subset of the set of columns of A and so rank $\left(\left[\begin{array}{c} A_{11} \ A_{21} \end{array} \right] \right) \leq$ rank (A) . Also, rank $([A_{21}|A_{22}]) \leq$ rank (A) and $\textsf{rank}\left[\left[\begin{array}{c} A_{12}\ A_{22} \end{array}\right]\right)\leq \textsf{rank}(\mathcal{A}).$ Next, the set of columns of A_{11} is a subset of the set of columns of $[A_{11}|A_{12}]$ and so rank $(A_{11}) \le$ rank $([A_{11}|A_{12}])$ (and similarly rank (A_{12}) < rank $([A_{11}|A_{12}])$). Therefore rank $(A_{11}) \le$ rank $(A_{11}|A_{12}]$) \le rank (A) and rank $(A_{12}) \le$ rank $(A_{11}|A_{12}]$) \leq rank (A) .

(i) rank (A_{ii}) < rank (A) for $i, j \in \{1, 2\}$.

Proof. (i) Since the set of rows of $[A_{11}|A_{12}]$ is a subset of the set of rows of A, then by Exercise 2.1.G(i), rank($[A_{11}|A_{12}]$) \leq rank(A). Similarly, the set of columns of $\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]$ is a subset of the set of columns of A and so rank $\left(\left[\begin{array}{c} A_{11} \ A_{21} \end{array} \right] \right) \leq$ rank (A) . Also, rank $([A_{21}|A_{22}]) \leq$ rank (A) and rank $\left(\left[\begin{array}{c} A_{12} \ A_{22} \end{array} \right] \right) \leq$ rank (A) . Next, the set of columns of A_{11} is a subset of the set of columns of $[A_{11}|A_{12}]$ and so rank $(A_{11}) \le$ rank $([A_{11}|A_{12}])$ (and similarly rank $(A_{12}) <$ rank $([A_{11}|A_{12}]))$. Therefore rank $(A_{11}) \le$ rank $(A_{11}|A_{12}|) \le$ rank (A) and rank $(A_{12}) \le$ rank $(A_{11}|A_{12}|)$ ≤ rank(A). Similarly, rank(A_{21}) ≤ rank(A_{21} | A_{22}]) ≤ rank(A) and rank(A_{22}) \leq rank(A_{21} $|A_{22}|$) \leq rank(A).

(i) rank (A_{ii}) < rank (A) for $i, j \in \{1, 2\}$.

Proof. (i) Since the set of rows of $[A_{11}|A_{12}]$ is a subset of the set of rows of A, then by Exercise 2.1.G(i), rank($[A_{11}|A_{12}]$) \leq rank(A). Similarly, the set of columns of $\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]$ is a subset of the set of columns of A and so rank $\left(\left[\begin{array}{c} A_{11} \ A_{21} \end{array} \right] \right) \leq$ rank (A) . Also, rank $([A_{21}|A_{22}]) \leq$ rank (A) and rank $\left(\left[\begin{array}{c} A_{12} \ A_{22} \end{array} \right] \right) \leq$ rank (A) . Next, the set of columns of A_{11} is a subset of the set of columns of $[A_{11}|A_{12}]$ and so rank $(A_{11}) \le$ rank $([A_{11}|A_{12}])$ (and similarly rank $(A_{12}) <$ rank $([A_{11}|A_{12}]))$. Therefore rank $(A_{11}) \le$ rank $(A_{11}|A_{12}|) \le$ rank (A) and rank (A_{12}) < rank $(A_{11}|A_{12}|)$ \leq rank(A). Similarly, rank(A_{21}) \leq rank($A_{21}|A_{22}|$) \leq rank(A) and rank $(A_{22}) \le$ rank $(A_{21}|A_{22}|) \le$ rank (A) .

$$
\begin{aligned}\n\text{(ii) } \text{rank}(A) &\leq \text{rank}([\mathcal{A}_{11}|\mathcal{A}_{12}]) + \text{rank}([\mathcal{A}_{21}|\mathcal{A}_{22}]). \\
\text{(iii) } \text{rank}(A) &\leq \text{rank}\left(\begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}\right) + \text{rank}\left(\begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix}\right).\n\end{aligned}
$$

Proof (continued). (ii) Let R be the set of rows of A, R_1 the set of rows of $[A_{11}|A_{12}]$, and R_2 the set of rows of $[A_{21}|A_{22}]$. Then $R = R_1 \cup R_2$ and by Exercise 2.1.G(ii), dim(span(R)) \leq dim(span(R₁)) + dim(span(R₂)). That is, rank $(A) \le$ rank $([A_{11}|A_{12}])$ + rank $([A_{21}|A_{22}])$.

$$
\begin{aligned}\n\textbf{(ii) } \text{ rank}(A) &\leq \text{rank}([\mathcal{A}_{11}|\mathcal{A}_{12}]) + \text{rank}([\mathcal{A}_{21}|\mathcal{A}_{22}]). \\
\textbf{(iii) } \text{rank}(A) &\leq \text{rank}\left(\begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}\right) + \text{rank}\left(\begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix}\right).\n\end{aligned}
$$

Proof (continued). (ii) Let R be the set of rows of A, R_1 the set of rows of $[A_{11}|A_{12}]$, and R_2 the set of rows of $[A_{21}|A_{22}]$. Then $R = R_1 \cup R_2$ and by Exercise 2.1.G(ii), dim(span(R)) \leq dim(span(R₁)) + dim(span(R₂)). That is, rank $(A) \le$ rank $([A_{11}|A_{12}])$ + rank $([A_{21}|A_{22}])$.

(iii) Let C be the set of columns of A , C_1 be the set of columns of $\begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}$, and C_2 be the set of columns of $\begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix}$. Then $C = C_1 \cup C_2$ and by Exercise 2.1.G(ii),

 $dim(span(C)) \leq dim(span(C_1)) + dim(span(C_2))$. That is,

$$
rank(A) \le rank\left(\left[\begin{array}{c} A_{11} \\ A_{21} \end{array}\right]\right) + rank\left(\left[\begin{array}{c} A_{12} \\ A_{22} \end{array}\right]\right).
$$

$$
\begin{aligned}\n\text{(ii) } \text{rank}(A) &\leq \text{rank}([\mathcal{A}_{11}|\mathcal{A}_{12}]) + \text{rank}([\mathcal{A}_{21}|\mathcal{A}_{22}]). \\
\text{(iii) } \text{rank}(A) &\leq \text{rank}\left(\begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}\right) + \text{rank}\left(\begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix}\right).\n\end{aligned}
$$

Proof (continued). (ii) Let R be the set of rows of A, R_1 the set of rows of $[A_{11}|A_{12}]$, and R_2 the set of rows of $[A_{21}|A_{22}]$. Then $R = R_1 \cup R_2$ and by Exercise 2.1.G(ii), dim(span(R)) \leq dim(span(R₁)) + dim(span(R₂)). That is, rank $(A) \le$ rank $([A_{11}|A_{12}])$ + rank $([A_{21}|A_{22}])$. (iii) Let C be the set of columns of A , C_1 be the set of columns of $\left[\begin{array}{c} A_{11}\ A_{21} \end{array}\right]$, and C_2 be the set of columns of $\left[\begin{array}{c} A_{12}\ A_{22} \end{array}\right]$. Then $C=C_1\cup C_2$ and by Exercise 2.1.G(ii), $\dim(\textnormal{span}(\mathcal{C})) \leq \dim(\textnormal{span}(\mathcal{C}_1)) + \dim(\textnormal{span}(\mathcal{C}_2)).$ That is,

$$
rank(A) \le rank\left(\left[\begin{array}{c} A_{11} \\ A_{21} \end{array}\right]\right) + rank\left(\left[\begin{array}{c} A_{12} \\ A_{22} \end{array}\right]\right).
$$

(iv) If
$$
V([A_{11}|A_{12}]^T) \perp V([A_{21}|A_{22}]^T)
$$
 then
\n $rank(A) = rank([A_{11}|A_{12}]) + rank([A_{21}|A_{22}])$
\nand if $V\left(\begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}\right) \perp V\left(\begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix}\right)$ then
\n $rank(A) = rank\left(\begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}\right) + rank\left(\begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix}\right).$

Proof (continued). (iv) Let R be the set of rows of A, R_1 the set of rows of $[A_{11}|A_{12}]$, and R_2 the set of rows of $[A_{21}|A_{22}]$. Then $\mathcal{V}([A_{11}|A_{12}]^{\mathsf{T}})$ is the row space of $[A_{11}|A_{12}]$ and $\mathcal{V}([A_{21}|A_{22}]^\mathcal{T})$ is the row space of $[A_{21}|A_{22}]$. So the row space of A is $\mathcal{V}([A_{11}|A_{12}]^{\top}) + \mathcal{V}(A_{21}|A_{22}]^{\top})$ (see page 13 of the text).

(iv) If
$$
V([A_{11}|A_{12}]^T) \perp V([A_{21}|A_{22}]^T)
$$
 then
\n $rank(A) = rank([A_{11}|A_{12}]) + rank([A_{21}|A_{22}])$
\nand if $V\left(\begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}\right) \perp V\left(\begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix}\right)$ then
\n $rank(A) = rank\left(\begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}\right) + rank\left(\begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix}\right).$

Proof (continued). (iv) Let R be the set of rows of A, R_1 the set of rows of $[A_{11}|A_{12}]$, and R_2 the set of rows of $[A_{21}|A_{22}]$. Then $\mathcal{V}([A_{11}|A_{12}]^{\mathsf{T}})$ is the row space of $[A_{11}|A_{12}]$ and $\mathcal{V}([A_{21}|A_{22}]^{\mathcal{T}})$ is the row space of $[A_{21}|A_{22}]$. So the row space of A is $\mathcal{V}([A_{11}|A_{12}]^{\mathsf{T}})+\mathcal{V}(A_{21}|A_{22}]^{\mathsf{T}})$ (see **page 13 of the text).** Since $\mathcal{V}([A_{21}|A_{22}]^{\top}) \perp \mathcal{V}([A_{21}|A_{22}]^{\top})$ by hypothesis, then the row space of A is $\mathcal{V}([A_{11}|A_{12}]^{\top}) \oplus \mathcal{V}([A_{21}|A_{22}])$. By Exercise 2.1.G(iii), rank $(A)=\mathsf{dim}(\mathcal{V}([A_{11}|A_{12}]^{\top}))+\mathsf{dim}(\mathcal{V}([A_{21}|A_{22}]^{\top}))$ $=$ rank([A₁₁|A₁₂]) + rank([A₁₁|A₁₂]).

(iv) If
$$
V([A_{11}|A_{12}]^T) \perp V([A_{21}|A_{22}]^T)
$$
 then
\n $rank(A) = rank([A_{11}|A_{12}]) + rank([A_{21}|A_{22}])$
\nand if $V\left(\begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}\right) \perp V\left(\begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix}\right)$ then
\n $rank(A) = rank\left(\begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}\right) + rank\left(\begin{bmatrix} A_{12} \\ A_{22} \end{bmatrix}\right).$

Proof (continued). (iv) Let R be the set of rows of A, R_1 the set of rows of $[A_{11}|A_{12}]$, and R_2 the set of rows of $[A_{21}|A_{22}]$. Then $\mathcal{V}([A_{11}|A_{12}]^{\mathsf{T}})$ is the row space of $[A_{11}|A_{12}]$ and $\mathcal{V}([A_{21}|A_{22}]^{\mathcal{T}})$ is the row space of $[A_{21}|A_{22}]$. So the row space of A is $\mathcal{V}([A_{11}|A_{12}]^{\mathsf{T}})+\mathcal{V}(A_{21}|A_{22}]^{\mathsf{T}})$ (see page 13 of the text). Since $\mathcal{V}([A_{21}|A_{22}]^{\mathcal{\,T}})\perp\mathcal{V}([A_{21}|A_{22}]^{\mathcal{\,T}})$ by hypothesis, then the row space of A is $\mathcal{V}([A_{11}|A_{12}]^{\mathcal{T}})\oplus \mathcal{V}([A_{21}|A_{22}])$. By Exercise 2.1.G(iii), rank $(A)=\mathsf{dim}(\mathcal{V}([A_{11}|A_{12}]^{\mathsf{T}}))+\mathsf{dim}(\mathcal{V}([A_{21}|A_{22}]^{\mathsf{T}}))$ $=$ rank([A₁₁|A₁₂]) + rank([A₁₁|A₁₂]).

Proof (continued). (iv) Let C be the set of columns of A, C_1 the set of columns of $\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]$, and C_2 the set of columns of $\left[\begin{array}{c} A_{12} \ A_{22} \end{array}\right]$. Then $\mathcal{V}\left(\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]\right)$ is the column space of $\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]$ and $\mathcal{V}\left(\left[\begin{array}{c} A_{12} \ A_{22} \end{array}\right]\right)$ is the **column space of** $\begin{bmatrix} A_{12} \ A_{22} \end{bmatrix}$. So the columns space of A is $\mathcal{V}\left(\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]\right)+\mathcal{V}\left(\left[\begin{array}{c} A_{12} \ A_{22} \end{array}\right]\right)$. Since $\mathcal{V}\left(\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]\right)\perp\mathcal{V}\left(\left[\begin{array}{c} A_{12} \ A_{22} \end{array}\right]\right)$ by hypothesis, then the column space of A is $\mathcal{V}\left(\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]\right)\oplus \mathcal{V}\left(\left[\begin{array}{c} A_{12} \ A_{22} \end{array}\right]\right).$

Proof (continued). (iv) Let C be the set of columns of A, C_1 the set of columns of $\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]$, and C_2 the set of columns of $\left[\begin{array}{c} A_{12} \ A_{22} \end{array}\right]$. Then $\mathcal{V}\left(\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]\right)$ is the column space of $\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]$ and $\mathcal{V}\left(\left[\begin{array}{c} A_{12} \ A_{22} \end{array}\right]\right)$ is the column space of $\left[\begin{array}{c} A_{12}\ A_{22} \end{array}\right]$. So the columns space of A is $\mathcal{V}\left(\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]\right)+\mathcal{V}\left(\left[\begin{array}{c} A_{12} \ A_{22} \end{array}\right]\right)$. Since $\mathcal{V}\left(\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]\right)\perp\mathcal{V}\left(\left[\begin{array}{c} A_{12} \ A_{22} \end{array}\right]\right)$ by hypothesis, then the column space of A is $\mathcal{V}\left(\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]\right)\oplus \mathcal{V}\left(\left[\begin{array}{c} A_{12} \ A_{22} \end{array}\right]\right).$ By Exercise 2.1.G(iii), $\textnormal{rank}(A) = \dim \left(\mathcal{V}\left(\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]\right)\right) + \dim \left(\mathcal{V}\left(\left[\begin{array}{c} A_{12} \ A_{22} \end{array}\right]\right)\right) =$ $\textsf{rank}\left(\left\lceil\begin{array}{c} A_{11} \ A_{21} \end{array}\right\rceil\right) + \textsf{rank}\left(\left\lceil\begin{array}{c} A_{12} \ A_{22} \end{array}\right\rceil\right).$ () [Theory of Matrices](#page-0-0) June 12, 2020 13 / 36

Proof (continued). (iv) Let C be the set of columns of A, C_1 the set of columns of $\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]$, and C_2 the set of columns of $\left[\begin{array}{c} A_{12} \ A_{22} \end{array}\right]$. Then $\mathcal{V}\left(\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]\right)$ is the column space of $\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]$ and $\mathcal{V}\left(\left[\begin{array}{c} A_{12} \ A_{22} \end{array}\right]\right)$ is the column space of $\left[\begin{array}{c} A_{12}\ A_{22} \end{array}\right]$. So the columns space of A is $\mathcal{V}\left(\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]\right)+\mathcal{V}\left(\left[\begin{array}{c} A_{12} \ A_{22} \end{array}\right]\right)$. Since $\mathcal{V}\left(\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]\right)\perp\mathcal{V}\left(\left[\begin{array}{c} A_{12} \ A_{22} \end{array}\right]\right)$ by hypothesis, then the column space of A is $\mathcal{V}\left(\left[\begin{array}{c} A_{11} \ A_{21} \end{array}\right]\right)\oplus \mathcal{V}\left(\left[\begin{array}{c} A_{12} \ A_{22} \end{array}\right]\right).$ By Exercise 2.1.G(iii), $\mathsf{rank}(\mathcal{A}) = \mathsf{dim} \left(\mathcal{V} \left(\left[\begin{array}{c} A_{11} \ A_{21} \end{array} \right] \right) \right) + \mathsf{dim} \left(\mathcal{V} \left(\left[\begin{array}{c} A_{12} \ A_{22} \end{array} \right] \right) \right) =$ $\mathsf{rank}\left(\left\lceil\begin{array}{c} A_{11}\ A_{21} \end{array}\right\rceil\right)+\mathsf{rank}\left(\left\lceil\begin{array}{c} A_{12}\ A_{22} \end{array}\right\rceil\right).$ [Theory of Matrices](#page-0-0) June 12, 2020 13 / 36

Theorem 3.3.5. Let A be an $n \times k$ matrix and B be a $k \times m$ matrix. Then rank(AB) \leq min{rank(A), rank(B)}.

Proof. Let the columns of A be a_1, a_2, \ldots, a_k , the columns of B be b_1, b_2, \ldots, b_m , and the columns of AB be c_1, c_2, \ldots, c_m .

Theorem 3.3.5. Let A be an $n \times k$ matrix and B be a $k \times m$ matrix. Then rank(AB) \leq min{rank(A), rank(B)}.

Proof. Let the columns of A be a_1, a_2, \ldots, a_k , the columns of B be b_1, b_2, \ldots, b_m , and the columns of AB be c_1, c_2, \ldots, c_m . Recall (see the note on page 5 of the class notes for Section 3.2) that if $x\in\mathbb{R}^k$ then Ax is a linear combination of the columns of A; that is, $Ax \in V(A)$. Now from the definition of matrix multiplication, we have $c_i = Ab_i$ for $i = 1, 2, \ldots, m$ so that $c_i = Ab_i \in V(A)$ for $i = 1, 2, ..., m$. So every linear combination of the columns of AB is also a linear combination of the columns of A, and $V(AB)$ is a subspace of $V(A)$. Hence rank(AB) \leq rank(A).
Theorem 3.3.5. Let A be an $n \times k$ matrix and B be a $k \times m$ matrix. Then rank(AB) \leq min{rank(A), rank(B)}.

Proof. Let the columns of A be a_1, a_2, \ldots, a_k , the columns of B be b_1, b_2, \ldots, b_m , and the columns of AB be c_1, c_2, \ldots, c_m . Recall (see the note on page 5 of the class notes for Section 3.2) that if $x\in\mathbb{R}^k$ then Ax is a linear combination of the columns of A; that is, $Ax \in V(A)$. Now from the definition of matrix multiplication, we have $c_i = Ab_i$ for $i = 1, 2, \ldots, m$ so that $c_i = Ab_i \in V(A)$ for $i = 1, 2, ..., m$. So every linear combination of the columns of AB is also a linear combination of the columns of A, and $V(AB)$ is a subspace of $V(A)$. Hence rank(AB) \leq rank(A). By Theorem 3.3.2, $\mathsf{rank}(A) = \mathsf{rank}(A^{\mathcal{T}}),\ \mathsf{rank}(B) = \mathsf{rank}(B^{\mathcal{T}}),\ \mathsf{and}$ rank $(AB) = \text{rank}((AB)^{\top})$. So the previous argument shows that

 $\textsf{rank}(A B) = \textsf{rank}((A B)^{\mathsf{T}}) = \textsf{rank}(B^{\mathsf{T}} A^{\mathsf{T}}) \leq \textsf{rank}(B^{\mathsf{T}}) = \textsf{rank}(B).$

Therefore, rank(AB) \leq min{rank(A), rank(B)}.

Theorem 3.3.5. Let A be an $n \times k$ matrix and B be a $k \times m$ matrix. Then rank(AB) \leq min{rank(A), rank(B)}.

Proof. Let the columns of A be a_1, a_2, \ldots, a_k , the columns of B be b_1, b_2, \ldots, b_m , and the columns of AB be c_1, c_2, \ldots, c_m . Recall (see the note on page 5 of the class notes for Section 3.2) that if $x\in\mathbb{R}^k$ then Ax is a linear combination of the columns of A; that is, $Ax \in V(A)$. Now from the definition of matrix multiplication, we have $c_i = Ab_i$ for $i = 1, 2, \ldots, m$ so that $c_i = Ab_i \in V(A)$ for $i = 1, 2, ..., m$. So every linear combination of the columns of AB is also a linear combination of the columns of A, and $V(AB)$ is a subspace of $V(A)$. Hence rank(AB) \leq rank(A). By Theorem 3.3.2, $\mathsf{rank}(A) = \mathsf{rank}(A^{\mathcal{T}}),\ \mathsf{rank}(B) = \mathsf{rank}(B^{\mathcal{T}}),\ \mathsf{and}$ rank $(AB) = \mathsf{rank}((AB)^{\mathsf{T}}).$ So the previous argument shows that

$$
\mathsf{rank}(AB) = \mathsf{rank}((AB)^{\mathsf{T}}) = \mathsf{rank}(B^{\mathsf{T}}A^{\mathsf{T}}) \leq \mathsf{rank}(B^{\mathsf{T}}) = \mathsf{rank}(B).
$$

Therefore, rank(AB) \leq min{rank(A), rank(B)}.

Theorem 3.3.6. Let A and B be $n \times m$ matrices. Then $|\mathsf{rank}(A) - \mathsf{rank}(B)| \leq \mathsf{rank}(A + B) \leq \mathsf{rank}(A) + \mathsf{rank}(B).$

Proof. By Theorem 3.2.2 we have

$$
\begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I_m & 0 \\ I_m & 0 \end{bmatrix} = \begin{bmatrix} Al_m + Bl_m & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} A+B & 0 \\ 0 & 0 \end{bmatrix}
$$

(or, eliminating the 0 matrices as Gentle does, $[A | B] \begin{bmatrix} I_m \\ I_m \end{bmatrix} = A + B$).

Theorem 3.3.6. Let A and B be $n \times m$ matrices. Then

 $|\mathsf{rank}(A) - \mathsf{rank}(B)| \leq \mathsf{rank}(A + B) \leq \mathsf{rank}(A) + \mathsf{rank}(B).$

Proof. By Theorem 3.2.2 we have

$$
\begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I_m & 0 \\ I_m & 0 \end{bmatrix} = \begin{bmatrix} Al_m + Bl_m & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} A+B & 0 \\ 0 & 0 \end{bmatrix}
$$

\n(or, eliminating the 0 matrices as Gentle does, $[A | B] \begin{bmatrix} I_m \\ I_m \end{bmatrix} = A + B$).
\nSo by Theorem 3.3.5,
\nrank $\begin{pmatrix} A+B & 0 \\ 0 & 0 \end{pmatrix} \le \min \left\{ \text{rank} \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix} \right\}, \text{rank} \begin{pmatrix} I_m & 0 \\ I_m & 0 \end{pmatrix} \right\}$
\n $\le \text{rank} \begin{pmatrix} A & B \\ 0 & 0 \end{pmatrix}.$

Theorem 3.3.6. Let A and B be $n \times m$ matrices. Then

 $|\mathsf{rank}(A) - \mathsf{rank}(B)| \leq \mathsf{rank}(A + B) \leq \mathsf{rank}(A) + \mathsf{rank}(B).$

Proof. By Theorem 3.2.2 we have

$$
\begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix} \begin{bmatrix} I_m & 0 \\ I_m & 0 \end{bmatrix} = \begin{bmatrix} Al_m + Bl_m & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} A+B & 0 \\ 0 & 0 \end{bmatrix}
$$

(or, eliminating the 0 matrices as Gentle does, $[A | B] \begin{bmatrix} I_m \\ I_m \end{bmatrix} = A + B$).

So by Theorem 3.3.5,

$$
\operatorname{rank}\left(\left[\begin{array}{cc}A+B & 0\\ 0 & 0\end{array}\right]\right) \le \min\left\{\operatorname{rank}\left(\left[\begin{array}{cc}A & B\\ 0 & 0\end{array}\right]\right), \operatorname{rank}\left(\left[\begin{array}{cc}I_m & 0\\ I_m & 0\end{array}\right]\right)\right\}
$$

$$
\le \operatorname{rank}\left(\left[\begin{array}{cc}A & B\\ 0 & 0\end{array}\right]\right).
$$

Theorem 3.3.6 (continued 1)

Proof (continued). By Theorem 3.3.4(iii),

$$
\mathsf{rank}\left(\left[\begin{array}{cc}A&B\\0&0\end{array}\right]\right)\leq \mathsf{rank}\left(\left[\begin{array}{c}A\\0\end{array}\right]\right)+\mathsf{rank}\left(\left[\begin{array}{c}B\\0\end{array}\right]\right)
$$

and so, combining these last two results,

$$
\mathop{\rm rank}\nolimits\left(\left[\begin{array}{cc} A+B & 0 \\ 0 & 0 \end{array}\right]\right)\leq \mathop{\rm rank}\nolimits\left(\left[\begin{array}{c} A \\ 0 \end{array}\right]\right)+\mathop{\rm rank}\nolimits\left(\left[\begin{array}{c} B \\ 0 \end{array}\right]\right).
$$

Now the 0 matrices in the second rows of these matrices do not effect ranks. That is, rank $\left(\left[\begin{array}{cc} A + B & 0 \ 0 & 0 \end{array} \right] \right) = \text{rank}([A + B \mid 0]),$ rank $\left(\left\lceil\begin{array}{c}A\0\end{array}\right\rceil\right)=\operatorname{rank}(A)$, and $\operatorname{rank}\left(\left\lceil\begin{array}{c}B\0\end{array}\right\rceil\right)=\operatorname{rank}(B)$ (this can be justified by Theorem 3.3.4(iv) since rank(0) = 0).

Theorem 3.3.6 (continued 1)

Proof (continued). By Theorem 3.3.4(iii),

$$
\mathsf{rank}\left(\left[\begin{array}{cc}A&B\\0&0\end{array}\right]\right)\leq \mathsf{rank}\left(\left[\begin{array}{c}A\\0\end{array}\right]\right)+\mathsf{rank}\left(\left[\begin{array}{c}B\\0\end{array}\right]\right)
$$

and so, combining these last two results,

$$
\mathop{\rm rank}\nolimits\left(\left[\begin{array}{cc} A+B & 0 \\ 0 & 0 \end{array}\right]\right)\leq \mathop{\rm rank}\nolimits\left(\left[\begin{array}{c} A \\ 0 \end{array}\right]\right)+\mathop{\rm rank}\nolimits\left(\left[\begin{array}{c} B \\ 0 \end{array}\right]\right).
$$

Now the 0 matrices in the second rows of these matrices do not effect ranks. That is, rank $\left(\left[\begin{array}{cc} A+B & 0 \ 0 & 0 \end{array}\right]\right) = \mathsf{rank}([A+B\mid 0]),$ rank $\left(\left\lceil\begin{array}{c}A\0\end{array}\right\rceil\right)=\mathsf{rank}(A)$, and $\mathsf{rank}\left(\left\lceil\begin{array}{c}B\0\end{array}\right\rceil\right)=\mathsf{rank}(B)$ (this can be justified by Theorem 3.3.4(iv) since rank(0) = 0). Similarly, rank($[A + B | 0]$) = rank $(A + B)$. Therefore,

rank $(A + B)$ < rank (A) + rank (B) . (*)

Theorem 3.3.6 (continued 1)

Proof (continued). By Theorem 3.3.4(iii),

$$
\mathsf{rank}\left(\left[\begin{array}{cc}A&B\\0&0\end{array}\right]\right)\leq \mathsf{rank}\left(\left[\begin{array}{c}A\\0\end{array}\right]\right)+\mathsf{rank}\left(\left[\begin{array}{c}B\\0\end{array}\right]\right)
$$

and so, combining these last two results,

$$
\mathop{\rm rank}\nolimits\left(\left[\begin{array}{cc} A+B & 0 \\ 0 & 0 \end{array}\right]\right)\leq \mathop{\rm rank}\nolimits\left(\left[\begin{array}{c} A \\ 0 \end{array}\right]\right)+\mathop{\rm rank}\nolimits\left(\left[\begin{array}{c} B \\ 0 \end{array}\right]\right).
$$

Now the 0 matrices in the second rows of these matrices do not effect ranks. That is, rank $\left(\left[\begin{array}{cc} A+B & 0 \ 0 & 0 \end{array}\right]\right) = \mathsf{rank}([A+B\mid 0]),$ rank $\left(\left\lceil\begin{array}{c}A\0\end{array}\right\rceil\right)=\mathsf{rank}(A)$, and $\mathsf{rank}\left(\left\lceil\begin{array}{c}B\0\end{array}\right\rceil\right)=\mathsf{rank}(B)$ (this can be justified by Theorem 3.3.4(iv) since rank(0) = 0). Similarly, rank($[A + B | 0]$) = rank $(A + B)$. Therefore,

rank $(A + B)$ < rank (A) + rank (B) . (*)

Theorem 3.3.6 (continued 2)

Theorem 3.3.6. Let A and B be $n \times m$ matrices. Then

 $|\mathsf{rank}(A) - \mathsf{rank}(B)| \leq \mathsf{rank}(A + B) \leq \mathsf{rank}(A) + \mathsf{rank}(B).$

Proof (continued). With the second inequality established, we have

rank $(A + B)$ < rank (A) + rank (B) . (*)

Next, $A = (A + B) - B$, so by $(*)$ we have

rank (A) = rank $((A + B) - B) \le$ rank $(A + B) +$ rank $(-B)$

or

$$
\mathsf{rank}(A+B)\geq \mathsf{rank}(A)-\mathsf{rank}(-B)=\mathsf{rank}(A)-\mathsf{rank}(B)
$$

since rank $(-B)$ = rank (B) . Similarly (interchanging A and B), rank $(A + B)$ > rank (B) – rank (A) . Therefore, rank $(A + B)$ > |rank (A) – rank (B) |.

Theorem 3.3.6 (continued 2)

Theorem 3.3.6. Let A and B be $n \times m$ matrices. Then

 $|\mathsf{rank}(A) - \mathsf{rank}(B)| \leq \mathsf{rank}(A + B) \leq \mathsf{rank}(A) + \mathsf{rank}(B).$

Proof (continued). With the second inequality established, we have

rank $(A + B)$ < rank (A) + rank (B) . (*)

Next, $A = (A + B) - B$, so by $(*)$ we have

$$
\mathsf{rank}(A) = \mathsf{rank}((A+B)-B) \leq \mathsf{rank}(A+B) + \mathsf{rank}(-B)
$$

or

$$
\mathsf{rank}(A+B)\geq \mathsf{rank}(A)-\mathsf{rank}(-B)=\mathsf{rank}(A)-\mathsf{rank}(B)
$$

since rank($-B$) = rank(B). Similarly (interchanging A and B), rank $(A + B)$ > rank (B) – rank (A) . Therefore, rank $(A + B)$ > $|rank(A) - rank(B)|$.

Theorem 3.3.7. Let A be an $n \times n$ full rank matrix. Then $(A^{-1})^{\mathsf{T}} = (A^{\mathsf{T}})^{-1}.$

Proof. First, A^T is also $n \times n$ and full rank by Theorem 3.3.2. We have

$$
A^{T}(A^{-1})^{T} = (A^{-1}A)^{T}
$$
 by Theorem 3.2.1(1)
= $\mathcal{I}^{T} = \mathcal{I}$,

so a right inverse of $A^{\mathcal{T}}$ is $(A^{-1})^{\mathcal{T}}$. Since A is full rank and square then, as discussed above, $(A^{\mathcal{T}})^{-1} = (A^{-1})^{\mathcal{T}}$.

Theorem 3.3.7. Let A be an $n \times n$ full rank matrix. Then $(A^{-1})^{\mathsf{T}} = (A^{\mathsf{T}})^{-1}.$

Proof. First, A^T is also $n \times n$ and full rank by Theorem 3.3.2. We have

$$
A^{T}(A^{-1})^{T} = (A^{-1}A)^{T} \text{ by Theorem 3.2.1(1)}
$$

= $\mathcal{I}^{T} = \mathcal{I},$

so a right inverse of $A^{\mathcal{T}}$ is $(A^{-1})^{\mathcal{T}}$. Since A is full rank and square then, as discussed above, $(A^{\mathcal{T}})^{-1} = (A^{-1})^{\mathcal{T}}.$

Theorem 3.3.8. $n \times m$ matrix A, where $n \leq m$, has a right inverse if and only if A is of full row rank n. $n \times m$ matrix A, where $m \le n$, has a left inverse if and only if A has full column rank m.

Proof. Let A be an $n \times m$ matrix where $n \leq m$ and let A be of full row rank (that is, rank $(A) = n$). Then the column space of A, $V(A)$, is of dimension n and each e_i , where e_i is the *i*th unit vector in \mathbb{R}^n , is in $\mathcal{V}(A)$ so that there is $x_i \in \mathbb{R}^m$ such that $Ax_i = e_i$ for $i = 1, 2, ..., n$. With X and $m \times n$ matrix with columns x_i and the columns of I_n as e_i , we have $AX = I_n$.

Theorem 3.3.8. $n \times m$ matrix A, where $n \leq m$, has a right inverse if and only if A is of full row rank n. $n \times m$ matrix A, where $m \le n$, has a left inverse if and only if A has full column rank m.

Proof. Let A be an $n \times m$ matrix where $n \leq m$ and let A be of full row rank (that is, rank $(A) = n$). Then the column space of A, $V(A)$, is of dimension n and each e_i , where e_i is the i th unit vector in \mathbb{R}^n , is in $\mathcal{V}(A)$ so that there is $x_i \in \mathbb{R}^m$ such that $Ax_i = e_i$ for $i = 1, 2, \ldots, n$. With X an $m \times n$ matrix with columns x_i and the columns of I_n as e_i , we have $AX = I_n$. Also, by Theorem 3.3.6, $n = \text{rank}(I_n) \leq \min\{\text{rank}(A), \text{rank}(X)\}\$ where rank(A) = n, so rank(X) = n and X is of full column rank. Furthermore, $AX = I_n$ has a solution only if A has full row rank n since the *n* columns of I_n are linearly independent. That is, A has a right inverse if and only if A is of full row rank. The result similarly follows for the left inverse claim.

Theorem 3.3.8. $n \times m$ matrix A, where $n \leq m$, has a right inverse if and only if A is of full row rank n. $n \times m$ matrix A, where $m \le n$, has a left inverse if and only if A has full column rank m.

Proof. Let A be an $n \times m$ matrix where $n \leq m$ and let A be of full row rank (that is, rank $(A) = n$). Then the column space of A, $V(A)$, is of dimension n and each e_i , where e_i is the i th unit vector in \mathbb{R}^n , is in $\mathcal{V}(A)$ so that there is $x_i \in \mathbb{R}^m$ such that $Ax_i = e_i$ for $i = 1, 2, \ldots, n$. With X an $m \times n$ matrix with columns x_i and the columns of I_n as e_i , we have $AX = I_n$. Also, by Theorem 3.3.6, $n = \text{rank}(I_n) \leq \min\{\text{rank}(A), \text{rank}(X)\}\$ where rank(A) = n, so rank(X) = n and X is of full column rank. Furthermore, $AX = I_n$ has a solution only if A has full row rank n since the *n* columns of I_n are linearly independent. That is, A has a right inverse if and only if A is of full row rank. The result similarly follows for the left inverse claim.

Theorem 3.3.9. If A is an $n \times m$ matrix of rank $r > 0$ then there are matrices P and Q , both products of elementary matrices, such that PAQ is the equivalent canonical form of A, $PAQ = \left[\begin{array}{cc} I_r & 0 \ 0 & 0 \end{array}\right].$

Proof. We prove this by induction. Since rank(A) > 0 then some $a_{ii} \neq 0$. We move this into position $(1, 1)$ by interchanging row 1 and *i* and interchanging columns 1 and j to produce $E_{1i} A E_{1j}^c$ (we use superscripts of c' to denote column operations). Then divide the first row by a_{ii} to produce an entry of 1 in the $(1,1)$ position (we denote the corresponding elementary matrix as $E_{(1/a_{ij})1})$ to produce $B=E_{(1/a_{ij})1}E_{1i}AE_{1j}^c$.

Theorem 3.3.9. If A is an $n \times m$ matrix of rank $r > 0$ then there are matrices P and Q , both products of elementary matrices, such that PAQ is the equivalent canonical form of A, $PAQ = \left[\begin{array}{cc} I_r & 0 \ 0 & 0 \end{array}\right].$

Proof. We prove this by induction. Since rank(A) > 0 then some $a_{ii} \neq 0$. We move this into position $(1, 1)$ by interchanging row 1 and i and interchanging columns 1 and j to produce $E_{1i} A E_{1j}^c$ (we use superscripts of 'c' to denote column operations). Then divide the first row by a_{ij} to produce an entry of 1 in the $(1,1)$ position (we denote the corresponding elementary matrix as $E_{(1/a_{ij})1})$ to produce $B=E_{(1/a_{ij})1}E_{1i} A E_{1j}^c$. Next we "eliminate" the entries in the first column of B under the $(1,1)$ entry with the elementary row operations $R_k \to R_k - b_{k1}R_1$ for $2 \leq k \leq n$ (we denote the corresponding elementary row matrices as $E_{k(-b_{n1})1}$ for $2 \leq k \leq n$) to produce

$$
C=E_{n(-b_{n1})1}E_{(n-1)(-b_{(n-1)1})1}\cdots E_{2(-b_{21})1}B.
$$

Theorem 3.3.9. If A is an $n \times m$ matrix of rank $r > 0$ then there are matrices P and Q , both products of elementary matrices, such that PAQ is the equivalent canonical form of A, $PAQ = \left[\begin{array}{cc} I_r & 0 \ 0 & 0 \end{array}\right].$

Proof. We prove this by induction. Since rank(A) > 0 then some $a_{ii} \neq 0$. We move this into position $(1, 1)$ by interchanging row 1 and i and interchanging columns 1 and j to produce $E_{1i} A E_{1j}^c$ (we use superscripts of 'c' to denote column operations). Then divide the first row by a_{ij} to produce an entry of 1 in the $(1,1)$ position (we denote the corresponding elementary matrix as $E_{(1/a_{ij})1})$ to produce $B=E_{(1/a_{ij})1}E_{1i} A E_{1j}^c$. Next we "eliminate" the entries in the first column of B under the $(1,1)$ entry with the elementary row operations $R_k \to R_k - b_{k1}R_1$ for $2 \leq k \leq n$ (we denote the corresponding elementary row matrices as $E_{k(-b_{n1})1}$ for $2 \leq k \leq n$) to produce

$$
C=E_{n(-b_{n1})1}E_{(n-1)(-b_{(n-1)1})1}\cdots E_{2(-b_{21})1}B.
$$

Theorem 3.3.9 (continued 1)

Proof (continued). Similarly we eliminate the entries in the first row of C to the right of the $(1, 1)$ entry with the elementary column operations $C_k \to C_k - c_{1k} C_1$ (with the corresponding elementary matrices $E_{n(-c_{1n})1}^c$) to produce

$$
CE_{2(-c_{12})1}^c E_{3(-c_{13})1}^c \cdots E_{n(-c_{1n})1}^c.
$$

We now have a matrix of the form $P_1AQ_1=\left[\begin{array}{cc} I_1 & 0_{R_1}\ I_2 & \cdots \ I_{R_n} & \cdots \ I_{n-1} & \cdots \ I_{n-1} & \cdots \end{array}\right]$ 0_{C_1} X_1 where 0_{R_1} is $1 \times (n-1)$, 0_{C_1} is $(n-1) \times 1$, and X is $(n-1) \times (n-1)$. Also, P_1 and Q_1 are products of elementary matrices. By Theorem 3.3.3,

rank (A) = rank (P_1AQ_1) = r.

Theorem 3.3.9 (continued 1)

Proof (continued). Similarly we eliminate the entries in the first row of C to the right of the $(1,1)$ entry with the elementary column operations $C_k \to C_k - c_{1k} C_1$ (with the corresponding elementary matrices $E_{n(-c_{1n})1}^c$) to produce

$$
CE_{2(-c_{12})1}^c E_{3(-c_{13})1}^c \cdots E_{n(-c_{1n})1}^c.
$$

We now have a matrix of the form $P_1AQ_1=\left[\begin{array}{cc} I_1 & 0_{R_1} \ 0 & \chi_1 \end{array}\right]$ $0_{\mathcal{C}_1}$ X_1 $\Big]$ where 0_{R_1} is $1\times (n-1)$, 0_{C_1} is $(n-1)\times 1$, and X is $(n-1)\times (n-1)$. Also, P_1 and Q_1 are products of elementary matrices. By Theorem 3.3.3,

rank (A) = rank (P_1AQ_1) = r. Since $\mathcal{V}\begin{bmatrix} I_1 \ 0 \end{bmatrix}$ 0_{C_1} $\bigg]\bigg)\perp\mathcal{V}\left(\left[\begin{array}{c} \mathbf{0}_{R_1}\ \chi_1 \end{array}\right]\right)$ then by Theorem 3.3.4(iv) $r = \text{rank} \left(\begin{bmatrix} l_1 \\ 0 \end{bmatrix} \right)$ 0_{C_1} $\begin{equation} \begin{pmatrix} \end{pmatrix} \end{equation} + \text{rank} \begin{pmatrix} \begin{bmatrix} \ \theta_{R_1} \ \chi_1 \end{bmatrix} \end{equation} = 1 + \text{rank} \begin{pmatrix} \begin{bmatrix} \ \theta_{R_1} \ \chi_1 \end{bmatrix} \end{equation}$ rank $\begin{pmatrix} 0_{R_1} \\ X_1 \end{pmatrix} = r - 1.$

Theorem 3.3.9 (continued 1)

Proof (continued). Similarly we eliminate the entries in the first row of C to the right of the $(1,1)$ entry with the elementary column operations $C_k \to C_k - c_{1k} C_1$ (with the corresponding elementary matrices $E_{n(-c_{1n})1}^c$) to produce

$$
CE_{2(-c_{12})1}^c E_{3(-c_{13})1}^c \cdots E_{n(-c_{1n})1}^c.
$$

We now have a matrix of the form $P_1AQ_1=\left[\begin{array}{cc} I_1 & 0_{R_1} \ 0 & \chi_1 \end{array}\right]$ $0_{\mathcal{C}_1}$ X_1 $\Big]$ where 0_{R_1} is $1\times (n-1)$, 0_{C_1} is $(n-1)\times 1$, and X is $(n-1)\times (n-1)$. Also, P_1 and Q_1 are products of elementary matrices. By Theorem 3.3.3,

rank (A) = rank (P_1AQ_1) = r. Since $\mathcal{V}\left(\left[\begin{array}{c} I_1 \ I_2 \end{array} \right]$ $0_{\mathcal{C}_1}$ $\bigg]\bigg)\perp\mathcal{V}\left(\left[\begin{array}{c} \mathsf{0}_{\mathsf{R}_{1}}\ X_{1} \end{array}\right]\right)$ then by Theorem 3.3.4(iv) $r = \mathsf{rank} \left(\left\lceil \frac{l_1}{l_2} \right\rceil \right)$ $0_{\mathcal{C}_1}$ $\Big] \Bigg) + {\sf rank} \left(\left[\begin{array}{c} 0_{R_1} \ X_1 \end{array} \right] \right) = 1 + {\sf rank} \left(\left[\begin{array}{c} 0_{R_1} \ X_1 \end{array} \right] \right)$ and so $\mathsf{rank}\left(\left\lceil\begin{array}{c} \mathsf{0}_{R_1}\ \chi_1 \end{array}\right\rceil\right)=r-1.$

Theorem 3.3.9 (continued 2)

Proof (continued). So rank $(X_1) = r - 1$ (also by Theorem 3.3.4(iv), if you like). If $r - 1 > 0$ then we can similarly find P_2 and Q_2 products of elementary matrices such that

$$
P_2P_1AQ_1Q_2=\left[\begin{array}{cc}I_2&0_{R_2}\\0_{C_2}&X_2\end{array}\right]
$$

and rank(X₂) = r – 2. Continuing this process we can produce

$$
P_r P_{r-1} \cdots P_1 A Q_1 Q_2 \cdots Q_r = \left[\begin{array}{cc} I_r & 0_{R_r} \\ 0_{C_r} & X_r \end{array} \right]
$$

where X_r has rank 0; that is, where X_r is a matrix of all 0's. So

$$
P_r P_{r-1} \cdots P_1 A Q_1 Q_2 \cdots Q_r = \left[\begin{array}{cc} I_r & 0 \\ 0 & 0 \end{array} \right],
$$

as claimed.

Theorem 3.3.9 (continued 2)

Proof (continued). So rank $(X_1) = r - 1$ (also by Theorem 3.3.4(iv), if you like). If $r - 1 > 0$ then we can similarly find P_2 and Q_2 products of elementary matrices such that

$$
P_2P_1AQ_1Q_2=\left[\begin{array}{cc}I_2&0_{R_2}\\0_{C_2}&X_2\end{array}\right]
$$

and rank $(X_2) = r - 2$. Continuing this process we can produce

$$
P_r P_{r-1} \cdots P_1 A Q_1 Q_2 \cdots Q_r = \left[\begin{array}{cc} I_r & 0_{R_r} \\ 0_{C_r} & X_r \end{array} \right]
$$

where X_r has rank 0; that is, where X_r is a matrix of all 0's. So

$$
P_r P_{r-1} \cdots P_1 A Q_1 Q_2 \cdots Q_r = \left[\begin{array}{cc} I_r & 0 \\ 0 & 0 \end{array} \right],
$$

as claimed.

Theorem 3.3.11. If A is a square full rank matrix (that is, nonsingular) and if B and C are conformable matrices for the multiplications AB and CA then rank(AB) = rank(B) and rank(CA) = rank(C).

Proof. By Theorem 3.3.5. rank $(AB)\leq \mathsf{min}\{\mathsf{rank}(A),\mathsf{rank}(B)\}\leq \mathsf{rank}(B).$ Also, $B=A^{-1}AB$ so by Theorem 3.3.5, $\mathsf{rank}(B) \leq \mathsf{min}\{ \mathsf{rank}(A^{-1}), \mathsf{rank}(AB) \} \leq \mathsf{rank}(AB).$ So $rank(B) = rank(AB)$.

Theorem 3.3.11. If A is a square full rank matrix (that is, nonsingular) and if B and C are conformable matrices for the multiplications AB and CA then rank(AB) = rank(B) and rank(CA) = rank(C).

Proof. By Theorem 3.3.5, rank $(AB)\leq \mathsf{min}\{\mathsf{rank}(A),\mathsf{rank}(B)\}\leq \mathsf{rank}(B).$ Also, $B=A^{-1}AB$ so by Theorem 3.3.5, $\mathsf{rank}(B) \leq \mathsf{min}\{ \mathsf{rank}(A^{-1}), \mathsf{rank}(AB) \} \leq \mathsf{rank}(AB).$ So $rank(B) = rank(AB)$.

Similarly, rank(CA) \leq rank(C) and $C = CAA^{-1}$ so rank(C) \leq rank(CA) and hence rank(C) = rank(CA).

Theorem 3.3.11. If A is a square full rank matrix (that is, nonsingular) and if B and C are conformable matrices for the multiplications AB and CA then rank(AB) = rank(B) and rank(CA) = rank(C).

Proof. By Theorem 3.3.5, rank $(AB)\leq \mathsf{min}\{\mathsf{rank}(A),\mathsf{rank}(B)\}\leq \mathsf{rank}(B).$ Also, $B=A^{-1}AB$ so by Theorem 3.3.5, $\mathsf{rank}(B) \leq \mathsf{min}\{ \mathsf{rank}(A^{-1}), \mathsf{rank}(AB) \} \leq \mathsf{rank}(AB).$ So $rank(B) = rank(AB)$.

Similarly, rank(CA) \leq rank(C) and $\mathsf{C}=\mathsf{CAA^{-1}}$ so rank(C) \leq rank(CA) and hence rank(C) = rank(CA).

Theorem 3.3.12. If A is a full column rank matrix and B is conformable for the multiplication AB, then rank(AB) = rank(B). If A is a full row rank matrix and C is conformable for the multiplication CA , then rank(CA) = rank(C).

Proof. Let A be $n \times m$ and of full column rank $m \leq n$. By Theorem 3.3.8, A has a left inverse A_L^{-1} where $A_L^{-1}A = I_m$. By Theorem 3.3.5, rank(AB) \leq min{rank(A), rank(B)} \leq rank(B).

Theorem 3.3.12. If A is a full column rank matrix and B is conformable for the multiplication AB, then rank(AB) = rank(B). If A is a full row rank matrix and C is conformable for the multiplication CA , then rank(CA) = rank(C).

Proof. Let A be $n \times m$ and of full column rank $m \le n$. By Theorem 3.3.8, A has a left inverse A_L^{-1} where $A_L^{-1}A = I_m$. By Theorem 3.3.5, ${\sf rank}(AB)\leq {\sf min}\{{\sf rank}(A),{\sf rank}(B)\}\leq {\sf rank}(B)$. Now $B=l_mB=A_L^{-1}AB$, so by Theorem 3.3.5 rank $(B)\leq \mathsf{min}\{\mathsf{rank}(A^{-1}_I)\}$ $\begin{aligned} \mathcal{L}^{-1} \end{aligned}$, rank $(AB) \} \leq \mathsf{rank}(AB)$, and so rank (AB) = rank (B) .

Theorem 3.3.12. If A is a full column rank matrix and B is conformable for the multiplication AB, then rank(AB) = rank(B). If A is a full row rank matrix and C is conformable for the multiplication CA , then rank(CA) = rank(C).

Proof. Let A be $n \times m$ and of full column rank $m \le n$. By Theorem 3.3.8, A has a left inverse A_L^{-1} where $A_L^{-1}A = I_m$. By Theorem 3.3.5, rank $(AB)\leq \mathsf{min}\{\mathsf{rank}(A),\mathsf{rank}(B)\}\leq \mathsf{rank}(B)$. Now $B=l_mB=A_L^{-1}AB$, so by Theorem 3.3.5 rank $(B)\leq \mathsf{min}\{\mathsf{rank}(A^{-1}_I\}$ $\binom{-1}{L}$, rank $(AB)\}\leq \text{rank}(AB)$, and so rank(AB) = rank(B).

Next let A be $n \times m$ and of row column rank $n \le m$. By Theorem 3.3.8, A has a right inverse A_R^{-1} where $AA_R^{-1} = I_n$.

Theorem 3.3.12. If A is a full column rank matrix and B is conformable for the multiplication AB, then rank(AB) = rank(B). If A is a full row rank matrix and C is conformable for the multiplication CA , then rank(CA) = rank(C).

Proof. Let A be $n \times m$ and of full column rank $m \le n$. By Theorem 3.3.8, A has a left inverse A_L^{-1} where $A_L^{-1}A = I_m$. By Theorem 3.3.5, rank $(AB)\leq \mathsf{min}\{\mathsf{rank}(A),\mathsf{rank}(B)\}\leq \mathsf{rank}(B)$. Now $B=l_mB=A_L^{-1}AB$, so by Theorem 3.3.5 rank $(B)\leq \mathsf{min}\{\mathsf{rank}(A^{-1}_I\}$ $\binom{-1}{L}$, rank $(AB)\}\leq \text{rank}(AB)$, and so rank(AB) = rank(B).

Next let A be $n \times m$ and of row column rank $n \le m$. By Theorem 3.3.8, A has a right inverse A_R^{-1} where $A A_R^{-1} = I_n$. By Theorem 3.3.5, rank $(CA) \leq \text{rank}(C)$. Now $C = Cl_n = CAA_R^{-1}$, so by Theorem 3.3.5 rank(C) \leq rank(CA) and so rank(CA) = rank(C).

Theorem 3.3.12. If A is a full column rank matrix and B is conformable for the multiplication AB, then rank(AB) = rank(B). If A is a full row rank matrix and C is conformable for the multiplication CA , then rank(CA) = rank(C).

Proof. Let A be $n \times m$ and of full column rank $m \le n$. By Theorem 3.3.8, A has a left inverse A_L^{-1} where $A_L^{-1}A = I_m$. By Theorem 3.3.5, rank $(AB)\leq \mathsf{min}\{\mathsf{rank}(A),\mathsf{rank}(B)\}\leq \mathsf{rank}(B)$. Now $B=l_mB=A_L^{-1}AB$, so by Theorem 3.3.5 rank $(B)\leq \mathsf{min}\{\mathsf{rank}(A^{-1}_I\}$ $\binom{-1}{L}$, rank $(AB)\}\leq \text{rank}(AB)$, and so rank(AB) = rank(B).

Next let A be $n \times m$ and of row column rank $n \le m$. By Theorem 3.3.8, A has a right inverse A_R^{-1} where $A A_R^{-1} = I_n$. By Theorem 3.3.5, rank $(CA) \leq \text{rank}(C)$. Now $C = CI_n = CAA_R^{-1}$, so by Theorem 3.3.5 rank(C) \leq rank(CA) and so rank(CA) = rank(C).

Theorem 3.3.13. Let C be $n \times n$ and positive definite and let A be $n \times m$.

- (1) If C is positive definite and A is of full column rank $m \le n$ then $A^{\mathcal{T}}CA$ is positive definite.
- (2) If A^TCA is positive definite then A is of full column rank $m \leq n$.

Proof. (1) Let $x \in \mathbb{R}^m$, where $x \neq 0$, and let $y = Ax$. So y is a linear combination of the columns of A and since A is of full column rank (so that the columns of A form a basis for the column space of A) and $x \neq 0$ implies $v \neq 0$.

Theorem 3.3.13. Let C be $n \times n$ and positive definite and let A be $n \times m$.

- (1) If C is positive definite and A is of full column rank $m \le n$ then $A^{\mathcal{T}}CA$ is positive definite.
- (2) If A^TCA is positive definite then A is of full column rank $m \leq n$.

Proof. (1) Let $x \in \mathbb{R}^m$, where $x \neq 0$, and let $y = Ax$. So y is a linear combination of the columns of A and since A is of full column rank (so that the columns of A form a basis for the column space of A) and $x \neq 0$ **implies** $v \neq 0$ **.** Since C is hypothesized to be positive definite,

$$
x^{\mathsf{T}}(A^{\mathsf{T}}CA)x = (Ax)^{\mathsf{T}}C(Ax) = y^{\mathsf{T}}Cy > 0.
$$

Also, $A^{\mathcal{T}}CA$ is $m\times m$ and symmetric since $(A^T CA)^T = A^T C^T (A^T)^T = A^T CA$. Therefore $A^T CA$ is positive definite.

Theorem 3.3.13. Let C be $n \times n$ and positive definite and let A be $n \times m$.

- (1) If C is positive definite and A is of full column rank $m \le n$ then $A^{\mathcal{T}}CA$ is positive definite.
- (2) If A^TCA is positive definite then A is of full column rank $m \leq n$.

Proof. (1) Let $x \in \mathbb{R}^m$, where $x \neq 0$, and let $y = Ax$. So y is a linear combination of the columns of A and since A is of full column rank (so that the columns of A form a basis for the column space of A) and $x \neq 0$ implies $y \neq 0$. Since C is hypothesized to be positive definite,

$$
x^{\mathsf{T}}(A^{\mathsf{T}}CA)x = (Ax)^{\mathsf{T}}C(Ax) = y^{\mathsf{T}}Cy > 0.
$$

Also, $A^\mathcal{T}CA$ is $m\times m$ and symmetric since $(A^{\mathsf{T}}CA)^{\mathsf{T}} = A^{\mathsf{T}}C^{\mathsf{T}}(A^{\mathsf{T}})^{\mathsf{T}} = A^{\mathsf{T}}CA$. Therefore $A^{\mathsf{T}}CA$ is positive definite.

Theorem 3.3.13 (continued)

Theorem 3.3.13. Let C be $n \times n$ and positive definite and let A be $n \times m$.

- (1) If C is positive definite and A is of full column rank $m \le n$ then $A^{\mathcal{T}}CA$ is positive definite.
- (2) If A^TCA is positive definite then A is of full column rank $m \leq n$.

Proof (continued). (2) ASSUME not; assume that A is not of full column rank. Then the columns of A are not linearly independent and so with a_1, a_2, \ldots, a_m as the columns of A, there are scalars x_1, x_2, \ldots, x_m not all 0, such that $x_1a_1 + x_2a_2 + \cdots + x_ma_m = 0$.

Theorem 3.3.13 (continued)

Theorem 3.3.13. Let C be $n \times n$ and positive definite and let A be $n \times m$.

- (1) If C is positive definite and A is of full column rank $m \le n$ then $A^{\mathcal{T}}CA$ is positive definite.
- (2) If A^TCA is positive definite then A is of full column rank $m \leq n$.

Proof (continued). (2) ASSUME not; assume that A is not of full column rank. Then the columns of A are not linearly independent and so with a_1, a_2, \ldots, a_m as the columns of A, there are scalars x_1, x_2, \ldots, x_m not all 0, such that $x_1a_1 + x_2a_2 + \cdots + x_ma_m = 0$. But then $x \in \mathbb{R}^m$ with entries x_i satisfies $x \neq 0$ and $Ax = 0$. Therefore $x^{\mathcal{T}}(A^{\mathcal{T}}CA)x=(x^{\mathcal{T}}A^{\mathcal{T}}C)(Ax)=(x^{\mathcal{T}}A^{\mathcal{T}}C)0=0,$ and so $A^{\mathcal{T}}CA$ is not positive definite, a CONTRADICTION. So the assumption that A is not of full column rank is false. Hence, A is of full column rank.
Theorem 3.3.13. Let C be $n \times n$ and positive definite and let A be $n \times m$.

- (1) If C is positive definite and A is of full column rank $m \le n$ then $A^{\mathcal{T}}CA$ is positive definite.
- (2) If A^TCA is positive definite then A is of full column rank $m \leq n$.

Proof (continued). (2) ASSUME not; assume that A is not of full column rank. Then the columns of A are not linearly independent and so with a_1, a_2, \ldots, a_m as the columns of A, there are scalars x_1, x_2, \ldots, x_m not all 0, such that $x_1a_1 + x_2a_2 + \cdots + x_ma_m = 0$. But then $x \in \mathbb{R}^m$ with entries x_i satisfies $x \neq 0$ and $Ax = 0$. Therefore $x^{\mathcal{T}}(A^{\mathcal{T}}CA)x=(x^{\mathcal{T}}A^{\mathcal{T}}C)(Ax)=(x^{\mathcal{T}}A^{\mathcal{T}}C)0=0,$ and so $A^{\mathcal{T}}CA$ is not positive definite, a CONTRADICTION. So the assumption that A is not of full column rank is false. Hence, A is of full column rank.

Theorem 3.3.14. Properties of $A^T A$.

Let A be an $n \times m$ matrix.

(1)
$$
A^T A = 0
$$
 if and only if $A = 0$.

- (2) $A^T A$ is nonnegative definite.
- (3) $A^T A$ is positive definite if and only if A is of full column rank.
- (A) $(A^T A)B = (A^T A)C$ if and only if $AB = AC$, and $B(A^TA) = C(A^TA)$ if and only if $BA^T = CA^T$.
- (5) $A^{T}A$ is of full rank if and only if A is of full column rank. (6) rank $(A^T A)$ = rank (A) .

The product $A^T A$ is called a *Gramian matrix*.

Proof. (1) If $A = 0$ then $A^T = 0$ and $A^T A = 00 = 0$. If $A^T A = 0$ then $\text{tr}(A^TA)=0.$ Now the (i,j) entry of A^TA is $\sum_{k=1}^n a_{ik}^t a_{kj}=\sum_{k=1}^n a_{ki}a_{kj}$ and so the diagonal (i, i) entry is $\sum_{k=1}^{n} a_{ki}^2$. Then

$$
0 = \text{tr}(A^T A) = \sum_{i=1}^m \sum_{k=1}^n a_{ki}^2 = \sum_{i=1}^m \sum_{j=1}^n a_{ji}^2 = \sum_{j=1}^m \sum_{i=1}^n a_{ij}^2 \dots
$$

Theorem 3.3.14. Properties of $A^T A$.

Let A be an $n \times m$ matrix.

(1)
$$
A^T A = 0
$$
 if and only if $A = 0$.

- (2) $A^T A$ is nonnegative definite.
- (3) $A^T A$ is positive definite if and only if A is of full column rank.
- (A) $(A^T A)B = (A^T A)C$ if and only if $AB = AC$, and $B(A^TA) = C(A^TA)$ if and only if $BA^T = CA^T$.
- (5) $A^{T}A$ is of full rank if and only if A is of full column rank. (6) rank $(A^T A)$ = rank (A) .

The product $A^T A$ is called a *Gramian matrix*. **Proof. (1)** If $A = 0$ then $A^T = 0$ and $A^TA = 00 = 0$. If $A^TA = 0$ then $\text{tr}(A^TA)=0.$ Now the (i,j) entry of A^TA is $\sum_{k=1}^n a_{ik}^t a_{kj}=\sum_{k=1}^n a_{ki}a_{kj}$ and so the diagonal (i, i) entry is $\sum_{k=1}^{n} a_{ki}^2$. Then

$$
0 = \text{tr}(A^T A) = \sum_{i=1}^m \sum_{k=1}^n a_{ki}^2 = \sum_{i=1}^m \sum_{j=1}^n a_{ji}^2 = \sum_{j=1}^m \sum_{i=1}^n a_{ij}^2 \ldots
$$

Proof (continued). ... and so $a_{ij} = 0$ for all $1 \le i \le n$ and $1 \le j \le m$; that is, $A = 0$.

(2) For any $y \in \mathbb{R}^m$ we have $y^T (A^T A) y = (Ay)^T (Ay) = ||Ay||^2 \ge 0.$

Proof (continued). ... and so $a_{ij} = 0$ for all $1 \le i \le n$ and $1 \le j \le m$; that is, $A = 0$.

(2) For any $y \in \mathbb{R}^m$ we have $y^{\mathcal{T}}(A^{\mathcal{T}}A)y = (Ay)^{\mathcal{T}}(Ay) = ||Ay||^2 \ge 0.$

(3) From (2), $y^T(A^TA)y = ||Ay||^2$, so $y^T(A^TA)y = 0$ if and only if $\|Ay\| = 0$. Now Ay is a linear combination of the columns of A so if A is of full column rank then $Ay = 0$ if and only if $y = 0$. That is, if A is of full column rank then for $y\neq 0$ we have $y^{\mathcal{T}}(A^TA)y=\|Ay\|^2>0$ and $A^{\mathcal{T}}A$ is positive definite.

Proof (continued). ... and so $a_{ij} = 0$ for all $1 \le i \le n$ and $1 \le j \le m$; that is, $A = 0$.

(2) For any $y \in \mathbb{R}^m$ we have $y^{\mathcal{T}}(A^{\mathcal{T}}A)y = (Ay)^{\mathcal{T}}(Ay) = ||Ay||^2 \ge 0.$

(3) From (2), $y^{\mathsf{T}}(A^{\mathsf{T}}A)y = \|Ay\|^2$, so $y^{\mathsf{T}}(A^{\mathsf{T}}A)y = 0$ if and only if $||Ay|| = 0$. Now Ay is a linear combination of the columns of A so if A is of full column rank then $Ay = 0$ if and only if $y = 0$. That is, if A is of full column rank then for $y\neq 0$ we have $y^{\,T}(A^TA)y=\|Ay\|^2>0$ and A^TA is positive definite.

If A is not of full column rank then the columns of A are not linearly independent and with a_1, a_2, \ldots, a_n as the columns of A, there are scalars $y_1, y_2, ..., y_n$, not all 0, such that $y_1 a_1 + y_2 a_2 + \cdots + y_n a_n = 0$. Then the $y \in \mathbb{R}^n$ with entries y_i we have $y \neq 0$ and $Ay = 0$. Then $y^{\mathcal{T}}(A^T A) y = \| A y \|^2 = 0$, and so $A^{\mathcal{T}} A$ is not positive definite.

Proof (continued). ... and so $a_{ij} = 0$ for all $1 \le i \le n$ and $1 \le j \le m$; that is, $A = 0$.

(2) For any $y \in \mathbb{R}^m$ we have $y^{\mathcal{T}}(A^{\mathcal{T}}A)y = (Ay)^{\mathcal{T}}(Ay) = ||Ay||^2 \ge 0.$

(3) From (2), $y^{\mathsf{T}}(A^{\mathsf{T}}A)y = \|Ay\|^2$, so $y^{\mathsf{T}}(A^{\mathsf{T}}A)y = 0$ if and only if $||Ay|| = 0$. Now Ay is a linear combination of the columns of A so if A is of full column rank then $Ay = 0$ if and only if $y = 0$. That is, if A is of full column rank then for $y\neq 0$ we have $y^{\,T}(A^TA)y=\|Ay\|^2>0$ and A^TA is positive definite.

If A is not of full column rank then the columns of A are not linearly independent and with a_1, a_2, \ldots, a_n as the columns of A, there are scalars $y_1, y_2, ..., y_n$, not all 0, such that $y_1 a_1 + y_2 a_2 + \cdots + y_n a_n = 0$. Then the $y\in\mathbb{R}^n$ with entries y_i we have $y\neq 0$ and $Ay=0$. Then $y^{\mathcal{T}}(A^{\mathcal{T}}A)y=\|Ay\|^2=0$, and so $A^{\mathcal{T}}A$ is not positive definite.

Proof (continued). (4) Suppose $A^TAB = A^TAC$. Then

 $A^\mathcal{T} A B - A^\mathcal{T} A C = 0$ or $A^\mathcal{T} A (B - C) = 0$, and so $(B^{\mathcal{T}}-C^{\mathcal{T}})A^{\mathcal{T}}A(B-C)=0.$ Hence $(A(B-C))^{\mathcal{T}}(A(B-C))=0$ and by Part (1), $A(B - C) = 0$. That is, $AB = AC$. Conversely, if $AB = AC$ then $A^T A B = A^T A C$. Therefore $A^T A B = A^T A C$ if and only if $A B = A C$. Now suppose $BA^{T}A = CA^{T}A$. Then $BA^{T}A - CA^{T}A = 0$ or $(B-C)A^TA=0$, and so $(B-C)A^TA(B^T-C^T)=0$. Hence $((B - C)A^{\mathsf{T}})((B - C)A^{\mathsf{T}})^{\mathsf{T}} = 0$ and by Part $(1),\, (B - C)A^{\mathsf{T}} = 0.$ That is, $BA^T = CA^T$. Conversely, if $BA^T = CA^T$ then $BA^T A = CA^T A$. Therefore $BA^{T}A = CA^{T}A$ if and only if $BA^{T} = CA^{T}$.

Proof (continued). (4) Suppose $A^TAB = A^TAC$. Then

 $A^\mathcal{T} A B - A^\mathcal{T} A C = 0$ or $A^\mathcal{T} A (B - C) = 0$, and so $(B^{\mathcal{T}}-C^{\mathcal{T}})A^{\mathcal{T}}A(B-C)=0.$ Hence $(A(B-C))^{\mathcal{T}}(A(B-C))=0$ and by Part (1), $A(B - C) = 0$. That is, $AB = AC$. Conversely, if $AB = AC$ then $A^T A B = A^T A C$. Therefore $A^T A B = A^T A C$ if and only if $A B = A C$. Now suppose $BA^{T}A = CA^{T}A$. Then $BA^{T}A - CA^{T}A = 0$ or $(B - C)A^{\mathsf{T}}A = 0$, and so $(B - C)A^{\mathsf{T}}A(B^{\mathsf{T}} - C^{\mathsf{T}}) = 0.$ Hence $((B - C)A^{\mathsf{T}})((B - C)A^{\mathsf{T}})^{\mathsf{T}} = 0$ and by Part (1) , $(B - C)A^{\mathsf{T}} = 0$. That is, $BA^T = CA^T$. Conversely, if $BA^T = CA^T$ then $BA^T A = CA^T A$. Therefore $BA^{T}A = CA^{T}A$ if and only if $BA^{T} = CA^{T}$.

(5) Suppose A is of full column rank $m \le n$. Then by Theorem 3.3.12, rank $(A^T A) =$ rank $(A) = m$. Since $A^T A$ is $m \times m$, then $A^T A$ is of full rank.

Proof (continued). (4) Suppose $A^TAB = A^TAC$. Then

 $A^\mathcal{T} A B - A^\mathcal{T} A C = 0$ or $A^\mathcal{T} A (B - C) = 0$, and so $(B^{\mathcal{T}}-C^{\mathcal{T}})A^{\mathcal{T}}A(B-C)=0.$ Hence $(A(B-C))^{\mathcal{T}}(A(B-C))=0$ and by Part (1), $A(B - C) = 0$. That is, $AB = AC$. Conversely, if $AB = AC$ then $A^T A B = A^T A C$. Therefore $A^T A B = A^T A C$ if and only if $A B = A C$. Now suppose $BA^{T}A = CA^{T}A$. Then $BA^{T}A - CA^{T}A = 0$ or $(B - C)A^{\mathsf{T}}A = 0$, and so $(B - C)A^{\mathsf{T}}A(B^{\mathsf{T}} - C^{\mathsf{T}}) = 0.$ Hence $((B - C)A^{\mathsf{T}})((B - C)A^{\mathsf{T}})^{\mathsf{T}} = 0$ and by Part (1) , $(B - C)A^{\mathsf{T}} = 0$. That is, $BA^T = CA^T$. Conversely, if $BA^T = CA^T$ then $BA^T A = CA^T A$. Therefore $BA^{T}A = CA^{T}A$ if and only if $BA^{T} = CA^{T}$.

(5) Suppose A is of full column rank $m \leq n$. Then by Theorem 3.3.12, rank $(A^T A) =$ rank $(A) = m$. Since $A^T A$ is $m \times m$, then $A^T A$ is of full rank.

Proof (continued). Now suppose A^TA if of full rank m. Then by Theorem 3.3.5, $m= {\sf rank}(A^T A)\leq \sf min\{{\sf rank}(A^T), {\sf rank}(A)\}\leq {\sf rank}(A),$ and since A is $n \times m$ then A must be of full column rank m.

(6) Let rank $(A) = r$. If $r = 0$ then $A = 0$ and so $A^T A = 0$ and rank $(A^TA)=0$ and the claim holds. If $r>0,$ then the columns of A can be permuted so that the first r columns are linearly independent. That is, there is a permutation matrix Q such that $AQ = [A_1 \ A_2]$ where A_1 is an $n \times r$ matrix of rank r (and by Theorem 3.3.3, rank $(AQ) = \text{rank}(A) = r$).

Proof (continued). Now suppose A^TA if of full rank m. Then by Theorem 3.3.5, $m= {\sf rank}(A^T A)\leq \sf min\{{\sf rank}(A^T), {\sf rank}(A)\}\leq {\sf rank}(A),$ and since A is $n \times m$ then A must be of full column rank m.

 (6) Let rank $(A)=r$. If $r=0$ then $A=0$ and so $A^TA=0$ and rank $(A^T A)=0$ and the claim holds. If $r>0,$ then the columns of A can be permuted so that the first r columns are linearly independent. That is, there is a permutation matrix Q such that $AQ = [A_1 A_2]$ where A_1 is an $n \times r$ matrix of rank r (and by Theorem 3.3.3, rank(AQ) = rank(A) = r). So A_1 is of full column rank and so each column of A_2 is in the column space of A_1 . So there is $r \times (m - r)$ matrix B such that $A_2 = A_1B$. Then $AQ = [A_1 A_2] = [A_1 I_r A_1 B] = A_1 [I_r B]$. Hence $(AQ)^{T} = (A_1[I_r B])^{T} = \begin{bmatrix} I_r \\ B_1 \end{bmatrix}$ B^T $\Big] A_1^{\mathcal T}$ and $(AQ)^{T}(AQ) = \begin{bmatrix} I_r \\ B_r \end{bmatrix}$ B^T $A_1^T A_1[I_r B]$. Define $T = \begin{bmatrix} I_r & 0 \\ -B^T & I_r \end{bmatrix}$ $-B^T$ I_{m−r} .

Proof (continued). Now suppose A^TA if of full rank m. Then by Theorem 3.3.5, $m= {\sf rank}(A^T A)\leq \sf min\{{\sf rank}(A^T), {\sf rank}(A)\}\leq {\sf rank}(A),$ and since A is $n \times m$ then A must be of full column rank m.

 (6) Let rank $(A)=r$. If $r=0$ then $A=0$ and so $A^TA=0$ and rank $(A^T A)=0$ and the claim holds. If $r>0,$ then the columns of A can be permuted so that the first r columns are linearly independent. That is, there is a permutation matrix Q such that $AQ = [A_1 A_2]$ where A_1 is an $n \times r$ matrix of rank r (and by Theorem 3.3.3, rank(AQ) = rank(A) = r). So A_1 is of full column rank and so each column of A_2 is in the column space of A_1 . So there is $r \times (m - r)$ matrix B such that $A_2 = A_1B$. Then $AQ = [A_1 A_2] = [A_1 I_r A_1 B] = A_1 [I_r B]$. Hence $(AQ)^T = (A_1[I, B])^T = \begin{bmatrix} I_I \\ B_I \end{bmatrix}$ B^{T} $\Big] A_1^{\mathcal T}$ and $(AQ)^{T}(AQ) = \begin{bmatrix} I_r \\ B_r \end{bmatrix}$ B^{T} $\Big\lceil \, A_1^{\mathcal T} A_1 [I_r\, B] . \,$ Define $\, \mathcal T = \Big[\begin{array}{cc} I_r & 0 \ -B^{\mathcal T} & I \end{array} \Big\rceil$ $-B^T$ I_{m-r} .

Proof (continued). Then T is $m \times m$ and of full rank m (as is T^T), so by Theorem 3.3.12

$$
\operatorname{rank}(A^T A) = \operatorname{rank}((AQ)^T(AQ))
$$

= rank $(T(AQ)^T(AQ))$ = rank $(T(AQ)^T(AQ)T^T)$. (*)

Now

$$
T(AQ)^{T} = \begin{bmatrix} I_r & 0 \\ -B^T & I_{m-r} \end{bmatrix} \begin{bmatrix} I_r \\ B^T \end{bmatrix} A_1^T = \begin{bmatrix} I_r I_r + 0B^T \\ -B^T I_r + I_{m-r} B^T \end{bmatrix} A_1^T
$$

$$
= \begin{bmatrix} I_r \\ 0 \end{bmatrix} A_1^T = \begin{bmatrix} A_1^T \\ 0 \end{bmatrix}
$$

and

$$
(AQ)\mathcal{T}^{\mathcal{T}} = (\mathcal{T}(AQ)^{\mathcal{T}})^{\mathcal{T}} = \left[\begin{array}{c} A_1^{\mathcal{T}} \\ 0 \end{array}\right]^{\mathcal{T}} = [A_1 0].
$$

Proof (continued). Then T is $m \times m$ and of full rank m (as is T^T), so by Theorem 3.3.12

$$
\operatorname{rank}(A^T A) = \operatorname{rank}((AQ)^T(AQ))
$$

= rank $(T(AQ)^T(AQ))$ = rank $(T(AQ)^T(AQ)T^T)$. (*)

Now

$$
T(AQ)^{T} = \begin{bmatrix} I_{r} & 0 \\ -B^{T} & I_{m-r} \end{bmatrix} \begin{bmatrix} I_{r} \\ B^{T} \end{bmatrix} A_{1}^{T} = \begin{bmatrix} I_{r}I_{r} + 0B^{T} \\ -B^{T}I_{r} + I_{m-r}B^{T} \end{bmatrix} A_{1}^{T}
$$

$$
= \begin{bmatrix} I_{r} \\ 0 \end{bmatrix} A_{1}^{T} = \begin{bmatrix} A_{1}^{T} \\ 0 \end{bmatrix}
$$

and

$$
(AQ)\mathcal{T}^{\mathcal{T}} = (\mathcal{T}(AQ)^{\mathcal{T}})^{\mathcal{T}} = \left[\begin{array}{c} A_1^{\mathcal{T}} \\ 0 \end{array}\right]^{\mathcal{T}} = [A_1 0].
$$

Proof (continued). So

$$
\mathcal{T}(AQ)^{\mathcal{T}}(AQ)\mathcal{T}^{\mathcal{T}} = \left[\begin{array}{c} A_1^{\mathcal{T}} \\ 0 \end{array}\right][A_1 0] = \left[\begin{array}{cc} A_1^{\mathcal{T}} A_1 & 0 \\ 0 & 0 \end{array}\right]
$$

(the matrix products are justified by Theorem 3.2.2). So by $(*)$.

$$
rank(A^T A) = rank \left(\left[\begin{array}{cc} A_1^T A_1 & 0 \\ 0 & 0 \end{array} \right] \right) = rank(A_1^T A_1).
$$

Since A_1 is of full column rank r, by Part (5) $A_1^T A_1$ is of full rank r. So $rank(A^T A) = rank(A_1^T A_1) = r = rank(A)$, as claimed.

Proof (continued). So

$$
\mathcal{T}(AQ)^{\mathcal{T}}(AQ)\mathcal{T}^{\mathcal{T}}=\left[\begin{array}{c}A_1^{\mathcal{T}}\\0\end{array}\right][A_1 0]=\left[\begin{array}{cc}A_1^{\mathcal{T}}A_1 & 0\\0 & 0\end{array}\right]
$$

(the matrix products are justified by Theorem 3.2.2). So by (∗),

$$
\operatorname{rank}(A^T A) = \operatorname{rank}\left(\left[\begin{array}{cc} A_1^T A_1 & 0 \\ 0 & 0 \end{array}\right]\right) = \operatorname{rank}(A_1^T A_1).
$$

Since A_1 is of full column rank r, by Part (5) $A_1^T A_1$ is of full rank r. So $\mathsf{rank}(\mathsf{A}^\mathcal{T} \mathsf{A}) = \mathsf{rank}(\mathsf{A}_1^\mathcal{T} \mathsf{A}_1) = r = \mathsf{rank}(\mathsf{A}),$ as claimed.

Theorem 3.3.15. If A is a $n \times n$ matrix and B is $n \times \ell$ then rank(AB) > rank(A) + rank(B) – n.

Proof. Let $r = \text{rank}(A)$. By Theorem 3.3.9, there are $n \times n$ matrices P and Q which are products of elementary matrices such that $P A Q = \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix}$. Let $C = P^{-1} \begin{bmatrix} 0 & 0 \\ 0 & I_{n-1} \end{bmatrix}$ 0 I_{n-r} $\left]$ Q⁻¹ and then $A+C = P^{-1} \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} Q^{-1} + P^{-1} \begin{bmatrix} 0 & 0 \\ 0 & I_{n-1} \end{bmatrix}$ 0 I_{n-r} $Q^{-1} = P^{-1} I_n Q^{-1} = P^{-1} Q^{-1}.$

Theorem 3.3.15. If A is a $n \times n$ matrix and B is $n \times \ell$ then rank(AB) \geq rank(A) + rank(B) – n.

Proof. Let $r = \text{rank}(A)$. By Theorem 3.3.9, there are $n \times n$ matrices P and Q which are products of elementary matrices such that $P A Q = \left[\begin{array}{cc} I_r & 0 \ 0 & 0 \end{array} \right]$. Let $C = P^{-1} \left[\begin{array}{cc} 0 & 0 \ 0 & I_{n-1} \end{array} \right]$ 0 I_{n-r} $\Big\}$ Q $^{-1}$ and then $A + C = P^{-1} \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} Q^{-1} + P^{-1} \begin{bmatrix} 0 & 0 \\ 0 & I_{n-1} \end{bmatrix}$ 0 I_{n-r} $Q^{-1} = P^{-1} I_n Q^{-1} = P^{-1} Q^{-1}.$

Now P^{-1} and Q^{-1} are of full rank n (see the notes before the definition of inverse matrix), so by Theorem 3.3.11,

$$
rank(C) = rank\left(\begin{bmatrix} 0 & 0 \\ 0 & I_{n-r} \end{bmatrix}\right) = rank(I_{n-r}) = n - rank(A). (*)
$$

Theorem 3.3.15. If A is a $n \times n$ matrix and B is $n \times \ell$ then rank(AB) > rank(A) + rank(B) – n.

Proof. Let $r = \text{rank}(A)$. By Theorem 3.3.9, there are $n \times n$ matrices P and Q which are products of elementary matrices such that $P A Q = \left[\begin{array}{cc} I_r & 0 \ 0 & 0 \end{array} \right]$. Let $C = P^{-1} \left[\begin{array}{cc} 0 & 0 \ 0 & I_{n-1} \end{array} \right]$ 0 I_{n-r} $\Big\}$ Q $^{-1}$ and then $A + C = P^{-1} \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} Q^{-1} + P^{-1} \begin{bmatrix} 0 & 0 \\ 0 & I_{n-1} \end{bmatrix}$ 0 I_{n-r} $Q^{-1} = P^{-1} I_n Q^{-1} = P^{-1} Q^{-1}.$

Now P^{-1} and Q^{-1} are of full rank n (see the notes before the definition of inverse matrix), so by Theorem 3.3.11,

$$
rank(C) = rank\left(\begin{bmatrix} 0 & 0 \\ 0 & I_{n-r} \end{bmatrix}\right) = rank(I_{n-r}) = n - rank(A). (*)
$$

Theorem 3.3.15. If A is a $n \times n$ matrix and B is $n \times \ell$ then rank(AB) \geq rank(A) + rank(B) – n.

Proof (continued). So for $n \times \ell$ matrix B,

$$
\text{rank}(B) = \text{rank}(P^{-1}Q^{-1}B) \text{ by Theorem 3.3.11}
$$
\n
$$
= \text{rank}(AB + CB) \text{ since } A + C = P^{-1}Q^{-1}
$$
\n
$$
\leq \text{rank}(AB) + \text{rank}(CB) \text{ by Theorem 3.3.6}
$$
\n
$$
\leq \text{rank}(AB) + \text{rank}(C) \text{ by Theorem 3.3.5}
$$
\n
$$
= \text{rank}(AB) + n - \text{rank}(A) \text{ by } (*).
$$

So rank (A) + rank (B) – $n \le$ rank (AB) .

Theorem 3.3.15. If A is a $n \times n$ matrix and B is $n \times \ell$ then rank(AB) \geq rank(A) + rank(B) – n.

Proof (continued). So for $n \times \ell$ matrix B,

rank(B) = rank(P [−]1Q [−]1B) by Theorem 3.3.11 = rank(AB + CB) since A + C = P [−]1Q −1 ≤ rank(AB) + rank(CB) by Theorem 3.3.6 ≤ rank(AB) + rank(C) by Theorem 3.3.5 = rank(AB) + n − rank(A) by (∗).

So rank (A) + rank (B) – $n \le$ rank (AB) .

Theorem 3.3.16. $n \times n$ matrix A is invertible if and only if det(A) \neq 0.

Proof. By Theorem 3.2.4, $det(AB) = det(A)det(B)$, so if A^{-1} exists then $\det(A) = 1/\det(A^{-1})$ and so $\det(A) \neq 0.$

Theorem 3.3.16. $n \times n$ matrix A is invertible if and only if $det(A) \neq 0$.

Proof. By Theorem 3.2.4, $\det(AB) = \det(A)\det(B)$, so if A^{-1} exists then $\det(A) = 1/\det(A^{-1})$ and so $\det(A) \neq 0.$

Conversely, if $\det(A) \neq 0$ then by Theorem 3.1.3, $A^{-1} = (1/\det(A))$ adj (A) and A is invertible.

Theorem 3.3.16. $n \times n$ matrix A is invertible if and only if $det(A) \neq 0$.

Proof. By Theorem 3.2.4, $\det(AB) = \det(A)\det(B)$, so if A^{-1} exists then $\det(A) = 1/\det(A^{-1})$ and so $\det(A) \neq 0.$

Conversely, if $\det(A) \neq 0$ then by Theorem 3.1.3, $A^{-1} = (1/\det(A))$ adj (A) and A is invertible.

Theorem 3.3.18. If A and B are $n \times n$ full rank matrices then the Kronecker product satisfies $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}.$

Proof. Since A and B are full rank, then A^{-1} and B^{-1} exist. Let $A = [a_{ij}]$ and $A^{-1}=[c_{ij}]$. Then $(A\otimes B)(A^{-1}\otimes B^{-1})$

Theorem 3.3.18. If A and B are $n \times n$ full rank matrices then the Kronecker product satisfies $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}.$

Proof. Since A and B are full rank, then A^{-1} and B^{-1} exist. Let $A=[a_{ij}]$ and $\mathcal{A}^{-1}=[c_{ij}]$. Then $(A\otimes B)(\mathcal{A}^{-1}\otimes B^{-1})$

and so $A^{-1} \otimes B^{-1} = (A \otimes B)^{-1}$.

Theorem 3.3.18. If A and B are $n \times n$ full rank matrices then the Kronecker product satisfies $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1}.$

Proof. Since A and B are full rank, then A^{-1} and B^{-1} exist. Let $A=[a_{ij}]$ and $\mathcal{A}^{-1}=[c_{ij}]$. Then $(A\otimes B)(\mathcal{A}^{-1}\otimes B^{-1})$

$$
= \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}B & a_{n2}B & \cdots & a_{nn}B \end{bmatrix} \begin{bmatrix} c_{11}B^{-1} & c_{12}B^{-1} & \cdots & c_{1n}B^{-1} \\ c_{21}B^{-1} & c_{22}B^{-1} & \cdots & c_{2n}B^{-1} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1}B^{-1} & c_{n2}B^{-1} & \cdots & c_{nn}B^{-1} \end{bmatrix}
$$

=
$$
\begin{bmatrix} n \\ \sum_{k=1}^{n} a_{ik}c_{kj}I_n \end{bmatrix}
$$
 since $(a_{ik}B)(c_{kj}B^{-1}) = a_{ik}c_{kj}I_n$
=
$$
I_{n^2}
$$
,

and so $A^{-1}\otimes B^{-1}=(A\otimes B)^{-1}.$