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Theorem 3.4.3

Theorem 3.4.3. If A is a square matrix partitioned as A = [

where Aj; is square and nonsingular then
det(A) = det(Au)det(Azz — A21A1_11A12) = det(Au)det(Z)

where Z = Ay — A21A1_11A12 is the Schur complement of Aj1 in A.

Proof. By Theorem 3.2.2, we can write A as
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A= =
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So by Theorem 3.2.4,
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= det(A1)det(Axp — AglAfllAlg)det(f)det(f) by Theorem 3.1.G

= det(A;11)det(Axn — A21A1_11A12) since det(/) = 1.
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Theorem 3.4.2

+
Theorem 3.4.2. If A is a square matrix such that A = [ j/(T } (X y]

where X is of full column rank, then the Schur complement of X7 X in A is

yTy —yTX(XTX)IXTy.

Proof. By Theorem 3.2.2 we have
X7 ] [ XTX XTy }
A = X = ,
[ y7 Xyl yTX yTy

so the Schur complement of X7 X in A is, by definition,
Z=yTy —yTX(XTX)"1XTy, as claimed. O
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