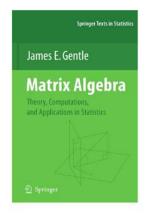
Theory of Matrices

Chapter 3. Basic Properties of Matrices

3.5. Linear Systems of Equations—Proofs of Theorems



Theory of Matrices

June 28, 2018 1 / 10

Theorem 3.5.2

Theorem 3.5.2. Properties of the Generalized Inverse.

- (1) If A^- is a generalized inverse of A then $(A^-)^T$ is a generalized inverse of A^{T} .
- (2) $(A^-A)(A^-A) = A^-A$; that is, A^-A is idempotent.
- (3) $\operatorname{rank}(A^{-}A) = \operatorname{rank}(A)$.
- (4) $(I A^{-}A)(A^{-}A) = 0$ and $(I A^{-}A)(I A^{-}A) = (I A^{-}A)$.
- (5) $\operatorname{rank}(I A^{-}A) = m \operatorname{rank}(A)$ where A is $n \times m$.

Proof. (1) We have $A = AA^{-}A$ so, by Theorem 3.2.1(1), $A^T = (AA^-A)^T = A^T(A^-)^TA^T$ and so $(A^-)^T$ is a generalized inverse of A^{T} .

- (2) Since $A = AA^{-}A$ then $A^{-}A = A^{-}AA^{-}A = (A^{-}A)(A^{-}A)$.
- (3) By Theorem 3.3.5, $rank(A^-A) \leq min\{rank(A^-), rank(A)\} \leq rank(A)$. Since $A = AA^{-}A$ then again by Theorem 3.3.5,
- $rank(A) \le min\{rank(A), rank(A^-A)\} \le rank(A^-A)$, and so $rank(A) = rank(A^{-}A)$.

Theorem 3.5.1

Theorem 3.5.1. If Ax = b is an underdetermined system then there are an infinite number of solutions to the system.

Proof. If Ax = b is an underdetermined system with $A n \times m$ then, since it is consistent by definition, there is a solution x_1 such that $Ax_1 = b$. Since rank(A) < m and A has m columns, then by Exercise 2.1 the columns of A are not linearly independent. So with a_1, a_2, \ldots, a_m as the columns of A, there are scalars s_1, s_2, \ldots, s_m not all 0 for which $s_1a_1+s_2a_2+\cdots+s_ma_m=0$. Let $s\in\mathbb{R}^m$ have components s_i and define $x_2 = s + x_1$. Then $Ax_2 = A(s + x_1) = As + Ax_1 = 0 + b = b$ and so x_2 is also a solution to the system Ax = b. Now let $w \in \mathbb{R}$ and consider $x_w = wx_1 + (1 - w)x_2$. We have

$$Ax_w = A(wx_1 + (1-w)x_2) = wAx_1 + (1-w)Ax_2 = wb + (1-w)b = b$$

and each x_w is a solution to Ax = b. Therefore, Ax = b has an infinite number of solutions. Theory of Matrices

Theorem 3.5.2 (continued)

Proof (continued). (4) We have $(I - A^{-}A)(A^{-}A) =$ $IA^{-}A - A^{-}AA^{-}A = A^{-}A - A^{-}(AA^{-}A) = A^{-}A - A^{-}A = 0$. So $(I-A^{-}A)(I-A^{-}A) = I-A^{-}A-(I-A^{-}A)A^{-}A = I-A^{-}A-0 = I-A^{-}A.$

(5) Notice that A^-A is $m \times m$ and by Part (4) $(I - A^-A)A^-A = 0$, so

$$0 = \operatorname{rank}(0) = \operatorname{rank}((I - A^{-}A)A^{-}A)$$

$$\geq \operatorname{rank}(I - A^{-}A) + \operatorname{rank}(A^{-}A) - m \text{ by Theorem } 3.3.15$$

$$= \operatorname{rank}(I - A^{-}A) + \operatorname{rank}(A) - m \text{ by Part } (3) \tag{*}$$

Next, $I = I - A^-A + A^-A$ and by Theorem 3.3.6.

$$m = \text{rank}(I) = \text{rank}(I - A^{-}A + A^{-}A) \le \text{rank}(I - A^{-}A) + \text{rank}(A^{-}A)$$

= rank $(I - A^{-}A) + \text{rank}(A)$ by Part (3). (**)

Combining (*) and (**) gives $m = \operatorname{rank}(I - A^{-}A) + \operatorname{rank}(A)$ and the claim follows.

June 28, 2018 3 / 10

Theorem 3.5.3. Let Ax = b be a consistent system of equations and let

(3) For any $z \in \mathbb{R}^m$, $A^-b + (I - A^-A)z$ is a solution.

Proof. (1) We have $(AA^{-}A)x = Ax$ and with Ax = b as the given

(4) Every solution is of the form $x = A^-b + (I - A^-A)z$ for

(2) If x = Gb is a solution of system Ax = b for all b such that a solution exists, then AGA = A; that is, G is a generalized

 A^- be a generalized inverse of A.

(1) $x = A^-b$ is a solution.

inverse of A.

some $z \in \mathbb{R}^m$.

Theorem 3.5.3 (continued)

Proof (continued). (2) Let the columns of A be a_1, a_2, \ldots, a_m . The m systems $Ax = a_j$ (where $1 \le j \le n$) each have a solution (namely, the jth unit vector in \mathbb{R}^m). So by hypothesis, Ga_i is a solution of the system $Ax = a_i$ for each j (where $1 \le j \le n$). That is, $AGa_i = a_i$ for $1 \le j \le n$, or AGA = A.

(3) We have

$$A(A^{-}b + (I - A^{-}A)z) = AA^{-}b + (A - AA^{-}A)z$$

= $b + (A - A)z$ by Part (1)
= $b + 0 = b$.

(4) Let y be a solution of Ax = b. Then

$$y = A^{-}b - A^{-}b + y = A^{-}b - A^{-}(Ay) + y \text{ since } Ay = b$$

= $A^{-}b - (A^{-}A - I)y = A^{-}b + (I - A^{-}A)z \text{ with } z = y.$

Theory of Matrices June 28, 2018

Theorem 3.5.4

Theorem 3.5.4. The nullity of $n \times m$ matrix A satisfies $\dim(\mathcal{N}(A)) = m - \operatorname{rank}(A)$.

Proof. If $x \in \mathcal{N}(A)$ then Ax = 0 and by Theorem 3.5.3 (3 and 4) $x = 0 + (I - A^{-}A)z = (I - A^{-}A)z$ for any $z \in \mathbb{R}^{m}$ (and conversely every solution to Ax = 0 is of this form). Now $(I - A^{-}A)z$ is in the column space of $I - A^-A$ for every $z \in \mathbb{R}^m$, so by Theorem 3.5.2(5),

$$\dim(\mathcal{N}(A)) = \operatorname{rank}(I - A^{-}A) = m - \operatorname{rank}(A).$$

Theorem 3.5.5

Theorem 3.5.5.

- (1) If system Ax = b is consistent, then any solution is of the form $x = A^-b + z$ for some $z \in \mathcal{N}(A)$.
- (2) For matrix A, the null space of A is orthogonal to the row space of A: $\mathcal{N}(A) \perp \mathcal{V}(A^T)$.
- (3) For matrix A, $\mathcal{N}(A) \oplus \mathcal{V}(A^T) = \mathbb{R}^m$.

Proof. (1) Let y be a solution of Ax = b. Then $Ay = b = AA^-b$ by Theorem 3.5.3(1) and so $Ay - AA^-b = A(y - A^-b) = 0$. Therefore $z = y - A^-b \in \mathcal{N}(A)$. So $y = A^-b + z$ where $z \in \mathcal{N}(A)$.

(2) Let $a \in \mathcal{V}(A^T)$ and $b \in \mathcal{N}(A)$. Then

$$\langle b, a \rangle = b^T a$$

= $b^T A^T s$ since $a \in \mathcal{V}(A^T)$ then $a = A^T s$ for some $s \in \mathbb{R}^n$
= $(b^T A^T) s = (Ab)^T s$ by Theorem 3.2.1(1)
= $0s = 0$ since $b \in \mathcal{N}(A)$.

is a solution to Ax = b.

system, we get $AA^{-}(Ax) = Ax$ or $AA^{-}b = b$ or $A(A^{-}b) = b$; that is, $A^{-}b$

Theorem 3.5.5 (continued)

Theorem 3.5.5.

- (1) If system Ax = b is consistent, then any solution is of the form $x = A^-b + z$ for some $z \in \mathcal{N}(A)$.
- (2) For matrix A, the null space of A is orthogonal to the row space of A: $\mathcal{N}(A) \perp \mathcal{V}(A^T)$.
- (3) For matrix A, $\mathcal{N}(A) \oplus \mathcal{V}(A^T) = \mathbb{R}^m$.

Proof (continued). So $a \perp b$. Since a is an arbitrary element of $\mathcal{V}(A^T)$ and b is an arbitrary element of $\mathcal{N}(A)$ then $\mathcal{N}(A) \perp \mathcal{V}(A^T)$.

(3) From Theorem 3.5.4 (the rank-nullity equation), $\dim(\mathcal{N}(A)) + \dim(\mathcal{V}(A^T)) = m$. Now both $\mathcal{N}(A)$ and $\mathcal{V}(A^T)$ are subspaces of \mathbb{R}^m , so $\mathcal{N}(A) \oplus \mathcal{V}(A^T)$ is a m dimensional subspace of \mathbb{R}^m . That is, $\mathcal{N}(A) \oplus \mathcal{V}(A^T) = \mathbb{R}^m$ (technically, we need the Fundamental Theorem of Finite Dimensional Vector Spaces here).

Theory of Matrices June 28, 2018 10 /