Theory of Matrices

Chapter 3. Basic Properties of Matrices 3.5. Linear Systems of Equations—Proofs of Theorems

2 Theorem 3.5.2. Properties of the Generalized Inverse

3 Theorem 3.5.3

Theorem 3.5.4

5 Theorem 3.5.5

Theorem 3.5.1. If Ax = b is an underdetermined system then there are an infinite number of solutions to the system.

Proof. If Ax = b is an underdetermined system with $A \ n \times m$ then, since it is consistent by definition, there is a solution x_1 such that $Ax_1 = b$. Since rank(A) < m and A has m columns, then by Exercise 2.1 the columns of A are not linearly independent. So with a_1, a_2, \ldots, a_m as the columns of A, there are scalars s_1, s_2, \ldots, s_m not all 0 for which $s_1a_1 + s_2a_2 + \cdots + s_ma_m = 0$.

Theorem 3.5.1. If Ax = b is an underdetermined system then there are an infinite number of solutions to the system.

Proof. If Ax = b is an underdetermined system with $A \ n \times m$ then, since it is consistent by definition, there is a solution x_1 such that $Ax_1 = b$. Since rank(A) < m and A has m columns, then by Exercise 2.1 the columns of A are not linearly independent. So with a_1, a_2, \ldots, a_m as the columns of A, there are scalars s_1, s_2, \ldots, s_m not all 0 for which $s_1a_1 + s_2a_2 + \cdots + s_ma_m = 0$. Let $s \in \mathbb{R}^m$ have components s_i and define $x_2 = s + x_1$. Then $Ax_2 = A(s + x_1) = As + Ax_1 = 0 + b = b$ and so x_2 is also a solution to the system Ax = b. Now let $w \in \mathbb{R}$ and consider $x_w = wx_1 + (1 - w)x_2$.

Theorem 3.5.1. If Ax = b is an underdetermined system then there are an infinite number of solutions to the system.

Proof. If Ax = b is an underdetermined system with $A \ n \times m$ then, since it is consistent by definition, there is a solution x_1 such that $Ax_1 = b$. Since rank(A) < m and A has m columns, then by Exercise 2.1 the columns of A are not linearly independent. So with a_1, a_2, \ldots, a_m as the columns of A, there are scalars s_1, s_2, \ldots, s_m not all 0 for which $s_1a_1 + s_2a_2 + \cdots + s_ma_m = 0$. Let $s \in \mathbb{R}^m$ have components s_i and define $x_2 = s + x_1$. Then $Ax_2 = A(s + x_1) = As + Ax_1 = 0 + b = b$ and so x_2 is also a solution to the system Ax = b. Now let $w \in \mathbb{R}$ and consider $x_w = wx_1 + (1 - w)x_2$. We have

$$Ax_{w} = A(wx_{1} + (1 - w)x_{2}) = wAx_{1} + (1 - w)Ax_{2} = wb + (1 - w)b = b$$

and each x_w is a solution to Ax = b. Therefore, Ax = b has an infinite number of solutions.

(

Theorem 3.5.1. If Ax = b is an underdetermined system then there are an infinite number of solutions to the system.

Proof. If Ax = b is an underdetermined system with $A \ n \times m$ then, since it is consistent by definition, there is a solution x_1 such that $Ax_1 = b$. Since rank(A) < m and A has m columns, then by Exercise 2.1 the columns of A are not linearly independent. So with a_1, a_2, \ldots, a_m as the columns of A, there are scalars s_1, s_2, \ldots, s_m not all 0 for which $s_1a_1 + s_2a_2 + \cdots + s_ma_m = 0$. Let $s \in \mathbb{R}^m$ have components s_i and define $x_2 = s + x_1$. Then $Ax_2 = A(s + x_1) = As + Ax_1 = 0 + b = b$ and so x_2 is also a solution to the system Ax = b. Now let $w \in \mathbb{R}$ and consider $x_w = wx_1 + (1 - w)x_2$. We have

$$Ax_w = A(wx_1 + (1 - w)x_2) = wAx_1 + (1 - w)Ax_2 = wb + (1 - w)b = b$$

and each x_w is a solution to Ax = b. Therefore, Ax = b has an infinite number of solutions.

Theorem 3.5.2. Properties of the Generalized Inverse.

(1) If
$$A^-$$
 is a generalized inverse of A then $(A^-)^T$ is a generalized inverse of A^T .

(2)
$$(A^{-}A)(A^{-}A) = A^{-}A$$
; that is, $A^{-}A$ is idempotent.

(3)
$$\operatorname{rank}(A^{-}A) = \operatorname{rank}(A).$$

(4)
$$(I - A^{-}A)(A^{-}A) = 0$$
 and $(I - A^{-}A)(I - A^{-}A) = (I - A^{-}A).$

(5) rank
$$(I - A^-A) = m - rank(A)$$
 where A is $n \times m$.

Proof. (1) We have $A = AA^{-}A$ so, by Theorem 3.2.1(1), $A^{T} = (AA^{-}A)^{T} = A^{T}(A^{-})^{T}A^{T}$ and so $(A^{-})^{T}$ is a generalized inverse of A^{T} .

Theorem 3.5.2. Properties of the Generalized Inverse.

(2)
$$(A^{-}A)(A^{-}A) = A^{-}A$$
; that is, $A^{-}A$ is idempotent.
(3) $rank(A^{-}A) = rank(A)$.

(4)
$$(I - A^{-}A)(A^{-}A) = 0$$
 and $(I - A^{-}A)(I - A^{-}A) = (I - A^{-}A)$.
(5) $\operatorname{rank}(I - A^{-}A) = m - \operatorname{rank}(A)$ where A is $n \times m$.

Proof. (1) We have $A = AA^{-}A$ so, by Theorem 3.2.1(1), $A^{T} = (AA^{-}A)^{T} = A^{T}(A^{-})^{T}A^{T}$ and so $(A^{-})^{T}$ is a generalized inverse of A^{T} .

(2) Since
$$A = AA^{-}A$$
 then $A^{-}A = A^{-}AA^{-}A = (A^{-}A)(A^{-}A)$.

Theorem 3.5.2. Properties of the Generalized Inverse.

(1) If
$$A^-$$
 is a generalized inverse of A then $(A^-)^T$ is a generalized inverse of A^T .

(4)
$$(I - A^{-}A)(A^{-}A) = 0$$
 and $(I - A^{-}A)(I - A^{-}A) = (I - A^{-}A)$.
(5) $\operatorname{rank}(I - A^{-}A) = m - \operatorname{rank}(A)$ where A is $n \times m$.

Proof. (1) We have $A = AA^{-}A$ so, by Theorem 3.2.1(1), $A^{T} = (AA^{-}A)^{T} = A^{T}(A^{-})^{T}A^{T}$ and so $(A^{-})^{T}$ is a generalized inverse of A^{T} .

(2) Since $A = AA^{-}A$ then $A^{-}A = A^{-}AA^{-}A = (A^{-}A)(A^{-}A)$.

(3) By Theorem 3.3.5, $\operatorname{rank}(A^{-}A) \leq \min\{\operatorname{rank}(A^{-}), \operatorname{rank}(A)\} \leq \operatorname{rank}(A)$. Since $A = AA^{-}A$ then again by Theorem 3.3.5, $\operatorname{rank}(A) \leq \min\{\operatorname{rank}(A), \operatorname{rank}(A^{-}A)\} \leq \operatorname{rank}(A^{-}A)$, and so $\operatorname{rank}(A) = \operatorname{rank}(A^{-}A)$.

Theorem 3.5.2. Properties of the Generalized Inverse.

(1) If
$$A^-$$
 is a generalized inverse of A then $(A^-)^T$ is a generalized inverse of A^T .

(4)
$$(I - A^{-}A)(A^{-}A) = 0$$
 and $(I - A^{-}A)(I - A^{-}A) = (I - A^{-}A)$.
(5) $\operatorname{rank}(I - A^{-}A) = m - \operatorname{rank}(A)$ where A is $n \times m$.

Proof. (1) We have $A = AA^{-}A$ so, by Theorem 3.2.1(1), $A^{T} = (AA^{-}A)^{T} = A^{T}(A^{-})^{T}A^{T}$ and so $(A^{-})^{T}$ is a generalized inverse of A^{T} .

(2) Since $A = AA^{-}A$ then $A^{-}A = A^{-}AA^{-}A = (A^{-}A)(A^{-}A)$. (3) By Theorem 3.3.5, $\operatorname{rank}(A^{-}A) \leq \min\{\operatorname{rank}(A^{-}), \operatorname{rank}(A)\} \leq \operatorname{rank}(A)$. Since $A = AA^{-}A$ then again by Theorem 3.3.5, $\operatorname{rank}(A) \leq \min\{\operatorname{rank}(A), \operatorname{rank}(A^{-}A)\} \leq \operatorname{rank}(A^{-}A)$, and so $\operatorname{rank}(A) = \operatorname{rank}(A^{-}A)$.

Proof (continued). (4) We have $(I - A^{-}A)(A^{-}A) = IA^{-}A - A^{-}AA^{-}A = A^{-}A - A^{-}(AA^{-}A) = A^{-}A - A^{-}A = 0$. So $(I - A^{-}A)(I - A^{-}A) = I - A^{-}A - (I - A^{-}A)A^{-}A = I - A^{-}A - 0 = I - A^{-}A$.

(5) Notice that A^-A is $m \times m$ and by Part (4) $(I - A^-A)A^-A = 0$, so

$$0 = \operatorname{rank}(0) = \operatorname{rank}((I - A^{-}A)A^{-}A)$$

$$\geq \operatorname{rank}(I - A^{-}A) + \operatorname{rank}(A^{-}A) - m \text{ by Theorem 3.3.15}$$

$$= \operatorname{rank}(I - A^{-}A) + \operatorname{rank}(A) - m \text{ by Part (3)} \quad (*)$$

Proof (continued). (4) We have $(I - A^{-}A)(A^{-}A) = IA^{-}A - A^{-}AA^{-}A = A^{-}A - A^{-}(AA^{-}A) = A^{-}A - A^{-}A = 0$. So $(I - A^{-}A)(I - A^{-}A) = I - A^{-}A - (I - A^{-}A)A^{-}A = I - A^{-}A - 0 = I - A^{-}A$.

(5) Notice that A^-A is $m \times m$ and by Part (4) $(I - A^-A)A^-A = 0$, so

$$0 = \operatorname{rank}(0) = \operatorname{rank}((I - A^{-}A)A^{-}A)$$

$$\geq \operatorname{rank}(I - A^{-}A) + \operatorname{rank}(A^{-}A) - m \text{ by Theorem 3.3.15}$$

$$= \operatorname{rank}(I - A^{-}A) + \operatorname{rank}(A) - m \text{ by Part (3)} (*)$$

Next, $I = I - A^{-}A + A^{-}A$ and by Theorem 3.3.6,

$$m = \operatorname{rank}(I) = \operatorname{rank}(I - A^{-}A + A^{-}A) \le \operatorname{rank}(I - A^{-}A) + \operatorname{rank}(A^{-}A)$$

= $\operatorname{rank}(I - A^{-}A) + \operatorname{rank}(A)$ by Part (3). (**)

Combining (*) and (**) gives $m = \operatorname{rank}(I - A^{-}A) + \operatorname{rank}(A)$ and the claim follows.

- C

Proof (continued). (4) We have $(I - A^{-}A)(A^{-}A) = IA^{-}A - A^{-}AA^{-}A = A^{-}A - A^{-}(AA^{-}A) = A^{-}A - A^{-}A = 0$. So $(I - A^{-}A)(I - A^{-}A) = I - A^{-}A - (I - A^{-}A)A^{-}A = I - A^{-}A - 0 = I - A^{-}A$.

(5) Notice that A^-A is $m \times m$ and by Part (4) $(I - A^-A)A^-A = 0$, so

$$0 = \operatorname{rank}(0) = \operatorname{rank}((I - A^{-}A)A^{-}A)$$

$$\geq \operatorname{rank}(I - A^{-}A) + \operatorname{rank}(A^{-}A) - m \text{ by Theorem 3.3.15}$$

$$= \operatorname{rank}(I - A^{-}A) + \operatorname{rank}(A) - m \text{ by Part (3)} (*)$$

Next, $I = I - A^{-}A + A^{-}A$ and by Theorem 3.3.6,

$$m = \operatorname{rank}(I) = \operatorname{rank}(I - A^{-}A + A^{-}A) \le \operatorname{rank}(I - A^{-}A) + \operatorname{rank}(A^{-}A)$$

= $\operatorname{rank}(I - A^{-}A) + \operatorname{rank}(A)$ by Part (3). (**)

Combining (*) and (**) gives $m = \operatorname{rank}(I - A^{-}A) + \operatorname{rank}(A)$ and the claim follows.

Theorem 3.5.3. Let Ax = b be a consistent system of equations and let A^- be a generalized inverse of A.

(1)
$$x = A^{-}b$$
 is a solution.

- (2) If x = Gb is a solution of system Ax = b for all b such that a solution exists, then AGA = A; that is, G is a generalized inverse of A.
- (3) For any $z \in \mathbb{R}^m$, $A^-b + (I A^-A)z$ is a solution.
- (4) Every solution is of the form x = A⁻b + (I − A⁻A)z for some z ∈ ℝ^m.

Proof. (1) We have $(AA^{-}A)x = Ax$ and with Ax = b as the given system, we get $AA^{-}(Ax) = Ax$ or $AA^{-}b = b$ or $A(A^{-}b) = b$; that is, $A^{-}b$ is a solution to Ax = b.

Theorem 3.5.3. Let Ax = b be a consistent system of equations and let A^- be a generalized inverse of A.

(1)
$$x = A^{-}b$$
 is a solution.

- (2) If x = Gb is a solution of system Ax = b for all b such that a solution exists, then AGA = A; that is, G is a generalized inverse of A.
- (3) For any $z \in \mathbb{R}^m$, $A^-b + (I A^-A)z$ is a solution.
- (4) Every solution is of the form x = A⁻b + (I − A⁻A)z for some z ∈ ℝ^m.

Proof. (1) We have $(AA^{-}A)x = Ax$ and with Ax = b as the given system, we get $AA^{-}(Ax) = Ax$ or $AA^{-}b = b$ or $A(A^{-}b) = b$; that is, $A^{-}b$ is a solution to Ax = b.

Proof (continued). (2) Let the columns of A be $a_1, a_2, ..., a_m$. The m systems $Ax = a_j$ (where $1 \le j \le n$) each have a solution (namely, the *j*th unit vector in \mathbb{R}^m). So by hypothesis, Ga_j is a solution of the system $Ax = a_j$ for each j (where $1 \le j \le n$). That is, $AGa_j = a_j$ for $1 \le j \le n$, or AGA = A.

Proof (continued). (2) Let the columns of A be $a_1, a_2, ..., a_m$. The m systems $Ax = a_j$ (where $1 \le j \le n$) each have a solution (namely, the *j*th unit vector in \mathbb{R}^m). So by hypothesis, Ga_j is a solution of the system $Ax = a_j$ for each j (where $1 \le j \le n$). That is, $AGa_j = a_j$ for $1 \le j \le n$, or AGA = A.

(3) We have

$$A(A^{-}b + (I - A^{-}A)z) = AA^{-}b + (A - AA^{-}A)z$$

= b + (A - A)z by Part (1)
= b + 0 = b.

Proof (continued). (2) Let the columns of A be a_1, a_2, \ldots, a_m . The m systems $Ax = a_j$ (where $1 \le j \le n$) each have a solution (namely, the *j*th unit vector in \mathbb{R}^m). So by hypothesis, Ga_j is a solution of the system $Ax = a_j$ for each j (where $1 \le j \le n$). That is, $AGa_j = a_j$ for $1 \le j \le n$, or AGA = A.

(3) We have

$$\begin{array}{rcl} A(A^{-}b+(I-A^{-}A)z) &=& AA^{-}b+(A-AA^{-}A)z\\ &=& b+(A-A)z \text{ by Part (1)}\\ &=& b+0=b. \end{array}$$

(4) Let y be a solution of Ax = b. Then

$$y = A^{-}b - A^{-}b + y = A^{-}b - A^{-}(Ay) + y \text{ since } Ay = b$$

= $A^{-}b - (A^{-}A - I)y = A^{-}b + (I - A^{-}A)z \text{ with } z = y.$

Proof (continued). (2) Let the columns of A be a_1, a_2, \ldots, a_m . The m systems $Ax = a_j$ (where $1 \le j \le n$) each have a solution (namely, the *j*th unit vector in \mathbb{R}^m). So by hypothesis, Ga_j is a solution of the system $Ax = a_j$ for each j (where $1 \le j \le n$). That is, $AGa_j = a_j$ for $1 \le j \le n$, or AGA = A.

(3) We have

$$A(A^{-}b + (I - A^{-}A)z) = AA^{-}b + (A - AA^{-}A)z$$

= b + (A - A)z by Part (1)
= b + 0 = b.

(4) Let y be a solution of Ax = b. Then

$$y = A^{-}b - A^{-}b + y = A^{-}b - A^{-}(Ay) + y \text{ since } Ay = b$$

= $A^{-}b - (A^{-}A - I)y = A^{-}b + (I - A^{-}A)z \text{ with } z = y.$

Theorem 3.5.4. The nullity of $n \times m$ matrix A satisfies $\dim(\mathcal{N}(A)) = m - \operatorname{rank}(A)$.

Proof. If $x \in \mathcal{N}(A)$ then Ax = 0 and by Theorem 3.5.3 (3 and 4) $x = 0 + (I - A^{-}A)z = (I - A^{-}A)z$ for any $z \in \mathbb{R}^{m}$ (and conversely every solution to Ax = 0 is of this form). Now $(I - A^{-}A)z$ is in the column space of $I - A^{-}A$ for every $z \in \mathbb{R}^{m}$, so by Theorem 3.5.2(5),

$$\dim(\mathcal{N}(A)) = \operatorname{rank}(I - A^{-}A) = m - \operatorname{rank}(A).$$

Theorem 3.5.4. The nullity of $n \times m$ matrix A satisfies $\dim(\mathcal{N}(A)) = m - \operatorname{rank}(A)$.

Proof. If $x \in \mathcal{N}(A)$ then Ax = 0 and by Theorem 3.5.3 (3 and 4) $x = 0 + (I - A^{-}A)z = (I - A^{-}A)z$ for any $z \in \mathbb{R}^{m}$ (and conversely every solution to Ax = 0 is of this form). Now $(I - A^{-}A)z$ is in the column space of $I - A^{-}A$ for every $z \in \mathbb{R}^{m}$, so by Theorem 3.5.2(5),

$$\dim(\mathcal{N}(A)) = \operatorname{rank}(I - A^{-}A) = m - \operatorname{rank}(A).$$

Theorem 3.5.5

Theorem 3.5.5.

- (1) If system Ax = b is consistent, then any solution is of the form $x = A^-b + z$ for some $z \in \mathcal{N}(A)$.
- (2) For matrix A, the null space of A is orthogonal to the row space of A: N(A) ⊥ V(A^T).
 (3) For matrix A, N(A) ⊕ V(A^T) = ℝ^m.

Proof. (1) Let y be a solution of Ax = b. Then $Ay = b = AA^-b$ by Theorem 3.5.3(1) and so $Ay - AA^-b = A(y - A^-b) = 0$. Therefore $z = y - A^-b \in \mathcal{N}(A)$. So $y = A^-b + z$ where $z \in \mathcal{N}(A)$.

Theorem 3.5.5.

- (1) If system Ax = b is consistent, then any solution is of the form $x = A^-b + z$ for some $z \in \mathcal{N}(A)$.
- (2) For matrix A, the null space of A is orthogonal to the row space of A: N(A) ⊥ V(A^T).
 (3) For matrix A, N(A) ⊕ V(A^T) = ℝ^m.

Proof. (1) Let y be a solution of Ax = b. Then $Ay = b = AA^-b$ by Theorem 3.5.3(1) and so $Ay - AA^-b = A(y - A^-b) = 0$. Therefore $z = y - A^-b \in \mathcal{N}(A)$. So $y = A^-b + z$ where $z \in \mathcal{N}(A)$.

(2) Let
$$a \in \mathcal{V}(A^T)$$
 and $b \in \mathcal{N}(A)$. Then
 $\langle b, a \rangle = b^T a$
 $= b^T A^T s$ since $a \in \mathcal{V}(A^T)$ then $a = A^T s$ for some $s \in \mathbb{R}^n$
 $= (b^T A^T) s = (Ab)^T s$ by Theorem 3.2.1(1)
 $= 0s = 0$ since $b \in \mathcal{N}(A)$.

Theorem 3.5.5.

- (1) If system Ax = b is consistent, then any solution is of the form $x = A^-b + z$ for some $z \in \mathcal{N}(A)$.
- (2) For matrix A, the null space of A is orthogonal to the row space of A: N(A) ⊥ V(A^T).
 (3) For matrix A, N(A) ⊕ V(A^T) = ℝ^m.

Proof. (1) Let y be a solution of Ax = b. Then $Ay = b = AA^-b$ by Theorem 3.5.3(1) and so $Ay - AA^-b = A(y - A^-b) = 0$. Therefore $z = y - A^-b \in \mathcal{N}(A)$. So $y = A^-b + z$ where $z \in \mathcal{N}(A)$.

(2) Let
$$a \in \mathcal{V}(A^T)$$
 and $b \in \mathcal{N}(A)$. Then
 $\langle b, a \rangle = b^T a$
 $= b^T A^T s$ since $a \in \mathcal{V}(A^T)$ then $a = A^T s$ for some $s \in \mathbb{R}^n$
 $= (b^T A^T) s = (Ab)^T s$ by Theorem 3.2.1(1)
 $= 0s = 0$ since $b \in \mathcal{N}(A)$.

Theorem 3.5.5.

- (1) If system Ax = b is consistent, then any solution is of the form $x = A^-b + z$ for some $z \in \mathcal{N}(A)$.
- (2) For matrix A, the null space of A is orthogonal to the row space of A: $\mathcal{N}(A) \perp \mathcal{V}(A^{T})$.
- (3) For matrix A, $\mathcal{N}(A) \oplus \mathcal{V}(A^T) = \mathbb{R}^m$.

Proof (continued). So $a \perp b$. Since *a* is an arbitrary element of $\mathcal{V}(A^T)$ and *b* is an arbitrary element of $\mathcal{N}(A)$ then $\mathcal{N}(A) \perp \mathcal{V}(A^T)$.

(3) From Theorem 3.5.4 (the rank-nullity equation), $\dim(\mathcal{N}(A)) + \dim(\mathcal{V}(A^T)) = m$. Now both $\mathcal{N}(A)$ and $\mathcal{V}(A^T)$ are subspaces of \mathbb{R}^m , so $\mathcal{N}(A) \oplus \mathcal{V}(A^T)$ is a *m* dimensional subspace of \mathbb{R}^m .

Theorem 3.5.5.

- (1) If system Ax = b is consistent, then any solution is of the form $x = A^-b + z$ for some $z \in \mathcal{N}(A)$.
- (2) For matrix A, the null space of A is orthogonal to the row space of A: $\mathcal{N}(A) \perp \mathcal{V}(A^{T})$.

(3) For matrix A,
$$\mathcal{N}(A) \oplus \mathcal{V}(A^T) = \mathbb{R}^m$$
.

Proof (continued). So $a \perp b$. Since *a* is an arbitrary element of $\mathcal{V}(A^T)$ and *b* is an arbitrary element of $\mathcal{N}(A)$ then $\mathcal{N}(A) \perp \mathcal{V}(A^T)$.

(3) From Theorem 3.5.4 (the rank-nullity equation), $\dim(\mathcal{N}(A)) + \dim(\mathcal{V}(A^T)) = m$. Now both $\mathcal{N}(A)$ and $\mathcal{V}(A^T)$ are subspaces of \mathbb{R}^m , so $\mathcal{N}(A) \oplus \mathcal{V}(A^T)$ is a *m* dimensional subspace of \mathbb{R}^m . That is, $\mathcal{N}(A) \oplus \mathcal{V}(A^T) = \mathbb{R}^m$ (technically, we need the Fundamental Theorem of Finite Dimensional Vector Spaces here).

Theorem 3.5.5.

- (1) If system Ax = b is consistent, then any solution is of the form $x = A^-b + z$ for some $z \in \mathcal{N}(A)$.
- (2) For matrix A, the null space of A is orthogonal to the row space of A: $\mathcal{N}(A) \perp \mathcal{V}(A^{T})$.

(3) For matrix A,
$$\mathcal{N}(A) \oplus \mathcal{V}(A^T) = \mathbb{R}^m$$
.

Proof (continued). So $a \perp b$. Since *a* is an arbitrary element of $\mathcal{V}(A^T)$ and *b* is an arbitrary element of $\mathcal{N}(A)$ then $\mathcal{N}(A) \perp \mathcal{V}(A^T)$.

(3) From Theorem 3.5.4 (the rank-nullity equation), $\dim(\mathcal{N}(A)) + \dim(\mathcal{V}(A^T)) = m$. Now both $\mathcal{N}(A)$ and $\mathcal{V}(A^T)$ are subspaces of \mathbb{R}^m , so $\mathcal{N}(A) \oplus \mathcal{V}(A^T)$ is a *m* dimensional subspace of \mathbb{R}^m . That is, $\mathcal{N}(A) \oplus \mathcal{V}(A^T) = \mathbb{R}^m$ (technically, we need the Fundamental Theorem of Finite Dimensional Vector Spaces here).