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Theorem 3.5.1

Theorem 3.5.1

Theorem 3.5.1. If Ax = b is an underdetermined system then there are
an infinite number of solutions to the system.

Proof. If Ax = b is an underdetermined system with A n ×m then, since
it is consistent by definition, there is a solution x1 such that Ax1 = b.
Since rank(A) < m and A has m columns, then by Exercise 2.1 the
columns of A are not linearly independent. So with a1, a2, . . . , am as the
columns of A, there are scalars s1, s2, . . . , sm not all 0 for which
s1a1 + s2a2 + · · ·+ smam = 0.

Let s ∈ Rm have components si and define
x2 = s + x1. Then Ax2 = A(s + x1) = As + Ax1 = 0 + b = b and so x2 is
also a solution to the system Ax = b. Now let w ∈ R and consider
xw = wx1 + (1− w)x2. We have

Axw = A(wx1 + (1− w)x2) = wAx1 + (1− w)Ax2 = wb + (1− w)b = b

and each xw is a solution to Ax = b. Therefore, Ax = b has an infinite
number of solutions.
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Theorem 3.5.2. Properties of the Generalized Inverse

Theorem 3.5.2

Theorem 3.5.2. Properties of the Generalized Inverse.

(1) If A− is a generalized inverse of A then (A−)T is a
generalized inverse of AT .

(2) (A−A)(A−A) = A−A; that is, A−A is idempotent.

(3) rank(A−A) = rank(A).

(4) (I −A−A)(A−A) = 0 and (I −A−A)(I −A−A) = (I −A−A).

(5) rank(I − A−A) = m − rank(A) where A is n ×m.

Proof. (1) We have A = AA−A so, by Theorem 3.2.1(1),
AT = (AA−A)T = AT (A−)TAT and so (A−)T is a generalized inverse of
AT .

(2) Since A = AA−A then A−A = A−AA−A = (A−A)(A−A).
(3) By Theorem 3.3.5, rank(A−A) ≤ min{rank(A−), rank(A)} ≤ rank(A).
Since A = AA−A then again by Theorem 3.3.5,
rank(A) ≤ min{rank(A), rank(A−A)} ≤ rank(A−A), and so
rank(A) = rank(A−A).
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Theorem 3.5.2. Properties of the Generalized Inverse

Theorem 3.5.2 (continued)

Proof (continued). (4) We have (I − A−A)(A−A) =
IA−A− A−AA−A = A−A− A−(AA−A) = A−A− A−A = 0. So
(I−A−A)(I−A−A) = I−A−A−(I−A−A)A−A = I−A−A−0 = I−A−A.

(5) Notice that A−A is m ×m and by Part (4) (I − A−A)A−A = 0, so

0 = rank(0) = rank((I − A−A)A−A)

≥ rank(I − A−A) + rank(A−A)−m by Theorem 3.3.15

= rank(I − A−A) + rank(A)−m by Part (3) (∗)

Next, I = I − A−A + A−A and by Theorem 3.3.6,

m = rank(I ) = rank(I − A−A + A−A) ≤ rank(I − A−A) + rank(A−A)

= rank(I − A−A) + rank(A) by Part (3). (∗∗)

Combining (∗) and (∗∗) gives m = rank(I − A−A) + rank(A) and the
claim follows.
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Theorem 3.5.3

Theorem 3.5.3

Theorem 3.5.3. Let Ax = b be a consistent system of equations and let
A− be a generalized inverse of A.

(1) x = A−b is a solution.

(2) If x = Gb is a solution of system Ax = b for all b such that a
solution exists, then AGA = A; that is, G is a generalized
inverse of A.

(3) For any z ∈ Rm, A−b + (I − A−A)z is a solution.

(4) Every solution is of the form x = A−b + (I − A−A)z for
some z ∈ Rm.

Proof. (1) We have (AA−A)x = Ax and with Ax = b as the given
system, we get AA−(Ax) = Ax or AA−b = b or A(A−b) = b; that is, A−b
is a solution to Ax = b.
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Theorem 3.5.3

Theorem 3.5.3 (continued)

Proof (continued). (2) Let the columns of A be a1, a2, . . . , am. The m
systems Ax = aj (where 1 ≤ j ≤ n) each have a solution (namely, the jth
unit vector in Rm). So by hypothesis, Gaj is a solution of the system
Ax = aj for each j (where 1 ≤ j ≤ n). That is, AGaj = aj for 1 ≤ j ≤ n,
or AGA = A.

(3) We have

A(A−b + (I − A−A)z) = AA−b + (A− AA−A)z

= b + (A− A)z by Part (1)

= b + 0 = b.

(4) Let y be a solution of Ax = b. Then

y = A−b − A−b + y = A−b − A−(Ay) + y since Ay = b

= A−b − (A−A− I )y = A−b + (I − A−A)z with z = y .
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Theorem 3.5.4

Theorem 3.5.4

Theorem 3.5.4. The nullity of n ×m matrix A satisfies
dim(N (A)) = m − rank(A).

Proof. If x ∈ N (A) then Ax = 0 and by Theorem 3.5.3 (3 and 4)
x = 0 + (I − A−A)z = (I − A−A)z for any z ∈ Rm (and conversely every
solution to Ax = 0 is of this form). Now (I − A−A)z is in the column
space of I − A−A for every z ∈ Rm, so by Theorem 3.5.2(5),

dim(N (A)) = rank(I − A−A) = m − rank(A).
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Theorem 3.5.5

Theorem 3.5.5

Theorem 3.5.5.

(1) If system Ax = b is consistent, then any solution is of the
form x = A−b + z for some z ∈ N (A).

(2) For matrix A, the null space of A is orthogonal to the row
space of A: N (A) ⊥ V(AT ).

(3) For matrix A, N (A)⊕ V(AT ) = Rm.

Proof. (1) Let y be a solution of Ax = b. Then Ay = b = AA−b by
Theorem 3.5.3(1) and so Ay − AA−b = A(y − A−b) = 0. Therefore
z = y − A−b ∈ N (A). So y = A−b + z where z ∈ N (A).

(2) Let a ∈ V(AT ) and b ∈ N (A). Then

〈b, a〉 = bTa

= bTAT s since a ∈ V(AT ) then a = AT s for some s ∈ Rn

= (bTAT )s = (Ab)T s by Theorem 3.2.1(1)

= 0s = 0 since b ∈ N (A).
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Theorem 3.5.5

Theorem 3.5.5 (continued)

Theorem 3.5.5.

(1) If system Ax = b is consistent, then any solution is of the
form x = A−b + z for some z ∈ N (A).

(2) For matrix A, the null space of A is orthogonal to the row
space of A: N (A) ⊥ V(AT ).

(3) For matrix A, N (A)⊕ V(AT ) = Rm.

Proof (continued). So a ⊥ b. Since a is an arbitrary element of V(AT )
and b is an arbitrary element of N (A) then N (A) ⊥ V(AT ).

(3) From Theorem 3.5.4 (the rank-nullity equation),
dim(N (A)) + dim(V(AT )) = m. Now both N (A) and V(AT ) are
subspaces of Rm, so N (A)⊕ V(AT ) is a m dimensional subspace of Rm.

That is, N (A)⊕ V(AT ) = Rm (technically, we need the Fundamental
Theorem of Finite Dimensional Vector Spaces here).
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