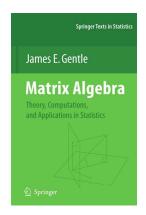
Theory of Matrices

Chapter 3. Basic Properties of Matrices

3.6. Generalized Inverses—Proofs of Theorems



Theory of Matrices

June 15, 2020 1

1 / 7

Theory of Matrices

June 15, 2020

3 / 7

Theorem 3.6.

Theorem 3.6.1 (continued)

Theorem 3.6.1. Let A be an $n \times m$ matrix. Then a generalized inverse of A exists.

Proof (continued). Then

$$A\left(Q^{-1}\begin{bmatrix}I_r & U \\ V & W\end{bmatrix}P^{-1}\right)A$$

$$= P\begin{bmatrix}I_r & 0 \\ 0 & 0\end{bmatrix}QQ^{-1}\begin{bmatrix}I_r & U \\ V & W\end{bmatrix}P^{-1}P\begin{bmatrix}I_r & 0 \\ 0 & 0\end{bmatrix}Q$$

$$= P\begin{bmatrix}I_r & U \\ 0 & 0\end{bmatrix}\begin{bmatrix}I_r & 0 \\ 0 & 0\end{bmatrix}Q$$

$$= P\begin{bmatrix}I_r & 0 \\ 0 & 0\end{bmatrix}Q = A$$

and so $A^- = Q^{-1} \begin{bmatrix} I_r & U \\ V & W \end{bmatrix} P^{-1}$ is a generalized inverse of A.

Theorem 3.6.1

Theorem 3.6.1

Theorem 3.6.1. Let A be an $n \times m$ matrix. Then a generalized inverse of A exists.

Proof. If rank(A) = 0 (and so A = 0) then every $m \times n$ matrix is a generalized inverse of A, as observed above.

If $\operatorname{rank}(A)>0$ then by Theorem 3.3.9, there are matrices P and Q, both products of elementary matrices, such that $A=P\begin{bmatrix}I_r&0\\0&0\end{bmatrix}Q$. All elementary matrices are invertible so P^{-1} and Q^{-1} exist. Consider $Q^{-1}\begin{bmatrix}I_r&U\\V&W\end{bmatrix}P^{-1}$ where U, V, and W are any matrices where U is $r\times (m-r)$, V is $(n-r)\times r$, and W is $(n-r)\times (m-r)$.

Theorem 3.6.

Theorem 3.6.2

Theorem 3.6.2. Every matrix A with rank(A) = r > 0 has a pseudoinverse given be $A^+ = R^T (L^T A R^T)^{-1} L^T$ where A = LR is a full rank factorization of A (such a factorization exists as shown in equations (**) and (***) of Section 3.4).

Proof. Let A be $n \times m$ with $\operatorname{rank}(A) = r > 0$. Then there is a full rank factorization of A, A = LR where L is a $n \times r$ full column rank matrix and R is a $r \times m$ full row rank matrix. So by Theorem 3.3.14(5), L^TL is full rank r. Since R^T is full column rank, similarly (by Theorem 3.3.14(5)) $(R^T)^TR^T = RR^T$ is full rank r. So L^TL and RR^T are both invertible. Hence $(L^TL)(RR^T) = L^T(LR)R^T = L^TAR^T$ is invertible. Consider $B = R^T(L^TAR^T)^{-1}L^T$. The fact that B satisfies the four parts of the definition of pseudoinverse is to be given in Exercise 3.15. So $A^+ = B$ is a pseudoinverse of A.

Theorem 3.6.3

Theorem 3.6.3. For any matrix A, the pseudoinverse A^+ is unique.

Proof. The case A=0 is addressed in the note above. For A with $\operatorname{rank}(A)>0$, suppose both B and C are pseudoinverses. We use the four properties of a pseudoinverse to prove that B=C. We have

$$B = BAB$$
 by Property (2) for B
 $= (BA)^T B = A^T B^T B$ by Property (3) for B
 $= (ACA)^T B^T B$ by Property (1) for C
 $= A^T C^T A^T B^T B = (CA)^T A^T B^T B$
 $= CAA^T B^T B$ by Property (3) for C
 $= CA(BA)^T B = CA(BA)B$ by Property (3) for B
 $= C(ABA)B = CAB$ by Property (1) for B
...

Theorem 3.6.3 (continued)

Theorem 3.6.3. For any matrix A, the pseudoinverse A^+ is unique.

Proof (continued). ...

$$CAB = C(ACA)B = C(AC)AB$$
 by Property (1) for C

$$= C(AC)^T AB = CC^T A^T AB$$
 by Property (3) for C

$$= CC^T A^T (AB)^T = CC^T (ABA)^T$$
 by Property (4) for B

$$= CC^T A^T = C(AC)^T$$
 by Property (1) for B

$$= CAC$$
 by Property (4) for C

$$= C$$
 by Property (2) for C .

So B = C and the pseudoinverse of A is unique.

Theory of Matrices June 15, 2020 6 / 7 () Theory of Matrices June 15, 2020 7 / 7