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Theorem 3.6.1 (continued)

Theorem 3.6.1. Let A be an n x m matrix. Then a generalized inverse of
A exists.

Proof (continued). Then
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Theorem 3.6.1

Theorem 3.6.1. Let A be an n x m matrix. Then a generalized inverse of
A exists.

Proof. If rank(A) = 0 (and so A = 0) then every m x n matrix is a
generalized inverse of A, as observed above.

If rank(A) > 0 then by Theorem 3.3.9, there are matrices P and Q, both
products of elementary matrices, such that A= P [ g 8 ] Q. All

elementary matrices are invertible so P~! and @1 exist. Consider

Q! [ (; VUV ] P~! where U, V, and W are any matrices where U is

rx(m—r), Vis(n—r)xr,and Wis (n—r)x (m—r).
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Theorem 3.6.2

Theorem 3.6.2. Every matrix A with rank(A) = r > 0 has a
pseudoinverse given be At = RT(LTART)"1LT where A= LR is a full
rank factorization of A (such a factorization exists as shown in equations
(xx) and (* * x) of Section 3.4).

Proof. Let A be n x m with rank(A) = r > 0. Then there is a full rank
factorization of A, A= LR where L is a n x r full column rank matrix and
R is a r x m full row rank matrix. So by Theorem 3.3.14(5), L' L is full
rank r. Since R is full column rank, similarly (by Theorem 3.3.14(5))
(RT)TRT = RRT is full rank r. So LT L and RRT are both invertible.
Hence (LTL)(RRT) = LT(LR)RT = LT ART is invertible. Consider
B=RT(LTART)™ILT. The fact that B satisfies the four parts of the
definition of pseudoinverse is to be given in Exercise 3.15. So AT = B is a
pseudoinverse of A. O
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Theorem 3.6.3

Theorem 3.6.3. For any matrix A, the pseudoinverse AT is unique.

Proof. The case A= 0 is addressed in the note above. For A with
rank(A) > 0, suppose both B and C are pseudoinverses. We use the four
properties of a pseudoinverse to prove that B = C. We have

B = BAB by Property (2) for B
= (BA)"B = ATB" B by Property (3) for B
= (ACA)" BT B by Property (1) for C
= ATCTATB™B=(CA)TA"B"B
= CAAT BT B by Property (3) for C
— CA(BA)" B = CA(BA)B by Property (3) for B
= C(ABA)B = CAB by Property (1) for B

Theorem 3.6.3 (continued)

Theorem 3.6.3. For any matrix A, the pseudoinverse AT is unique.

Proof (continued). ...

CAB = C(C(ACA)B = C(AC)AB by Property (1) for C
C(AC)TAB = CCT AT AB by Property (3) for C
CCTAT(AB)T = CCT(ABA)" by Property (4) for B
CCTAT = C(AC)" by Property (1) for B

CAC by Property (4) for C

= C by Property (2) for C.

So B = C and the pseudoinverse of A is unique.
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