Theory of Matrices

Chapter 3. Basic Properties of Matrices 3.6. Generalized Inverses—Proofs of Theorems

Theorem 3.6.1. Let A be an $n \times m$ matrix. Then a generalized inverse of A exists.

Proof. If rank(A) = 0 (and so A = 0) then every $m \times n$ matrix is a generalized inverse of A, as observed above.

Theorem 3.6.1. Let A be an $n \times m$ matrix. Then a generalized inverse of A exists.

Proof. If rank(A) = 0 (and so A = 0) then every $m \times n$ matrix is a generalized inverse of A, as observed above.

If rank(A) > 0 then by Theorem 3.3.9, there are matrices P and Q, both products of elementary matrices, such that $A = P \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} Q$. All elementary matrices are invertible so P^{-1} and Q^{-1} exist.

Theorem 3.6.1. Let A be an $n \times m$ matrix. Then a generalized inverse of A exists.

Proof. If rank(A) = 0 (and so A = 0) then every $m \times n$ matrix is a generalized inverse of A, as observed above.

If rank(A) > 0 then by Theorem 3.3.9, there are matrices P and Q, both products of elementary matrices, such that $A = P \begin{bmatrix} l_r & 0 \\ 0 & 0 \end{bmatrix} Q$. All elementary matrices are invertible so P^{-1} and Q^{-1} exist. Consider $Q^{-1} \begin{bmatrix} l_r & U \\ V & W \end{bmatrix} P^{-1}$ where U, V, and W are any matrices where U is $r \times (m-r)$, V is $(n-r) \times r$, and W is $(n-r) \times (m-r)$. **Theorem 3.6.1.** Let A be an $n \times m$ matrix. Then a generalized inverse of A exists.

Proof. If rank(A) = 0 (and so A = 0) then every $m \times n$ matrix is a generalized inverse of A, as observed above.

If rank(A) > 0 then by Theorem 3.3.9, there are matrices P and Q, both products of elementary matrices, such that $A = P \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} Q$. All elementary matrices are invertible so P^{-1} and Q^{-1} exist. Consider $Q^{-1} \begin{bmatrix} I_r & U \\ V & W \end{bmatrix} P^{-1}$ where U, V, and W are any matrices where U is $r \times (m-r)$, V is $(n-r) \times r$, and W is $(n-r) \times (m-r)$.

Theorem 3.6.1 (continued)

Theorem 3.6.1. Let A be an $n \times m$ matrix. Then a generalized inverse of A exists.

Proof (continued). Then

$$A\left(Q^{-1}\left[\begin{array}{cc}I_r & U\\V & W\end{array}\right]P^{-1}\right)A$$
$$= P\left[\begin{array}{cc}I_r & 0\\0 & 0\end{array}\right]QQ^{-1}\left[\begin{array}{cc}I_r & U\\V & W\end{array}\right]P^{-1}P\left[\begin{array}{cc}I_r & 0\\0 & 0\end{array}\right]Q$$
$$= P\left[\begin{array}{cc}I_r & U\\0 & 0\end{array}\right]\left[\begin{array}{cc}I_r & 0\\0 & 0\end{array}\right]Q$$
$$= P\left[\begin{array}{cc}I_r & 0\\0 & 0\end{array}\right]Q = A$$
and so $A^- = Q^{-1}\left[\begin{array}{cc}I_r & U\\V & W\end{array}\right]P^{-1}$ is a generalized inverse of A.

Theorem 3.6.2. Every matrix A with rank(A) = r > 0 has a pseudoinverse given be $A^+ = R^T (L^T A R^T)^{-1} L^T$ where A = LR is a full rank factorization of A (such a factorization exists as shown in equations (**) and (* * *) of Section 3.4).

Proof. Let A be $n \times m$ with rank(A) = r > 0. Then there is a full rank factorization of A, A = LR where L is a $n \times r$ full column rank matrix and R is a $r \times m$ full row rank matrix.

Theorem 3.6.2. Every matrix A with rank(A) = r > 0 has a pseudoinverse given be $A^+ = R^T (L^T A R^T)^{-1} L^T$ where A = LR is a full rank factorization of A (such a factorization exists as shown in equations (**) and (* * *) of Section 3.4).

Proof. Let *A* be $n \times m$ with rank(A) = r > 0. Then there is a full rank factorization of *A*, A = LR where *L* is a $n \times r$ full column rank matrix and *R* is a $r \times m$ full row rank matrix. So by Theorem 3.3.14(5), $L^{T}L$ is full rank *r*. Since R^{T} is full column rank, similarly (by Theorem 3.3.14(5)) $(R^{T})^{T}R^{T} = RR^{T}$ is full rank *r*. So $L^{T}L$ and RR^{T} are both invertible. Hence $(L^{T}L)(RR^{T}) = L^{T}(LR)R^{T} = L^{T}AR^{T}$ is invertible.

Theorem 3.6.2. Every matrix A with rank(A) = r > 0 has a pseudoinverse given be $A^+ = R^T (L^T A R^T)^{-1} L^T$ where A = LR is a full rank factorization of A (such a factorization exists as shown in equations (**) and (* * *) of Section 3.4).

Proof. Let *A* be $n \times m$ with rank(A) = r > 0. Then there is a full rank factorization of *A*, A = LR where *L* is a $n \times r$ full column rank matrix and *R* is a $r \times m$ full row rank matrix. So by Theorem 3.3.14(5), $L^T L$ is full rank *r*. Since R^T is full column rank, similarly (by Theorem 3.3.14(5)) $(R^T)^T R^T = RR^T$ is full rank *r*. So $L^T L$ and RR^T are both invertible. Hence $(L^T L)(RR^T) = L^T (LR)R^T = L^T AR^T$ is invertible. Consider $B = R^T (L^T AR^T)^{-1}L^T$. The fact that *B* satisfies the four parts of the definition of pseudoinverse is to be given in Exercise 3.15. So $A^+ = B$ is a pseudoinverse of *A*.

Theorem 3.6.2. Every matrix A with rank(A) = r > 0 has a pseudoinverse given be $A^+ = R^T (L^T A R^T)^{-1} L^T$ where A = LR is a full rank factorization of A (such a factorization exists as shown in equations (**) and (* * *) of Section 3.4).

Proof. Let A be $n \times m$ with rank(A) = r > 0. Then there is a full rank factorization of A, A = LR where L is a $n \times r$ full column rank matrix and R is a $r \times m$ full row rank matrix. So by Theorem 3.3.14(5), $L^T L$ is full rank r. Since R^T is full column rank, similarly (by Theorem 3.3.14(5)) $(R^T)^T R^T = RR^T$ is full rank r. So $L^T L$ and RR^T are both invertible. Hence $(L^T L)(RR^T) = L^T (LR)R^T = L^T AR^T$ is invertible. Consider $B = R^T (L^T AR^T)^{-1} L^T$. The fact that B satisfies the four parts of the definition of pseudoinverse is to be given in Exercise 3.15. So $A^+ = B$ is a pseudoinverse of A.

Theorem 3.6.3. For any matrix A, the pseudoinverse A^+ is unique.

Proof. The case A = 0 is addressed in the note above. For A with rank(A) > 0, suppose both B and C are pseudoinverses. We use the four properties of a pseudoinverse to prove that B = C.

Theorem 3.6.3. For any matrix A, the pseudoinverse A^+ is unique.

Proof. The case A = 0 is addressed in the note above. For A with rank(A) > 0, suppose both B and C are pseudoinverses. We use the four properties of a pseudoinverse to prove that B = C. We have

$$B = BAB \text{ by Property (2) for } B$$

= $(BA)^T B = A^T B^T B$ by Property (3) for B
= $(ACA)^T B^T B$ by Property (1) for C
= $A^T C^T A^T B^T B = (CA)^T A^T B^T B$
= $CAA^T B^T B$ by Property (3) for C
= $CA(BA)^T B = CA(BA)B$ by Property (3) for B
= $C(ABA)B = CAB$ by Property (1) for B

Theorem 3.6.3. For any matrix A, the pseudoinverse A^+ is unique.

Proof. The case A = 0 is addressed in the note above. For A with rank(A) > 0, suppose both B and C are pseudoinverses. We use the four properties of a pseudoinverse to prove that B = C. We have

$$B = BAB \text{ by Property (2) for } B$$

= $(BA)^T B = A^T B^T B$ by Property (3) for B
= $(ACA)^T B^T B$ by Property (1) for C
= $A^T C^T A^T B^T B = (CA)^T A^T B^T B$
= $CAA^T B^T B$ by Property (3) for C
= $CA(BA)^T B = CA(BA)B$ by Property (3) for B
= $C(ABA)B = CAB$ by Property (1) for B

. . .

Theorem 3.6.3 (continued)

Theorem 3.6.3. For any matrix A, the pseudoinverse A^+ is unique. **Proof (continued).** ...

$$CAB = C(ACA)B = C(AC)AB \text{ by Property (1) for } C$$

= $C(AC)^T AB = CC^T A^T AB \text{ by Property (3) for } C$
= $CC^T A^T (AB)^T = CC^T (ABA)^T \text{ by Property (4) for } B$
= $CC^T A^T = C(AC)^T \text{ by Property (1) for } B$
= CAC by Property (4) for C
= C by Property (2) for C .

So B = C and the pseudoinverse of A is unique.