Theory of Matrices

Chapter 3. Basic Properties of Matrices 3.6. Generalized Inverses—Proofs of Theorems

Theorem 3.6.1. Let A be an $n \times m$ matrix. Then a generalized inverse of A exists.

Proof. If rank $(A) = 0$ (and so $A = 0$) then every $m \times n$ matrix is a generalized inverse of A, as observed above.

Theorem 3.6.1. Let A be an $n \times m$ matrix. Then a generalized inverse of A exists.

Proof. If rank $(A) = 0$ (and so $A = 0$) then every $m \times n$ matrix is a generalized inverse of A, as observed above.

If rank(A) > 0 then by Theorem 3.3.9, there are matrices P and Q, both products of elementary matrices, such that $A = P \begin{bmatrix} I_r & 0 \ 0 & 0 \end{bmatrix} Q$. All elementary matrices are invertible so P^{-1} and Q^{-1} exist.

Theorem 3.6.1. Let A be an $n \times m$ matrix. Then a generalized inverse of A exists.

Proof. If rank $(A) = 0$ (and so $A = 0$) then every $m \times n$ matrix is a generalized inverse of A, as observed above.

If rank(A) $>$ 0 then by Theorem 3.3.9, there are matrices P and Q, both products of elementary matrices, such that $A = P \left[\begin{array}{cc} I_r & 0 \ 0 & 0 \end{array} \right] Q$. All elementary matrices are invertible so P^{-1} and Q^{-1} exist. <code>Consider</code> $Q^{-1} \begin{bmatrix} I_r & U \\ V & W \end{bmatrix} P^{-1}$ where U, V, and W are any matrices where U is $r \times (m-r)$, V is $(n-r) \times r$, and W is $(n-r) \times (m-r)$.

Theorem 3.6.1. Let A be an $n \times m$ matrix. Then a generalized inverse of A exists.

Proof. If rank $(A) = 0$ (and so $A = 0$) then every $m \times n$ matrix is a generalized inverse of A, as observed above.

If rank(A) $>$ 0 then by Theorem 3.3.9, there are matrices P and Q, both products of elementary matrices, such that $A = P \left[\begin{array}{cc} I_r & 0 \ 0 & 0 \end{array} \right] Q$. All elementary matrices are invertible so P^{-1} and Q^{-1} exist. Consider $Q^{-1} \begin{bmatrix} I_r & U \ V & W \end{bmatrix} P^{-1}$ where U , V , and W are any matrices where U is $r \times (m-r)$, V is $(n-r) \times r$, and W is $(n-r) \times (m-r)$.

Theorem 3.6.1 (continued)

Theorem 3.6.1. Let A be an $n \times m$ matrix. Then a generalized inverse of A exists.

Proof (continued). Then

$$
A\left(Q^{-1}\begin{bmatrix}I_r & U \ V & W\end{bmatrix} P^{-1}\right) A
$$

= $P\begin{bmatrix}I_r & 0 \ 0 & 0\end{bmatrix} QQ^{-1}\begin{bmatrix}I_r & U \ V & W\end{bmatrix} P^{-1}P\begin{bmatrix}I_r & 0 \ 0 & 0\end{bmatrix} Q$
= $P\begin{bmatrix}I_r & U \ 0 & 0\end{bmatrix}\begin{bmatrix}I_r & 0 \ 0 & 0\end{bmatrix} Q$
= $P\begin{bmatrix}I_r & 0 \ 0 & 0\end{bmatrix} Q = A$
and so $A^{-} = Q^{-1}\begin{bmatrix}I_r & U \ V & W\end{bmatrix} P^{-1}$ is a generalized inverse of A.

Theorem 3.6.2. Every matrix A with rank $(A) = r > 0$ has a pseudoinverse given be $A^+ = R^\mathcal{T} (L^\mathcal{T} A R^\mathcal{T})^{-1} L^\mathcal{T}$ where $A = LR$ is a full rank factorization of A (such a factorization exists as shown in equations $(**)$ and $(***)$ of Section 3.4).

Proof. Let A be $n \times m$ with rank(A) = $r > 0$. Then there is a full rank factorization of A, $A = LR$ where L is a $n \times r$ full column rank matrix and R is a $r \times m$ full row rank matrix.

Theorem 3.6.2. Every matrix A with rank $(A) = r > 0$ has a pseudoinverse given be $A^+ = R^\mathcal{T} (L^\mathcal{T} A R^\mathcal{T})^{-1} L^\mathcal{T}$ where $A = LR$ is a full rank factorization of A (such a factorization exists as shown in equations $(**)$ and $(***)$ of Section 3.4).

Proof. Let A be $n \times m$ with rank(A) = $r > 0$. Then there is a full rank factorization of A, $A = LR$ where L is a $n \times r$ full column rank matrix and R **is a** $r \times m$ **full row rank matrix.** So by Theorem 3.3.14(5), L^TL is full rank r . Since $R^{\mathcal{T}}$ is full column rank, similarly (by Theorem 3.3.14(5)) $(R^T)^T R^T = RR^T$ is full rank r. So $L^T L$ and RR^T are both invertible. Hence $(L^T L)(RR^T) = L^T (LR) R^T = L^T AR^T$ is invertible.

Theorem 3.6.2. Every matrix A with rank $(A) = r > 0$ has a pseudoinverse given be $A^+ = R^\mathcal{T} (L^\mathcal{T} A R^\mathcal{T})^{-1} L^\mathcal{T}$ where $A = LR$ is a full rank factorization of A (such a factorization exists as shown in equations $(**)$ and $(***)$ of Section 3.4).

Proof. Let A be $n \times m$ with rank(A) = $r > 0$. Then there is a full rank factorization of A, $A = LR$ where L is a $n \times r$ full column rank matrix and *R* is a $r \times m$ full row rank matrix. So by Theorem 3.3.14(5), $\mathcal{L}^T\mathcal{L}$ is full rank r . Since $R^{\mathcal{T}}$ is full column rank, similarly (by Theorem 3.3.14(5)) $(R^{\mathcal{T}})^{\mathcal{T}}R^{\mathcal{T}}=RR^{\mathcal{T}}$ is full rank $r.$ So $L^{\mathcal{T}}L$ and $RR^{\mathcal{T}}$ are both invertible. <code>Hence</code> $(L^{\mathcal{T}} L)(R R^{\mathcal{T}}) = L^{\mathcal{T}} (L R) R^{\mathcal{T}} = L^{\mathcal{T}} A R^{\mathcal{T}}$ is invertible. <code>Consider</code> $B=R^{T}(L^{T}AR^{T})^{-1}L^{T}.$ The fact that B satisfies the four parts of the definition of pseudoinverse is to be given in Exercise 3.15. So $A^+=B$ is a pseudoinverse of A.

Theorem 3.6.2. Every matrix A with rank $(A) = r > 0$ has a pseudoinverse given be $A^+ = R^\mathcal{T} (L^\mathcal{T} A R^\mathcal{T})^{-1} L^\mathcal{T}$ where $A = LR$ is a full rank factorization of A (such a factorization exists as shown in equations $(**)$ and $(***)$ of Section 3.4).

Proof. Let A be $n \times m$ with rank(A) = $r > 0$. Then there is a full rank factorization of A, $A = LR$ where L is a $n \times r$ full column rank matrix and *R* is a $r \times m$ full row rank matrix. So by Theorem 3.3.14(5), $\mathcal{L}^T\mathcal{L}$ is full rank r . Since $R^{\mathcal{T}}$ is full column rank, similarly (by Theorem 3.3.14(5)) $(R^{\mathcal{T}})^{\mathcal{T}}R^{\mathcal{T}}=RR^{\mathcal{T}}$ is full rank $r.$ So $L^{\mathcal{T}}L$ and $RR^{\mathcal{T}}$ are both invertible. Hence $(L^{\mathcal{T}} L)(R R^{\mathcal{T}}) = L^{\mathcal{T}}(L R) R^{\mathcal{T}} = L^{\mathcal{T}} A R^{\mathcal{T}}$ is invertible. Consider $B=R^{T}(L^{T}AR^{T})^{-1}L^{T}.$ The fact that B satisfies the four parts of the definition of pseudoinverse is to be given in Exercise 3.15. So $A^+=B$ is a pseudoinverse of A.

Theorem 3.6.3. For any matrix A, the pseudoinverse A^+ is unique.

Proof. The case $A = 0$ is addressed in the note above. For A with rank(A) > 0 , suppose both B and C are pseudoinverses. We use the four properties of a pseudoinverse to prove that $B = C$.

Theorem 3.6.3. For any matrix A, the pseudoinverse A^+ is unique.

Proof. The case $A = 0$ is addressed in the note above. For A with rank(A) > 0 , suppose both B and C are pseudoinverses. We use the four properties of a pseudoinverse to prove that $B = C$. We have

$$
B = BAB \text{ by Property (2) for } B
$$

\n
$$
= (BA)^{T}B = A^{T}B^{T}B \text{ by Property (3) for } B
$$

\n
$$
= (ACA)^{T}B^{T}B \text{ by Property (1) for } C
$$

\n
$$
= A^{T}C^{T}A^{T}B^{T}B = (CA)^{T}A^{T}B^{T}B
$$

\n
$$
= CAA^{T}B^{T}B \text{ by Property (3) for } C
$$

\n
$$
= CA(BA)^{T}B = CA(BA)B \text{ by Property (3) for } B
$$

\n
$$
= C(ABA)B = CAB \text{ by Property (1) for } B
$$

. . .

Theorem 3.6.3. For any matrix A, the pseudoinverse A^+ is unique.

Proof. The case $A = 0$ is addressed in the note above. For A with rank(A) > 0 , suppose both B and C are pseudoinverses. We use the four properties of a pseudoinverse to prove that $B = C$. We have

$$
B = BAB \text{ by Property (2) for } B
$$

= $(BA)^{T}B = A^{T}B^{T}B$ by Property (3) for B
= $(ACA)^{T}B^{T}B$ by Property (1) for C
= $A^{T}C^{T}A^{T}B^{T}B = (CA)^{T}A^{T}B^{T}B$
= $CAA^{T}B^{T}B$ by Property (3) for C
= $CA(BA)^{T}B = CA(BA)B$ by Property (3) for B
= $C(ABA)B = CAB$ by Property (1) for B

. . .

Theorem 3.6.3 (continued)

Theorem 3.6.3. For any matrix A, the pseudoinverse A^+ is unique. Proof (continued). ...

$$
CAB = C(AC)B = C(AC)AB
$$
 by Property (1) for C
\n
$$
= C(AC)^T AB = CC^T A^T AB
$$
 by Property (3) for C
\n
$$
= CC^T A^T (AB)^T = CC^T (ABA)^T
$$
 by Property (4) for B
\n
$$
= CC^T A^T = C(AC)^T
$$
 by Property (1) for B
\n
$$
= CAC
$$
 by Property (4) for C
\n
$$
= C
$$
 by Property (2) for C .

So $B = C$ and the pseudoinverse of A is unique.