Theorem 3.7.1

Theorem 3.7.1. Let Q be an $n \times m$ matrix. For $n \leq m$, Q is orthogonal if and only if $QQ^T = I_n$ for $n \geq m$, Q is orthogonal if and only if $Q^TQ = I_m$. A square matrix Q is orthogonal if and only if $QQ^T = Q^TQ = I$ (so a square matrix Q is orthogonal if and only if it is invertible and $Q^{-1} = Q^T$).

Proof. First, suppose $n \leq m$. If Q is orthogonal then the row rank of Q equals the column rank of Q by Theorem 3.3.2 and so Q must have n orthonormal rows (since it cannot have more orthonormal [and hence linearly independent] columns than rows). Let the rows of Q be r_1, r_2, \ldots, r_n. Then the columns of Q^T are $r_1^T, r_2^T, \ldots, r_n^T$. So the (i,j) entry of QQ^T is $r_i^Tr_j = \langle r_i, r_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$ since the rows of Q are orthonormal. Since QQ^T is $n \times n$, then $QQ^T = I_n$. Conversely, if $QQ^T = I_n$, then the (i,j) entry of QQ^T is $\langle r_i, r_j \rangle$ as given above and so the rows of Q form an orthonormal set and Q is orthogonal.

Theorem 3.7.1 (continued)

Proof (continued). Second, suppose $n \geq m$. If Q is orthogonal then, similar to the case $n \leq m$, it must be that Q has m orthonormal columns. Let the columns of Q be c_1, c_2, \ldots, c_m. Then the rows of Q^T are $c_1^T, c_2^T, \ldots, c_m^T$. So the (i,j) entry of Q^TQ is $c_i^Tc_j = \langle c_i, c_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$ since the columns of Q are orthonormal.

Since Q^TQ is $m \times m$ then $Q^TQ = I_m$. Conversely, if $Q^TQ = I_m$ then the (i,j) entry of Q^TQ is $\langle c_i, c_j \rangle$ as given above and so the columns of Q form an orthonormal set and Q is orthogonal.

If Q is $n \times n$, then combining the first two cases we have that Q is orthogonal if and only if $QQ^T = I = Q^TQ$.

Corollary 3.7.2

Corollary 3.7.2. For Q a square orthogonal matrix, we have $\det(Q) = \pm 1$. For Q an $n \times m$ orthogonal matrix Q with $n \geq m$, we have $\langle Q, Q \rangle = m$.

Proof. by Theorem 3.7.1 and Theorem 3.2.4, $\det(QQ^T) = \det(I)$ or $\det(Q)^2 = 1$. By Theorem 3.1.4, $\det(Q^T) = \det(Q)$, so $\det(Q)^2 = 1$ and $\det(Q) = \pm 1$.

Let the columns of $n \times m$ orthogonal Q be c_1, c_2, \ldots, c_m. Then

$$\langle Q, Q \rangle = \sum_{j=1}^{n} c_j^Tc_j = \sum_{j=1}^{m} \langle c_j, c_j \rangle = \sum_{j=1}^{m} \|c_j\|^2 = m$$

since the columns of Q form an orthonormal set of vectors.
Theorem 3.7.3

Theorem 3.7.3. Every permutation matrix is orthogonal.

Proof. First, form the elementary permutation matrix E_{pq} from I_n by interchanging rows p and q of I_n, $I_n \xrightarrow{R_p \leftrightarrow R_q} E_{pq} = [e_{ij}]$. So we have $e_{ij} = 0$ for $i \in \{1, 2, \ldots, n\} \setminus \{p, q\}$ and $i \neq j$, and $e_{ij} = 1$ for $i \in \{1, 2, \ldots, n\} \setminus \{p, q\}$. For $i = p$ we have $e_{pj} = 0$ for $j \neq q$ and $e_{pq} = 1$. For $i = q$ we have $e_{qj} = 0$ for $j \neq p$ and $e_{qp} = 1$. So in $E_{pq}^T = [e_{ji}^T]$, we have $e_{ij}^T = 0$ for $i \in \{1, 2, \ldots, n\} \setminus \{p, q\}$ and $i \neq j$, and $e_{ij}^T = 1$ for $i \in \{1, 2, \ldots, n\} \setminus \{p, q\}$. For $i = p$ we have $e_{ip}^T = e_{pj} = 0$ for $j \neq q$ and $e_{pq} = 1$. For $i = q$ we have $e_{iq}^T = e_{qj} = 0$ for $j \neq p$ and $e_{qp} = 1$. So the (i, j) entry of $E_{pq}E_{pq}^T$ for $i \in \{1, 2, \ldots, n\} \setminus \{p, q\}$ is

$$\sum_{k=1}^{n} e_{ik}^T e_{kj} = e_{ij}^T e_{ij} = 0 \text{ for } i \neq j$$

but $e_{ij} = 1$ if $i = j$. Thus

$$\sum_{k=1}^{n} e_{ik}^T e_{kj} = e_{ij}^T e_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

That is, the (i, j) entry of $E_{pq}E_{pq}^T$ is 0 if $i \neq j$ and 1 is $i = j$; that is, $E_{pq}E_{pq}^T = I_n$ and E_{pq} is orthogonal.

Theorem 3.7.3 (continued 2)

Theorem 3.7.3. Every permutation matrix is orthogonal.

Proof (continued). Second, if E is an elementary permutation matrix resulting from interchanging columns p and q in I_n, then E is, similarly, an orthogonal matrix.

So if P is a permutation matrix, that is if $P = E_1 E_2 \cdots E_{\ell}$ for elementary permutation matrices $E_1, E_2, \ldots, E_{\ell}$ (where these correspond to or or column interchanges) then

$$P^T = (E_1 E_2 \cdots E_{\ell})^T = E_{\ell}^T E_{\ell-1}^T \cdots E_1^T$$

$$= E_{\ell}^{-1} E_{\ell-1}^{-1} \cdots E_1^{-1}$$

since each E_i is orthogonal from above

$$= (E_1 E_2 \cdots E_{\ell})^{-1} = P^{-1},$$

and so $PP^T = PP^{-1} = I$. That is, P is orthogonal. \qed