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Theorem 3.7.1

Theorem 3.7.1

Theorem 3.7.1. Let Q be an n ×m matrix. For n ≤ m, Q is orthogonal
if and only if QQT = In. For n ≥ m, Q is orthogonal if and only if
QTQ = Im. A square matrix Q is orthogonal if and only if
QQT = QTQ = I (so a square matrix Q is orthogonal if and only if it is
invertible and Q−1 = QT ).

Proof. First, suppose n ≤ m. If Q is orthogonal then the row rank of Q
equals the column rank of Q by Theorem 3.3.2 and so Q must have n
orthonormal rows (since it cannot have more orthonormal [and hence
linearly independent] columns than rows). Let the rows of Q be
r1, r2, . . . , rn. Then the columns of QT are rT

1 , rT
2 , . . . , rT

n .

So the (i , j)

entry of QQT is ri r
T
j = 〈ri , rj〉 =

{
1 if i = j
0 if i 6= j

since the rows of Q are

orthonormal. Since QQT is n × n, then QQT = In. Conversely, if
QQT = In then the (i , j) entry of QQT is 〈ri , rj〉 as given above and so the
rows of Q form an orthonormal set and Q is orthogonal.
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Theorem 3.7.1

Theorem 3.7.1 (continued)

Proof (continued). Second, suppose n ≥ m. If Q is orthogonal then,
similar to the case n ≤ m, it must be that Q has m orthonormal columns.
Let the columns of Q be c1, c2, . . . , cm. Then the rows of QT are
cT
1 , cT

2 , . . . , cT
m . So the (i , j) entry of QTQ is

cT
i cj = 〈ci , cj〉 =

{
1 if i = j
0 if i 6= j

since the columns of Q are orthonormal.

Since QTQ is m ×m then QTQ = Im. Conversely, if QTQ = Im then the
(i , j) entry of QTQ is 〈ci , cj〉 as given above and so the columns of Q
form an orthonormal set and Q is orthogonal.

If Q is n × n, then combining the first two cases we have that Q is
orthogonal if and only if QQT = I = QTQ.
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Corollary 3.7.2

Corollary 3.7.2

Corollary 3.7.2. For Q a square orthogonal matrix, we have det(Q) = ±1.
For Q an n ×m orthogonal matrix Q with n ≥ m, we have 〈Q,Q〉 = m.

Proof. By Theorem 3.7.1 and Theorem 3.2.4, det(QQT ) = det(I ) or
det(Q)det(QT ) = 1. By Theorem 3.1.A, det(QT ) = det(Q), so
det(Q)2 = 1 and det(Q) = ±1.

Let the columns of n ×m orthogonal Q be c1, c2, . . . , cm. Then

〈Q,Q〉 =
m∑

j=1

cT
j cj =

m∑
j=1

〈cj , cj〉 =
m∑

j=1

‖cj‖2 = m

since the columns of Q form an orthonormal set of vectors.
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Theorem 3.7.3

Theorem 3.7.3

Theorem 3.7.3. Every permutation matrix is orthogonal.

Proof. First, form the elementary permutation matrix Epq from In by

interchanging rows p and q of In, In
Rp↔Rq−→ Epq = [eij ]. So we have eij = 0

for i ∈ {1, 2, . . . , n} \ {p, q} and i 6= j , and eii = 1 for
i ∈ {1, 2, . . . , n} \ {p, q}. For i = p we have epj = 0 for j 6= q and
epq = 1. For i = q we have eqj = 0 for j 6= p and eqp = 1.

So in
ET

pq = [et
ij ] we have et

ij = 0 for i ∈ {1, 2, . . . , n} \ {p, q} and i 6= j , and
et
ii = 1 for i ∈ {1, 2, . . . , n} \ {p, q}. For i = p we have et

jp = epj = 0 for
j 6= q and et

qp = epq = 1. For i = q we have et
jq = eqj = 0 for j 6= p and

et
pq = eqp = 1. So the (i , j) entry of EpqE

T
pq for i ∈ {1, 2, . . . , n} \ {p, q} is

n∑
k=1

eiket
kj = eiie

t
ij since eik = 0 for k 6= i here

=

{
1 if i = j
0 if i 6= j ,
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Theorem 3.7.3

Theorem 3.7.3 (continued 1)

Proof (continued). . . . for i = p the (i , j) entry (or the (p, j) entry) is

n∑
k=1

eiket
kj =

n∑
k=1

epket
kj = epqe

t
qj since epk = 0 for k 6= q

= epqejq =

{
1 if j = p
0 if j 6= p,

and for j = q the (i , j) entry (or the (i , q) entry) is

n∑
k=1

eiket
kj =

n∑
k=1

eiket
kq = eipe

t
pq since et

kq = 0 for k 6= p

= eipeqp =

{
1 if i = q
0 if i 6= q.

That is, the (i , j) entry of EpqE
T
pq is 0 if i 6= j and 1 if i = j ; that is,

EpqE
T
pq = In and Epq is orthogonal by Theorem 3.7.1.
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Theorem 3.7.3

Theorem 3.7.3 (continued 2)

Theorem 3.7.3. Every permutation matrix is orthogonal.

Proof (continued). Second, if E is an elementary permutation matrix
resulting from interchanging columns p and q in In, then E is, similarly, an
orthogonal matrix.

So if P is a permutation matrix, that is if P = E1E2 · · ·E` for elementary
permutation matrices E1,E2, . . . ,E` (where these correspond to row or
column interchanges) then

PT = (E1E2 · · ·E`)
T = ET

` ET
`−1 · · ·ET

1

= E−1
` E−1

`−1 · · ·E
−1
1 since each Ei is orthogonal from above,

and Theorem 3.7.1

= (E1E2 · · ·E`)
−1 = P−1,

and so PPT = PP−1 = I . That is, P is orthogonal by Theorem 3.7.1.
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