Theory of Matrices

Chapter 3. Basic Properties of Matrices 3.7. Orthogonality—Proofs of Theorems

Theorem 3.7.1. Let Q be an $n \times m$ matrix. For $n \le m$, Q is orthogonal if and only if $QQ^{T} = I_{n}$. For $n > m$, Q is orthogonal if and only if $Q^{T}Q = I_{m}$. A square matrix Q is orthogonal if and only if $QQ^{T} = Q^{T}Q = I$ (so a square matrix Q is orthogonal if and only if it is invertible and $Q^{-1} = Q^{T}$).

Proof. First, suppose $n \leq m$. If Q is orthogonal then the row rank of Q equals the column rank of Q by Theorem 3.3.2 and so Q must have n orthonormal rows (since it cannot have more orthonormal [and hence linearly independent] columns than rows). Let the rows of Q be r_1, r_2, \ldots, r_n . Then the columns of Q^T are $r_1^T, r_2^T, \ldots, r_n^T$.

Theorem 3.7.1. Let Q be an $n \times m$ matrix. For $n \le m$, Q is orthogonal if and only if $QQ^T = I_n$. For $n \ge m$, Q is orthogonal if and only if $Q^T Q = I_m$. A square matrix Q is orthogonal if and only if $QQ^T = Q^T Q = I$ (so a square matrix Q is orthogonal if and only if it is invertible and $Q^{-1} = Q^{T}$).

Proof. First, suppose $n \leq m$. If Q is orthogonal then the row rank of Q equals the column rank of Q by Theorem 3.3.2 and so Q must have n orthonormal rows (since it cannot have more orthonormal [and hence linearly independent] columns than rows). Let the rows of Q be r_1, r_2, \ldots, r_n . Then the columns of Q^T are $r_1^T, r_2^T, \ldots, r_n^T$. So the (i, j) entry of $QQ^{\mathcal{T}}$ is $r_i r_j^{\mathcal{T}} = \langle r_i, r_j \rangle = \left\{ \begin{array}{ll} 1 \text{ if } i = j, \\ 0 \text{ if } i \neq j. \end{array} \right.$ $\begin{array}{c} 1 & 1 \\ 0 & \text{if } i \neq j \end{array}$ since the rows of Q are orthonormal. Since QQ^{T} is $n \times n$, then $QQ^{T} = I_{n}$.

Theorem 3.7.1. Let Q be an $n \times m$ matrix. For $n \le m$, Q is orthogonal if and only if $QQ^T = I_n$. For $n \ge m$, Q is orthogonal if and only if $Q^T Q = I_m$. A square matrix Q is orthogonal if and only if $QQ^T = Q^T Q = I$ (so a square matrix Q is orthogonal if and only if it is invertible and $Q^{-1} = Q^{T}$).

Proof. First, suppose $n \leq m$. If Q is orthogonal then the row rank of Q equals the column rank of Q by Theorem 3.3.2 and so Q must have n orthonormal rows (since it cannot have more orthonormal [and hence linearly independent] columns than rows). Let the rows of Q be r_1, r_2, \ldots, r_n . Then the columns of Q^T are $r_1^T, r_2^T, \ldots, r_n^T$. So the (i, j) entry of $QQ^{\mathcal{T}}$ is $r_ir_j^{\mathcal{T}} = \langle r_i, r_j \rangle = \left\{ \begin{array}{ll} 1 \text{ if } i = j, \ 0 \text{ if } i \neq j. \end{array} \right.$ $\begin{array}{c} 1 & \cdots & -J \\ 0 & \text{if } i \neq j \end{array}$ since the rows of Q are orthonormal. Since QQ^T is $n \times n$, then $QQ^T = I_n$. Conversely, if $QQ^{\mathcal{T}} = I_n$ then the (i, j) entry of $QQ^{\mathcal{T}}$ is $\langle r_i, r_j \rangle$ as given above and so the rows of Q form an orthonormal set and Q is orthogonal.

Theorem 3.7.1. Let Q be an $n \times m$ matrix. For $n \le m$, Q is orthogonal if and only if $QQ^{T} = I_{n}$. For $n \ge m$, Q is orthogonal if and only if $Q^T Q = I_m$. A square matrix Q is orthogonal if and only if $QQ^T = Q^T Q = I$ (so a square matrix Q is orthogonal if and only if it is invertible and $Q^{-1} = Q^{T}$).

Proof. First, suppose $n \leq m$. If Q is orthogonal then the row rank of Q equals the column rank of Q by Theorem 3.3.2 and so Q must have n orthonormal rows (since it cannot have more orthonormal [and hence linearly independent] columns than rows). Let the rows of Q be r_1, r_2, \ldots, r_n . Then the columns of Q^T are $r_1^T, r_2^T, \ldots, r_n^T$. So the (i, j) entry of $QQ^{\mathcal{T}}$ is $r_ir_j^{\mathcal{T}} = \langle r_i, r_j \rangle = \left\{ \begin{array}{ll} 1 \text{ if } i = j, \ 0 \text{ if } i \neq j. \end{array} \right.$ $\begin{array}{c} 1 & \cdots & -J \\ 0 & \text{if } i \neq j \end{array}$ since the rows of Q are orthonormal. Since QQ^T is $n \times n$, then $QQ^T = I_n$. Conversely, if $Q Q^{\mathcal{T}} = I_n$ then the (i,j) entry of $Q Q^{\mathcal{T}}$ is $\langle r_i, r_j \rangle$ as given above and so the rows of Q form an orthonormal set and Q is orthogonal.

Theorem 3.7.1 (continued)

Proof (continued). Second, suppose $n \geq m$. If Q is orthogonal then, similar to the case $n \leq m$, it must be that Q has m orthonormal columns. Let the columns of Q be c_1, c_2, \ldots, c_m . Then the rows of Q^T are $c_1^{\mathcal{T}}, c_2^{\mathcal{T}}, \ldots, c_m^{\mathcal{T}}$. So the (i, j) entry of $Q^{\mathcal{T}} Q$ is $c_i^T c_j = \langle c_i, c_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$ $\begin{cases} 1 & \cdots & -j \\ 0 & \text{if } i \neq j \end{cases}$ since the columns of Q are orthonormal. Since $Q^T Q$ is $m \times m$ then $Q^T Q = I_m$. Conversely, if $Q^T Q = I_m$ then the (i,j) entry of $Q^{\bm{\mathcal{T}}} Q$ is $\langle c_i, c_j \rangle$ as given above and so the columns of Q form an orthonormal set and Q is orthogonal.

Theorem 3.7.1 (continued)

Proof (continued). Second, suppose $n \geq m$. If Q is orthogonal then, similar to the case $n \leq m$, it must be that Q has m orthonormal columns. Let the columns of Q be c_1, c_2, \ldots, c_m . Then the rows of Q^T are $c_1^{\mathcal{T}}, c_2^{\mathcal{T}}, \ldots, c_m^{\mathcal{T}}$. So the (i, j) entry of $Q^{\mathcal{T}} Q$ is $c_i^T c_j = \langle c_i, c_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$ $\begin{cases} 1 & \cdots & -j \\ 0 & \text{if } i \neq j \end{cases}$ since the columns of Q are orthonormal. Since $Q^T Q$ is $m \times m$ then $Q^T Q = I_m$. Conversely, if $Q^T Q = I_m$ then the (i,j) entry of $Q^{\bm{\mathcal{T}}} Q$ is $\langle c_i, c_j \rangle$ as given above and so the columns of Q form an orthonormal set and Q is orthogonal.

If Q is $n \times n$, then combining the first two cases we have that Q is orthogonal if and only if $QQ^{T} = I = Q^{T}Q$.

Theorem 3.7.1 (continued)

Proof (continued). Second, suppose $n \geq m$. If Q is orthogonal then, similar to the case $n \leq m$, it must be that Q has m orthonormal columns. Let the columns of Q be c_1, c_2, \ldots, c_m . Then the rows of Q^T are $c_1^{\mathcal{T}}, c_2^{\mathcal{T}}, \ldots, c_m^{\mathcal{T}}$. So the (i, j) entry of $Q^{\mathcal{T}} Q$ is $_1$, \mathfrak{c}_2 $c_i^T c_j = \langle c_i, c_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$ $\begin{cases} 1 & \cdots & -j \\ 0 & \text{if } i \neq j \end{cases}$ since the columns of Q are orthonormal. Since $Q^T Q$ is $m \times m$ then $Q^T Q = I_m$. Conversely, if $Q^T Q = I_m$ then the (i,j) entry of $Q^{\bm{\mathcal{T}}} Q$ is $\langle c_i, c_j \rangle$ as given above and so the columns of Q form an orthonormal set and Q is orthogonal.

If Q is $n \times n$, then combining the first two cases we have that Q is orthogonal if and only if $QQ^{T} = I = Q^{T}Q$.

Corollary 3.7.2. For Q a square orthogonal matrix, we have $\det(Q) = \pm 1$. For Q an $n \times m$ orthogonal matrix Q with $n > m$, we have $\langle Q, Q \rangle = m$.

Proof. By Theorem 3.7.1 and Theorem 3.2.4, $det(QQ^{T}) = det(I)$ or $det(Q)det(Q^T) = 1$. By Theorem 3.1.A, $det(Q^T) = det(Q)$, so $\det(\mathit{Q})^2=1$ and $\det(\mathit{Q})=\pm 1.$

Corollary 3.7.2. For Q a square orthogonal matrix, we have $\det(Q) = \pm 1$. For Q an $n \times m$ orthogonal matrix Q with $n > m$, we have $\langle Q, Q \rangle = m$.

Proof. By Theorem 3.7.1 and Theorem 3.2.4, $det(QQ^{T}) = det(I)$ or $det(Q)det(Q^{\mathcal{T}}) = 1$. By Theorem 3.1.A, $det(Q^{\mathcal{T}}) = det(Q)$, so $\det(Q)^2=1$ and $\det(Q)=\pm 1.$

Let the columns of $n \times m$ orthogonal Q be c_1, c_2, \ldots, c_m . Then

$$
\langle Q, Q \rangle = \sum_{j=1}^{m} c_j^T c_j = \sum_{j=1}^{m} \langle c_j, c_j \rangle = \sum_{j=1}^{m} ||c_j||^2 = m
$$

since the columns of Q form an orthonormal set of vectors.

Corollary 3.7.2. For Q a square orthogonal matrix, we have $\det(Q) = \pm 1$. For Q an $n \times m$ orthogonal matrix Q with $n > m$, we have $\langle Q, Q \rangle = m$.

Proof. By Theorem 3.7.1 and Theorem 3.2.4, $det(QQ^{T}) = det(I)$ or $det(Q)det(Q^{\mathcal{T}}) = 1$. By Theorem 3.1.A, $det(Q^{\mathcal{T}}) = det(Q)$, so $\det(Q)^2=1$ and $\det(Q)=\pm 1.$

Let the columns of $n \times m$ orthogonal Q be c_1, c_2, \ldots, c_m . Then

$$
\langle Q, Q \rangle = \sum_{j=1}^m c_j^T c_j = \sum_{j=1}^m \langle c_j, c_j \rangle = \sum_{j=1}^m \|c_j\|^2 = m
$$

since the columns of Q form an orthonormal set of vectors.

Theorem 3.7.3. Every permutation matrix is orthogonal.

Proof. First, form the elementary permutation matrix E_{pq} from I_n by interchanging rows ρ and q of I_n , $I_n \stackrel{R_p\leftrightarrow R_q}{\longrightarrow} E_{pq} = [e_{ij}]$. So we have $e_{ij}=0$ for $i \in \{1, 2, \ldots, n\} \setminus \{p, q\}$ and $i \neq j$, and $e_{ii} = 1$ for $i \in \{1, 2, \ldots, n\} \setminus \{p, q\}$. For $i = p$ we have $e_{pi} = 0$ for $j \neq q$ and $e_{pq} = 1$. For $i = q$ we have $e_{qi} = 0$ for $j \neq p$ and $e_{qp} = 1$.

Theorem 3.7.3. Every permutation matrix is orthogonal.

Proof. First, form the elementary permutation matrix E_{pa} from I_n by interchanging rows ρ and q of I_n , $I_n \stackrel{R_p\leftrightarrow R_q}{\longrightarrow} E_{pq} = [e_{ij}]$. So we have $e_{ij}=0$ for $i \in \{1, 2, \ldots, n\} \setminus \{p, q\}$ and $i \neq j$, and $e_{ii} = 1$ for $i \in \{1, 2, \ldots, n\} \setminus \{p, q\}$. For $i = p$ we have $e_{pi} = 0$ for $j \neq q$ and $e_{pq} = 1$. For $i = q$ we have $e_{qi} = 0$ for $j \neq p$ and $e_{qp} = 1$. So in $\mathcal{F}^{\mathcal{T}}_{pq} = [e^t_{ij}]$ we have $e^t_{ij} = 0$ for $i \in \{1,2,\ldots,n\} \setminus \{p,q\}$ and $i \neq j$, and $e^{\dot{t}}_{\dot{\theta}}=1$ for $i\in\{1,2,\ldots,n\}\setminus\{p,q\}.$ For $i=p$ we have $e^t_{jp}=e_{pj}=0$ for $j\neq q$ and $e^t_{qp}=e_{pq}=1.$ For $i=q$ we have $e^t_{jq}=e_{qj}= \overset{\sim}0$ for $j\neq p$ and $e_{pq}^t = e_{qp} = 1.$

Theorem 3.7.3. Every permutation matrix is orthogonal.

Proof. First, form the elementary permutation matrix E_{pa} from I_n by interchanging rows ρ and q of I_n , $I_n \stackrel{R_p\leftrightarrow R_q}{\longrightarrow} E_{pq} = [e_{ij}]$. So we have $e_{ij}=0$ for $i \in \{1, 2, \ldots, n\} \setminus \{p, q\}$ and $i \neq j$, and $e_{ii} = 1$ for $i \in \{1, 2, \ldots, n\} \setminus \{p, q\}$. For $i = p$ we have $e_{pi} = 0$ for $j \neq q$ and $e_{pq} = 1$. For $i = q$ we have $e_{qi} = 0$ for $j \neq p$ and $e_{qp} = 1$. So in $\mathcal{F}^{\mathcal{T}}_{pq} = [e^{t}_{ij}]$ we have $e^{t}_{ij} = 0$ for $i \in \{1,2,\ldots,n\} \setminus \{p,q\}$ and $i \neq j$, and $e^{t}_{\vec{\textit{\i}}}=1$ for $i\in\{1,2,\ldots,n\}\setminus\{\rho,q\}.$ For $i=p$ we have $e^{t}_{jp}=e_{pj}=0$ for $j\neq q$ and ${\rm e}_{qp}^t={\rm e}_{pq}=1.$ For $i=q$ we have ${\rm e}_{jq}^t={\rm e}_{qj}= \overset{\sim}0$ for $j\neq p$ and $e^t_{pq}=e_{qp}=1.$ So the (i,j) entry of $E_{pq}E_{pq}^T$ for $i\in\{1,2,\ldots,n\}\setminus\{p,q\}$ is

$$
\sum_{k=1}^{n} e_{ik} e_{kj}^{t} = e_{ji} e_{ij}^{t} \text{ since } e_{ik} = 0 \text{ for } k \neq i \text{ here}
$$

$$
= \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j, \end{cases}
$$

Theorem 3.7.3. Every permutation matrix is orthogonal.

Proof. First, form the elementary permutation matrix E_{pa} from I_n by interchanging rows ρ and q of I_n , $I_n \stackrel{R_p\leftrightarrow R_q}{\longrightarrow} E_{pq} = [e_{ij}]$. So we have $e_{ij}=0$ for $i \in \{1, 2, \ldots, n\} \setminus \{p, q\}$ and $i \neq j$, and $e_{ii} = 1$ for $i \in \{1, 2, \ldots, n\} \setminus \{p, q\}$. For $i = p$ we have $e_{pi} = 0$ for $j \neq q$ and $e_{pq} = 1$. For $i = q$ we have $e_{qi} = 0$ for $j \neq p$ and $e_{qp} = 1$. So in $\mathcal{F}^{\mathcal{T}}_{pq} = [e^{t}_{ij}]$ we have $e^{t}_{ij} = 0$ for $i \in \{1,2,\ldots,n\} \setminus \{p,q\}$ and $i \neq j$, and $e^{t}_{\vec{\textit{\i}}}=1$ for $i\in\{1,2,\ldots,n\}\setminus\{\rho,q\}.$ For $i=p$ we have $e^{t}_{jp}=e_{pj}=0$ for $j\neq q$ and ${\rm e}_{qp}^t={\rm e}_{pq}=1.$ For $i=q$ we have ${\rm e}_{jq}^t={\rm e}_{qj}= \overset{\sim}0$ for $j\neq p$ and $e^t_{pq}=e_{qp}=1.$ So the (i,j) entry of $E_{pq}E^{\mathcal T}_{pq}$ for $i\in\{1,2,\ldots,n\}\setminus\{p,q\}$ is

$$
\sum_{k=1}^{n} e_{ik} e_{kj}^{t} = e_{ji} e_{ij}^{t} \text{ since } e_{ik} = 0 \text{ for } k \neq i \text{ here}
$$

$$
= \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j, \end{cases}
$$

Theorem 3.7.3 (continued 1)

Proof (continued). ... for $i = p$ the (i, j) entry (or the (p, j) entry) is

$$
\sum_{k=1}^{n} e_{ik} e_{kj}^{t} = \sum_{k=1}^{n} e_{pk} e_{kj}^{t} = e_{pq} e_{qj}^{t} \text{ since } e_{pk} = 0 \text{ for } k \neq q
$$

$$
= e_{pq} e_{jq} = \begin{cases} 1 \text{ if } j = p \\ 0 \text{ if } j \neq p, \end{cases}
$$

and for $j = q$ the (i, j) entry (or the (i, q) entry) is

$$
\sum_{k=1}^{n} e_{ik} e_{kj}^{t} = \sum_{k=1}^{n} e_{ik} e_{kq}^{t} = e_{ip} e_{pq}^{t} \text{ since } e_{kq}^{t} = 0 \text{ for } k \neq p
$$

$$
= e_{ip} e_{qp} = \begin{cases} 1 \text{ if } i = q \\ 0 \text{ if } i \neq q. \end{cases}
$$

That is, the (i, j) entry of $E_{pq} E_{pq}^T$ is 0 if $i \neq j$ and 1 if $i = j$; that is, $E_{pq} E_{pq}^T = I_n$ and E_{pq} is orthogonal by Theorem 3.7.1.

Theorem 3.7.3 (continued 1)

Proof (continued). . . . for $i = p$ the (i, j) entry (or the (p, j) entry) is

$$
\sum_{k=1}^{n} e_{ik} e_{kj}^{t} = \sum_{k=1}^{n} e_{pk} e_{kj}^{t} = e_{pq} e_{qj}^{t} \text{ since } e_{pk} = 0 \text{ for } k \neq q
$$

$$
= e_{pq} e_{jq} = \begin{cases} 1 \text{ if } j = p \\ 0 \text{ if } j \neq p, \end{cases}
$$

and for $j = q$ the (i, j) entry (or the (i, q) entry) is

$$
\sum_{k=1}^{n} e_{ik} e_{kj}^{t} = \sum_{k=1}^{n} e_{ik} e_{kq}^{t} = e_{ip} e_{pq}^{t} \text{ since } e_{kq}^{t} = 0 \text{ for } k \neq p
$$

$$
= e_{ip} e_{qp} = \begin{cases} 1 \text{ if } i = q \\ 0 \text{ if } i \neq q. \end{cases}
$$

That is, the (i, j) entry of $E_{pq} E_{pq}^{\mathcal T}$ is 0 if $i \neq j$ and 1 if $i = j;$ that is, $E_{pq}E_{pq}^T = I_n$ and E_{pq} is orthogonal by Theorem 3.7.1.

Theorem 3.7.3 (continued 2)

Theorem 3.7.3. Every permutation matrix is orthogonal.

Proof (continued). Second, if E is an elementary permutation matrix resulting from interchanging columns p and q in I_n , then E is, similarly, an orthogonal matrix.

So if P is a permutation matrix, that is if $P = E_1 E_2 \cdots E_\ell$ for elementary permutation matrices E_1, E_2, \ldots, E_ℓ (where these correspond to row or column interchanges) then

$$
PT = (E1E2 \cdots E\ell)T = E\ellT E\ell-1T \cdots E1T
$$

= $E_{\ell}^{-1} E_{\ell-1}^{-1} \cdots E_{1}^{-1}$ since each Ei is orthogonal from above,
and Theorem 3.7.1
= $(E_1 E_2 \cdots E_{\ell})^{-1} = P^{-1}$,

and so $PP^T = PP⁻¹ = I$. That is, P is orthogonal by Theorem 3.7.1.

Theorem 3.7.3 (continued 2)

Theorem 3.7.3. Every permutation matrix is orthogonal.

Proof (continued). Second, if E is an elementary permutation matrix resulting from interchanging columns p and q in I_n , then E is, similarly, an orthogonal matrix.

So if P is a permutation matrix, that is if $P = E_1 E_2 \cdots E_\ell$ for elementary permutation matrices E_1, E_2, \ldots, E_ℓ (where these correspond to row or column interchanges) then

$$
PT = (E1E2...E\ell)T = E\ellT E\ell-1T...E1T
$$

= $E_{\ell}^{-1} E_{\ell-1}^{-1} ... E_{1}^{-1}$ since each Ei is orthogonal from above,
and Theorem 3.7.1
= $(E_1 E_2 ... E_{\ell})^{-1} = P^{-1}$,

and so $PP^{T} = PP^{-1} = I$. That is, P is orthogonal by Theorem 3.7.1. \Box