Theory of Matrices

Chapter 3. Basic Properties of Matrices
3.8. Eigenvalues; Canonical Factorizations—Proofs of Theorems
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Corollary 3.8.3
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Corollary 3.8.3. The set of eigenvectors of a n X n matrix A associated
with given eigenvalue c, along with the 0 vector, form a subspace of C"
(or of R™ if we restrict ourselves to real numbers). The subspace is the

eigenspace of A associated with eigenvalue c.

Proof. By the definition of vector space of n vectors from R" (which also
holds for C"; in fact it holds for F” where IF is any field) in Section 2.1, we
need only show that for any scalars a and b and any eigenvectors v; and
vo, we have avy + bvs is either an eigenvector of A with associated
eigenvalue c or is the 0 vector. We have

A(avi + bva) = A(avy) + A(bwva)
aA(vl) + bA(Vz)

= a(cv1) + b(cva) since vq and v, are

eigenvectors with eigenvalue ¢
= c(av1 + bw).
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Theorem 3.8.1

Theorem 3.8.1

Theorem 3.8.1. If v is an eigenvector of A and w is a left eigenvector of
A with a different associated eigenvalue, then v 1L w.

Proof. Let Av = c;v and wl A = cow ' where ¢ # co. Then
(WwTA)v = cowTv and wT(Av) = w'(civ) = aqw'v so
aw’v=cw'v, but since c; # ¢ it must be that w’v = (w,v) =0

and v L w. L]
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Corollary 3.8.3 (continued)

Corollary 3.8.3. The set of eigenvectors of a n X n matrix A associated
with given eigenvalue ¢, along with the 0 vector, form a subspace of C"
(or of R" if we restrict ourselves to real numbers). The subspace is the

eigenspace of A associated with eigenvalue c.

Proof (continued). So av; + bvs is either the 0 vector in C" or an
eigenvector of A with associated eigenvalue c. That is, the eigenvector

associated with eigenvalue ¢ along with the 0 vector is a subspace of
C". ]

Theory of Matrices June 28, 2020 5/ 42



Theorem 3.8.4

Theorem 3.8.4. The Cayley-Hamilton Theorem.
For n x n matrix A with characteristic polynomial ps we have pa(A) = 0.

Proof. By Theorem 3.1.3, (A — cZ,)adj(A — cZ,) = pa(c)Z,. Since pa(c)
is a polynomial of degree n, then pa(c) = sp + s1¢ + spc? + - - + s,¢" for
some Sp, S1, . ..,Sn. Then pa(c)Z, = pa(cZ,) = (A — cZp)adj(A — cZ,),
and so adj(A — cZ,) must be some n — 1 degree polynomial with n x n
matrix coefficients, say By, Bi, ..., By_1:

adj(A — cZ,) = Bo+ Bic + Boc® +--- + B,_1c™ L.

So

(A—cIn)(BO-l—Blc—i—Bzcz—i—- : -+B,,_1c”_1) = (so+51c+52c2+- +s,¢"I,

or ...
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Theorem 3.8.5

Theorem 3.8.5

Theorem 3.8.5. Let g(c) = so +s1¢ + 52 + -+ + 5, 1¢" 1 +¢" be a
monic polynomial. Then g(c) = det(cZ — A) for some n x n matrix A. In
particular, g(c) = det(cZ — A) for
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0 1 0 0
0 0 1 0
A= : : : :
0 0 0 1
s —s1 - —Sn1 |

Matrix A is called a companion matrix for polynomial gq.

Proof. We prove det(cZ — A) = g(c) by induction on n. If n =1 then
A = [—sp] and det(cZ — A) = sp + c. For clarity, we also observe that for

n:2,A:{ 0 1 ],cz—A:{c -1 ]and

—Sy —S1 Sp C+ 81

det(cZ — A) = (c)(c +s1) — (s0)(—1) = sp + s1¢ + 2.

Theory of Matrices June 28, 2020

8/ 4

Theorem 3.8.4. The Cayley-Hamilton Theorem

Theorem 3.8.4 (continued)

Proof (continued).

ABy+(ABy—By)c+(ABy—B1)c® +- - -+ (ABp_1—By_2)c" 4+ (~Bp_1c")

=(sp+sic+ $C 4 -+ snc")Zp.

Equating the coefficients of c:

ABO = S()In and ABO = Sozn
ABl — Bo = 511—,, A231 — ABO = 51A
ABy, — By = sI, A3By — A’B) = A2
ABp 1 —By 2 = 5,11, A"B, 1 — An_an—2 = Sn—lAn_1
_Bn_]_ — SnIn _Aan_l — SnAn.
Summing these n+ 1 equations gives 0 = pa(A), as claimed. [

Theorem 3.8.5

Theorem 3.8.5 (continued

1)
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Proof (continued). Suppose the result holds for k = n and consider the

case k =n+ 1. We have

c -1
0 ¢
cZ—-—A= : :
0 O
| S0 S1

Sk—1 C

+Sk_

Then det(cZ — A) can be computed using cofactors and column 1 by

Theorem 3.1.F to give

det(cZ — A) = cdet

Theory of Matrices
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C+ sk |
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Theorem 3.8.5 Theorem 3.8.5

Theorem 3.8.5 (continued 2) Theorem 3.8.5 (continued 3)
Proof (continued). ... " 10 -~ 0 01 Theorem 3.8.5. Let g(c) = sg +s1c+ 52 +---+ 5, 1¢" 1 +c" be a
c 1 0 0 monic polynomial. Then g(c) = det(cZ — A) for some n x n matrix A. In
P particular, g(c) = det(cZ — A) for
+(—1)"sodet : ; o ; : _ -
O 0 . _1 0 0 1 0 R O
0 0 .- ¢ -1 0 0 1 .- 0
- - A= : : : .. :
By the induction hypothesis, the first determinant is ) ' ) ' :
s1+ ¢+ 5362+ - + 5,172 + ck~1. Since the second determinant 0 0 0 - 1
involves a lower triangular matrix by Theorem 3.1.H (with A= —7 and [ %0 =51 7% TSl
1 0 --- 0 0] )
—c 1 -~ 0 0 Proof (continued). Hence
T= : ) we have that this determinant is det(cZ — A) = c(s1 + 2+ 5362+ -+ 51K 2+ N 4 (=1)F(=1)ks
8 8 o (1) =so+sict+ P+ s 1K K = sptsict s+ s+
... _C
p N d the result holds for k = n 4 1. Therefore, by Mathematical Induction,
det(~Z) = (—1); det(—Z) follows from Note 3.1.B. an
et(~Z) = (=1)7% det(~1) follows from Note it holds for all n € . O
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Theorem 3.8.6 Theorem 3.8.6 (continued)
Theorem 3.8.6. Let A be an n x n matrix with eigenvalues c1, ¢, . . ., Cp. o
Then det(A) = []7_, ¢ and tr(A) = 7, ;. Theorem 3.8.6. Let A be an n x n matrix with eigenvalues ¢, ¢, ..., Cp.

Then det(A) = []_; ¢ and tr(A) = > ; ¢;.

Proof (continued). As described in Note 3.8.A, the only o(7) [[iL; bj(j)
which contains powers of ¢ or ¢"~1 is the case when 7 is the identity. In
this case,

det(A—cT) = (~1)"(c"H{(~a-cr— )" (1) ac - c) (+) o) [ vt = I (as - )

Proof. Since the eigenvalues of A are the roots of the characteristic
polynomial pa(c), then pa(c) = (—=1)"(c — c1)(c — &) -+ - (¢ — ¢p) (the
coefficient of ¢” is (—1)" as explained in Note 3.8.A). So

and by setting variable ¢ = 0 we see that det(A) = c1cp -+ - ¢p.

= (=1)"c"+ (=1)" a1+ am+ -+ am)c™ P+ +a11320 - ann.
We also have det(A — cZ) = (=1) (=1)""(anr 22 nn) 11322 nn

aj1—c  alp e atn Equating this with (x) we see that
a app) —C - azn n n—1 n—1 n
det : : . : = > res, o(m) ITiz1 bir(i) (—1)"tr(A) = (-1)" Yayr+an+-+am) = (-1)"(—ca—c—---—cn)
an1 a2 't am—C ortr(A)=ca+a+---+cp O

where b; -y is the (i,7(i)) entry of A— cZ.
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Theorem 3.8.8

Theorem 3.8.8. Let A be an n x n matrix with distinct eigenvalues
{c1, ¢, ..., cx} and corresponding eigenvectors {xi, xo, ..., xx} where
(ci, x;) is an eigenpair for A. Then {x1,x2,...,xx} is a set of linearly
independent vectors. That is, eigenvectors associated with distinct
eigenvalues are linearly independent.

Proof. Suppose not. ASSUME that {x1, x2,...,xk} is not linearly
independent. Then there is some maximal subset

{y1,¥2,-..,yj} C{x1,x2,...,xk} which is linearly independent and j < k.
Let the corresponding eigenvalues for the y; be

{m1, p2, ..., pj} C{c,e,...,ck}. Then for some element in

{x1, %, ..., xk} \ {y1,¥2, ...y} say yjr1, we have yjq =Y tiy; for
some t; € C (not all t; = 0) since {y1,y2,...,yj+1} is a linearly dependent
set. Since yj;1 is an eigenvector of A, then there is an eigenvalue pj 1 for

Theorem 3.8.8 (continued)

Theorem 3.8.8. Let A be an n x n matrix with distinct eigenvalues
{c1, ¢, ..., cx} and corresponding eigenvectors {xi, x2, ..., xx} where
(ci, x;) is an eigenpair for A. Then {x1,x2,...,xk} is a set of linearly
independent vectors. That is, eigenvectors associated with distinct
eigenvalues are linearly independent.

Proof (continued). Now Ayj i1 = p1j+1yj+1, So we have

0= Ayjt1 — pjr1yj+1 = (A— i1 Z)yje1 = (A— pjrZ) D4 _q tiyi or
J J J
0="> ti(Ayi — pinaZy:) = Y timiyi — pjpayi) = Y tiui — pjs1)yie
i—1 i—1 i—1

But then the coefficients t;(p1; — ptj41) for 1 < i < j are not all 0 and so
this gives a dependence relation on {y1,y»,...,y;}, a CONTRADICTION
to the fact that this is a linearly independent set. So the assumption that

Yj+1in {c1, €,..., ¢} and by construction, yuj1 is distinct from {x1,X2,...,xx} is not linearly independent is false and so the set is linearly
H15 (25 - - ey [ independent, as claimed. O
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Theorem 3.8.9 Theorem 3.8.9 (continued 1)
Theorem 3.8.9. For any square matrix A, a Schur factorization exists. Proof (continued). So
Proof. If Ais 1 x 1, the result is trivial; take Q = [1] and B=A. If A'is uTau = 1Y Tanior= | VA Ut = | VIAV vTAU
. . . . . - urT [Vl 2]_ UTA [V| 2]_ UTA UT AU
the zero matrix, then we let @ be an identity matrix of the appropriate R%) > 5 AV 9 2
size and left B be a zero matrix (which is, in fact, upper triangular). CvTiev vTAU, )
= uT UT AU since Av = cv
For n > 1, let (¢, v) be an eigenpair of A with eigenvector v normalized. -2 v Yo A2
Form an orthogonal matrix U with v as the first column (this can be done ~ [eTv vVIAU ] [ c vIAU, T B (%)
by taking v followed by the standard basis vectors for R” and the applying i cUjv U AU, 0 U AU,
the Gram-Schmidt process; this produces an orthonormal basis of R” since vy — HV||2 — 1 and v is orthogonal to each column

which includes vector v [and one of the vectors will be a linear
combination of the others and will become the zero vector leaving n
nonzero vectors|). Let matrix U, consist of the remaining columns of the
basis so that U = [v | Us].

Theory of Matrices June 28, 2020
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of U, (so the inner product of each column of U, with v is 0

and UpvT isa (n—1) x 1 zero matrix)

where UJ AUy is an (n — 1) x (n — 1) matrix.

June 28, 2020
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Theorem 3.8.9 (continued 2)

Proof (continued). Since U is orthogonal, by Theorem 3.7.1,

UT = U~ By Theorem 3.8.2(8), the eigenvalues of UT AU = U~*AU
are the same as the eigenvalues of A. If n = 2, then U2TAU2 is a scalar
(well a 1 x 1 matrix) and the two eigenvalues of A must be ¢ and this
scalar (notice that UT AU = B in this case is upper triangular and so the
eigenvalues are the diagonal entries by Theorem 3.8.2(5)). So the result
holds for k x k where k = 2.

We now show the result holds by induction. Suppose a Schur factorization
exists for all k x k matrices where k = n— 1. Let A be an n X n matrix
with eigenpair (¢, v) where v is normalized. As discussed above in (%),

TAU
uTAau=| -/ 2] here UJ AU, i —1) x (n — 1) matrix.
{ 0 UJ AU where Uy AU; is an (n — 1) x (n — 1) matrix

So by the induction hypothesis there exists (n — 1) x (n — 1) orthogonal
matrix V such that

VT(Uf AUo)V = T where T is upper triangluar.

Theorem 3.8.9 (continued 4)

(+)
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Theorem 3.8.9. For any square matrix A, a Schur factorization exists.

Proof (continued). So
oTa0— | € viALV ] 5
=14 T = B.

Since c is a constant and T is upper triangular, then B is upper triangular
and the result holds for k = n. Therefore, by Mathematical Induction,
every n X n matrix has a Schur factorization. ]

Theory of Matrices June 28, 2020
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Theorem 3.8.9 (continued 3)

1 0
0V

1 0 10 1 0 10

TH _ T _ _

Q Q‘{o VT]U U{o v]_[o VVT]_{O I]
by Theorem 3.7.1 (which implies UTU =7 and VVT =7) and so Q is
orthogonal (by Theorem 3.7.1, again). Next, let

Proof (continued). Let Q = U { } Then

T 1 o0 T 1 0

@RIAQ = 0 VT UTAU gy
1 0 c vIAU, 10 from (+)
o VvT |0 UJAL, || 0 V
[ VvTAU: 1 01 [c VvITALV
~ o VIUJAUL, [ [0 V| |0 VTUJALV

[ ¢ vTALV

— 0 - ]—Bby(**).
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Theorem 3.8.10

Theorem 3.8.10. Let A be an n X n matrix, let ¢, ¢, ..., ¢, be (possibly
complex) scalars, and let vy, va,. .., v, be nonzero n-vectors. Let V be an
n X n matrix with ith column v; for 1 </ < n and let

C = diag(c1, ¢,-..,¢n). Then AV = VC if and only if ¢1, ¢p, ..., ¢, are
eigenvalues of A and v; is an eigenvector of A corresponding to ¢; for
j=12,...,n.

Proof. The jth column of VC = [v1, va, ..., vy]diag(ci, 2, ..., Cpn) is
¢jvj. The jth column of AV is Av;. So AV = CV if and only if Av; = ¢jv;
for 1 <j < n. Thatis, AV = VC if and only if v; is an eigenvector of A
with corresponding eigenvalue c;. O
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Theorem 3.8.11

Theorem 3.8.11. Diagonalizability Theorem.

Let A be an n X n matrix with distinct eigenvalues c1, ¢, . .., ¢k with
algebraic multiplicities my, mo, ..., my, respectively. Then Ais
diagonalizable if and only if rank(A — ¢;Z) = n—m; for i =1,2,... k
(that is, each eigenvalue is semisimple).

Proof. For sufficiency, suppose that for each i, 1 </ < k, we have
rank(A — ¢;Z) = n — m;. By Theorem 3.5.4,

dim(N(A = ¢Z)) = n—rank(A — ¢;Z) = m;. Now N(A — ¢;Z) is the set
of all n-vectors x such that (A — ¢;Z)x = 0. Since dim(N (A — ¢Z)) = m;,
there are m; linearly independent x such that Ax = ¢;Zx = c¢jx (these m;
vectors are a basis for the eigenspace of ¢;). By Theorem 3.8.8,
eigenvectors associated with distinct eigenvalues are linearly independent.
So there are m; + my + - - - + my = n linearly independent eigenvectors for
A. That is, for matrix V with the linearly independent eigenvectors as its
columns, we have rank(V) = n and so V1 exists.

Theorem 3.8.A

Theorem 3.8.A

Theorem 3.8.A. A (real) n x n matrix A is orthogonally diagonalizable if
and only if A is symmetric.

Proof. First, suppose A is orthogonally diagonalizable. Let C be a
diagonal matrix and let @ be an orthogonal matrix such that

A=QCQT = QCQ™ (QT = Q! by Theorem 3.7.1). Then

AT = (QCQT)T = (QT)TCTQT = QCQT = A and so A is symmetric.
Now suppose A is symmetric. We show that A is orthogonally
diagonalizable using induction. If n =1 then we take @ = [1] and we have
A= QAQ" where C = A, so that A is orthogonally diagonalizable. Now
suppose the result holds for all (n — 1) x (n — 1) matrices. Since A is real
and symmetric then by Theorem 3.8.7, the eigenvalues of A are real. Let ¢
be some eigenvalue of A. If v is an eigenvector of A associated with ¢ then
det(A — c¢Z) = 0 and since A and c are real then the system of equations
(A— cZ)x =0 (or Ax = cx) has a nontrivial real solution x = v.

Theory of Matrices June 28, 2020
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Theorem 3.8.A (continued 1)
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Theorem 3.8.11 (continued)

Proof (continued). With C a diagonal matrix with ¢j; as the eigenvalue
associated with eigenvector v;, we have AV = VC by Theorem 3.8.10.
Therefore, A= VCV~! and A is diagonalizable.

To see the condition is necessary, suppose A is diagonalizable. Then

A = VCV ! for some invertible V and diagonal C. Then AV = VC and
so by Theorem 3.8.10, C = diag(c1, ¢, ..., Cn) Where ¢c1, ¢, ..., ¢, are
eigenvalues of A and V has its jth column an eigenvector of A
corresponding to ¢j. Since V is invertible then rank(V) = n and the
eigenvectors in V are linearly independent, with the eigenvalues repeated
in C according to multiplicity. So for 1 </ < k, the diagonal matrix

C — ¢;Z has exactly m; zeros on the diagonal and hence

rank(C — ¢;Z) = n— m;. Since V and V™1 are invertible and so are of full
rank, then by Theorem 3.3.12,

n— m; = rank(C — ¢;Z) = rank(V(C — gZ)V 1)
= rank(VCV ™! — ¢;T) = rank(A — ¢T), as claimed. [J
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Proof (continued). Define vi = v/||v|. Then vy is a real unit
eigenvector of A. Expand the set {v1} to an orthonormal bases of R",
{v1,v2,...,vp}, which can be done as explained in the proof of Theorem
3.8.9. Form n x n matrix P with ith column v; for 1 <j<n. Then P is
orthogonal so P~t = PT by Theorem 3.7.1. Consider P"1AP = PT AP.
This matrix is symmetric because (PTAP)T = PTAT(PT)T = PTAP
(since A is symmetric). The first column of this matrix is

1

o

PTAP| 0 | =PTAn =P ci=cPTvi=clyvo - vp]Tvy =+
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Theorem 3.8.A (continued 2)

Proof (continued).

1 c
vlT vlT Vi (vi,v1) 0 0
V2T v2T Vi (va, v1) 0 0
=cC . Vi=~¢C = C . = C =
V,Z— v,,T Vi (Vn, v1) 0 0

Since P~L1AP is symmetric, then its first row must be [c 0 0 --- 0]. So
we must have a partitioning of the form P"1AP = [ g g ] where B is

an (n — 1) x (n — 1) symmetric matrix. By the induction hypothesis, B is
orthogonally diagonalizable and so B = UDU~! or D = U~'BU = UT BU
for diagonal matrix D and orthogonal matrix U (matrices B, U, D, and
UT are each (n—1) x (n—1)).

Theorem 3.8.A (continued 4)

Theory of Matrices June 28, 2020

Theorem 3.8.A. A (real) n x n matrix A is orthogonally diagonalizable if
and only if A is symmetric.

Proof (continued). ...where Q is orthogonal and C is diagonal; that is,
A is orthogonally diagonalizable and the result holds for n x n matrices.
Therefore, by Mathematical Induction, the result holds for all square

matrices. [
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Theorem 3.8.A (continued 3)

Proof (continued). For this matrix U, define R = { (1) U } and notice
that R7! = { é UO_I } = { (1) UOT ] = R". Let @ = PR; notice
= (PR)(PR)T = PRRTPT =T, since P and R are orthogonal, and

so Q is orthogonal. Then

QlAQ = (R1P™ P AP)R = R} [ g g } R

“[o o6 8]1e o]=[5 o%s]]o 0]
15 vte] =16 0]

0 -1 _ c O
olo=al5 5

DYA(PR) = R~

A:Q{g ]oTzocaT,...
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Theorem 3.8.12

Theorem 3.8.12. If Ais an n X n diagonalizable matrix where
A = VCV~! for diagonal C, then

(1) there are n linearly independent eigenvectors of A,

(2) the number of nonzero eigenvalues of A is equal to rank(A).

Proof. (1) Since A= VCV~! then AV = VC and so by Theorem 3.8.10
the ith column of V is v; where v; is an eigenvector of ¢; where

C = diag(c1, ¢2,...,¢n). Since V is invertible then V is full rank n (see
the definition of inverse matrix in Section 3.3) and so the dimension of the
column space of V' is n and hence the n columns of V are linearly
independent.

(2) Since V is invertible then it is full rank n and so by Theorem 3.3.9,

there are matrices P and Q, products of elementary matrices, such that
PVQ = I.
Theory of Matrices
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Theorem 3.8.12 (continued)

Theorem 3.8.12. If Ais an n x n diagonalizable matrix where
A = VCV~1 for diagonal C, then

(1) there are n linearly independent eigenvectors of A,

(2) the number of nonzero eigenvalues of A is equal to rank(A).

Proof. Now each elementary matrix is invertible (in the notation of
Section 3.2, see the note after Theorem 3.2.3, Ep_q1 = Epq, Es;1 = E(l/s)pv
and Ep_scl7 = Ep(—s)q) S0 a product of elementary matrices is invertible and
hence Q! exists so that PV = @~ ! and similarly V = P~1Q~1. [We
have shown that an invertible matrix is a product of elementary matrices.]
That is, both V and V™1 are products of elementary matrices, so by
Theorem 3.3.3, rank(A) = rank(VCV 1) = rank(C). Since

C = diag(c1, ¢, - .., cp) then the ith column of C is cje; where ¢; is the
ith standard basis vector of R". So rank(C) is the number of nonzero ¢;e;,

which is the number of nonzero eigenvalues of C. ]
Theorem 3.8.14
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Theorem 3.8.14. Any real symmetric matrix is positive definite if and
only if all of its eigenvalues are positive. Any real symmetric matrix is
nonnegative definite if and only if all of its eigenvalues are nonnegative.

Proof. By Theorem 3.8.A, A is orthogonally diagonalizable so
A= VCV~1 = VCVT where V is orthogonal (so V=1 = VT). So for any
x € R" (where Ais n x n) we have

xTAx =xT(VCVT)x = (xTV)C(VTx) =y Cy

where y = VTx. So, for x £ 0, xTAx >0 (notice xTAxis1x1:;itisa
quadratic form), that is, A is positive definite (by definition), if and only if
yT Cy > 0. Now with the entries of y as y; for i = 1,2,...,n, we have
yTCy=>"1(yi)%ci. Soif each ¢; > 0 then y" Cy > 0 and hence A is
positive definite.
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Theorem 3.8.13

Theorem 3.8.13

Theorem 3.8.13. If A is a symmetric matrix where (c, v) is an eigenpair
for A with vTv = ||v||?> = 1, then for any k € N we have

(A—cw k= Ak — ckyyT,

Proof. We prove the result by induction. Of course it holds for kK = 1.

Suppose the result holds for kK — 1 so that
(A—cw )kt = Ak=L _ ck=lyy T Then

(A—cwD)F = (AT (A—cwT)
= AW TA— AW T R Tw T
= AR W TA— (v T 4 cFw T since

Ak=1y = Ak_z(cv) = c(Ak_zv) =...=ck1y
= At TA—ckwT + ckwT
= Ak K Ly(ATV)T = A — k= 1y(AV)T since AT = A
= A Fly(evT) = AR — ckw T,

So the result holds for k and the result follows by Math Induction. m
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Theorem 3.8.14 (continued)

Theorem 3.8.14. Any real symmetric matrix is positive definite if and
only if all of its eigenvalues are positive. Any real symmetric matrix is
nonnegative definite if and only if all of its eigenvalues are nonnegative.

Proof (continued). By choosing y as the ith standard basis vector for R”
(or equivalently by choosing x = Vly where y is the ith standard basis
vector for R™), we have y' Cy = ¢;. So if A is positive definite then

xTAx = yTCy = ¢; > 0 and so each eigenvalue ¢; > 0. The proof for
nonnegative definite is similar. O
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Theorem 3.8.15 Theorem 3.8.15

Theorem 3.8.15 Theorem 3.8.15 (continued)
Theorem 3.8.15. Theorem 3.8.15.
(1) If symmetric matrix A is positive definite then there is (1) If symmetric matrix A is positive definite then there is
nonsingular P such that PTAP = |. nonsingular P such that PTAP = |.
(2) If symmetric matrix A is nonnegative definite and (2) If symmetric matrix A is nonnegative definite and
A= VCVT where V is orthogonal (such V exists by A= VCVT where V is orthogonal (such V exists by
Theorem 3.8.A) and C = diag(ci, ¢, . .., cp) Where the Theorem 3.8.A) and C = diag(ci, ¢, . .., cp) Where the
eigenvalues of A are ¢y, ¢, ..., c,. Then there is diagonal eigenvalues of A are ¢y, ¢, ..., c,. Then there is diagonal
nonnegative definite matrix S such that (VSVT)2 = A, nonnegative definite matrix S such that (VSVT)2 = A
Proof. (1) By Theorem 3.8.A, A= VCV'T for orthogonal V where Proof (continued). (1) So (VS) A((VS)T)~! = (VS)tA((VS)™H)T
C = diag(ci1, ¢, ..., cp) and the eigenvalues of A are ¢1, ¢, ..., c,. Since by Theorem 3.3.7. With P = ((VS)™1)7, the claim follows.
A is positive definite, by Theorem 3.8.14 each ¢; > 0. Define (2) Similar to the proof of part (1), we take S = diag(\/C1, /2, - - - ; /Cn)-
= diag(\/c1, /@2, - .. v/Cn). Then S? = C and so Then S is diagonal with nonnegative eigenvalues \/ci, /2, ..., +/Cq and
A VS2VT — VSSYT = vssTyT — VS(VS)T. Now V is orthogonal so S is nonnegative definite by Theorem 3.8.14. Also S2 = C and so
and the ith column of VS is \/c; times the ith column of V' (where (since V is orthogonal and V~1 = VT):

¢; > 0), so the columns of VS are linearly independent and VS is full rank

T _ yc2yT _ T _ T T T2
and hence (by definition) invertible. A=VCVE = V55V = VSISV = VSVIVSVE = (VsVi)~ O
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Theorem 3.8.16 Theorem 3.8.16 (continued 1)
Proof (continued). Partition Q as Q = [Q1 Q2] where Q1 is m x r. Now
Theorem 3.8.16. Let A be an n x m matrix. Then there exists a singular define n x r matrix P; as P; = AQDl_1 and let P, be any nx (n—r)
value decomposition of A. matrix such that P/ P, = 0 (where 0 is the r x (n — r) zero matrix; one
such choice for P, is the n x (n — r) zero matrix but we make a particular
Proof. First, matrix AT A is a m x m symmetric matrix which is choice of P later). Create n x n matrix P as P = [P1 Ps].
nonnegative definite by Theorem 3.3.14(2) and so by Theorem 3.8.14 the D2 0
eigenvalues of AT A are nonnegative. By Theorem 3.8.A, AT A is Notice that ATA = QCQT implies QTATAQ = C = [ 01 0 } . Also

orthogonally diagonalizable so there is m x m orthogonal Q such that

ATA = QCQT where C = diag(cy, ¢, . ... Cn) where T T AT T AT
c1> ¢ > - > ¢, >0 are the eigenvalues of AT A. Let r = rank(A). By QTATAQ = [ 817' ] ATA[Ql @] = { ngﬁTﬁgl QlTQTQgZ ]
Theorem 3.3.14(6), rank(AT A) = r and by Theorem 3.8.12, r is the 2 2 b ?
number of nonzero eigenvalues of AT A. Define the r x r diagonal matrix where QT ATAQy is r x r. So @ ATAQ; = D? and
of rank r, Dy = diag(/c1, /2, ...,/C). Since Dy is full rank then Dl_1 QTATAQZ (AQ)TAQ, = 0. The second equation implies AQ> = 0 by
exists. Theorem 3.3.14(1). Now P; = AQ;D; ! by definition, so

P/ = D;'Q] AT and hence Q] AT = D;P] or AQ; = P1Ds.
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Theorem 3.8.16 (continued 2)

Proof (continued). So

[ Pl [ PTAQ: PTAQ,
| P } Al @l = { PJAQL PJAQ,
[ (D;'QTAT)AQL P (0)

PTAQ =

} since P = Dl_lQlTAT,

— | PJ(PiDy) PJ (0)
A@QL = P1D1, and AQ; =0
D7YD?) 0] .
- (P%Pi)h))l o} since Q ATAQ, = D7
L 1
= Dol 8 } since P P, = 0. (*)

Notice that PTAQ is an n x m matrix. Now
PP, = (D@ AT)Y(D QT AT)T since P = D{1Q] AT
=D 'QIATAQID; Y = D 1DED; (since QT ATAQ, = D) =1,

Theorem 3.8.16 (continued 3)

Proof (continued). ...so by Theorem 3.7.1, P; is orthogonal. By
Theorem 3.5.4, dim(N(P{")) = n — rank(P]"). By Theorem 3.3.14(6),
rank(P] P1) = rank(P;) and by Theorem 3.3.2, rank(Py) = rank(P]"). So
rank(P] ) = rank(P{ P1) = rank(Z,) = r. Hence

dim(N(P{)) = n—rank(P{) = n—r. Let P, be any n x (n — r) matrix
whose columns form an orthonormal basis of N(P;"). Then P/ P, =0 as
required above and P2TP2 = Ip—, since Py is orthogonal (Theorem 3.7.1).
So

P PP, P[P Z, 0
Tp_ 1 _ 171 172 _ r _
o= e [ e =16 2 e

and P is orthogonal (Theorem 3.7.1). By (), PTAQ = { D01 8 ] =D,

or A= PDQT where Pisannxn orthogonal matrix and @ isan m X m
orthogonal matrix. With U = P and V = Q, we see that A has a singular

value decomposition, as claimed. ]
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Theorem 3.8.17 Theorem 3.8.17 (continued 1)
Proof (continued). So
Theorem 3.8.17. Let A be an n X m matrix with spectral decomposition m
T T 1k 2 k n kT 1 k 2 k n k1T
B o T oo |1 ifi= (ujv; u;v->:z<[u-v- urvi o u v e v urv Lo ultvi] )
A= UDV —Z,-:ldiUiVi.Then<UiVi7UjVj>_{0 ifi;é'and P N T TS R T
J k=1
d; = (A, uiv;"). That is, the spectral decomposition is a Fourier expansion m L ko P s
n
of A. :Z<(Uivi)+(uivi + -+ (uf'y; )
k=1
m
Proof. Recall for matrices, (A, B) = >, al b = >7_,{(ak, by) (see
. : k=1 Pk k=1\9k> Dk — ((,1)2 242 n\2 KN2 (1121012 —
Sk = (@) + (@) 4+ (@?) D (v = lluilPlvill® = 1.
i Vi k=1
u?vk
Section 3.2), and the kth column of u,-v,-T is t where we use Next,
. m
T T 1.k 2 k KT 1,1k 2 k KT
utvk (uivi' , ujv; >:Z<[Uivi TV s UV vy us vy vE])
superscripts to indicate entries in a column vector. Notice that u,-v,-T is k=1
n x m and so has m columns, each of length n. m
' _ 1 k1 k k 2 k n ok n k
—Z(u,v, upvi +upviupvp + e upy; ujvj>
k=1
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Theorem 3.8.17 (continued 2)

Theorem 3.8.17. Let A be an n X m matrix with spectral decomposition
1 ifi=j

A=UDVT =3"_ diujv". Then (u,-v,-T,ujva> = { 0 ifi4] and

di = (A, u,-v,-T>. That is, the spectral decomposition is a Fourier expansion

of A.

Proof (continued).

m
E (ulvku1 k4 u,zv,-kujzvjk+ +u”vku”vk)

k=1

m m
E v,kkuu -|—uu-|— —|—uu E v,kku,,uJ =0.

The proof that d; = (A, u;v;") is left as a Exercise 3.8.D. ]
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