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Theorem 3.8.1

Theorem 3.8.1

Theorem 3.8.1. If v is an eigenvector of A and w is a left eigenvector of
A with a different associated eigenvalue, then v ⊥ w .

Proof. Let Av = c1v and wTA = c2w
T where c1 6= c2. Then

(wTA)v = c2w
T v and wT (Av) = wT (c1v) = c1w

T v so
c1w

T v = c2w
T v , but since c1 6= c2 it must be that wT v = 〈w , v〉 = 0

and v ⊥ w .
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Corollary 3.8.3

Corollary 3.8.3

Corollary 3.8.3. The set of eigenvectors of a n × n matrix A associated
with given eigenvalue c , along with the 0 vector, form a subspace of Cn

(or of Rn if we restrict ourselves to real numbers). The subspace is the
eigenspace of A associated with eigenvalue c .

Proof. By the definition of vector space of n vectors from Rn (which also
holds for Cn; in fact it holds for Fn where F is any field) in Section 2.1, we
need only show that for any scalars a and b and any eigenvectors v1 and
v2, we have av1 + bv2 is either an eigenvector of A with associated
eigenvalue c or is the 0 vector.

We have

A(av1 + bv2) = A(av1) + A(bv2)

= aA(v1) + bA(v2)

= a(cv1) + b(cv2) since v1 and v2 are

eigenvectors with eigenvalue c

= c(av1 + bv2).
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Corollary 3.8.3

Corollary 3.8.3 (continued)

Corollary 3.8.3. The set of eigenvectors of a n × n matrix A associated
with given eigenvalue c , along with the 0 vector, form a subspace of Cn

(or of Rn if we restrict ourselves to real numbers). The subspace is the
eigenspace of A associated with eigenvalue c .

Proof (continued). So av1 + bv2 is either the 0 vector in Cn or an
eigenvector of A with associated eigenvalue c . That is, the eigenvector
associated with eigenvalue c along with the 0 vector is a subspace of
Cn.
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Theorem 3.8.4. The Cayley-Hamilton Theorem

Theorem 3.8.4

Theorem 3.8.4. The Cayley-Hamilton Theorem.
For n × n matrix A with characteristic polynomial pA we have pA(A) = 0.

Proof. By Theorem 3.1.3, (A− cIn)adj(A− cIn) = pA(c)In. Since pA(c)
is a polynomial of degree n, then pA(c) = s0 + s1c + s2c

2 + · · ·+ snc
n for

some s0, s1, . . . , sn. Then pA(c)In = pA(cIn) = (A− cIn)adj(A− cIn),
and so adj(A− cIn) must be some n − 1 degree polynomial with n × n
matrix coefficients, say B0,B1, . . . ,Bn−1:

adj(A− cIn) = B0 + B1c + B2c
2 + · · ·+ Bn−1c

n−1.

So

(A−cIn)(B0+B1c+B2c
2+· · ·+Bn−1c

n−1) = (s0+s1c+s2c
2+· · ·+snc

n)In

or . . .
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Theorem 3.8.4. The Cayley-Hamilton Theorem

Theorem 3.8.4 (continued)

Proof (continued).

AB0+(AB1−B0)c+(AB2−B1)c
2+· · ·+(ABn−1−Bn−2)c

n−1+(−Bn−1c
n)

= (s0 + s1c + s2c
2 + · · ·+ snc

n)In.

Equating the coefficients of c :

AB0 = s0In and AB0 = s0In

AB1 − B0 = s1In A2B1 − AB0 = s1A
AB2 − B1 = s2In A3B2 − A2B1 = s2A

2

...
...

ABn−1 − Bn−2 = sn−1In AnBn−1 − An−1Bn−2 = sn−1A
n−1

−Bn−1 = snIn −AnBn−1 = snA
n.

Summing these n + 1 equations gives 0 = pA(A), as claimed.
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Theorem 3.8.5

Theorem 3.8.5

Theorem 3.8.5. Let q(c) = s0 + s1c + s2c
2 + · · ·+ sn−1c

n−1 + cn be a
monic polynomial. Then q(c) = det(cI − A) for some n × n matrix A. In
particular, q(c) = det(cI − A) for

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−s0 −s1 −s2 · · · −sn−1

 .

Matrix A is called a companion matrix for polynomial q.

Proof. We prove det(cI − A) = q(c) by induction on n. If n = 1 then
A = [−s0] and det(cI − A) = s0 + c .

For clarity, we also observe that for

n = 2, A =

[
0 1
−s0 −s1

]
, cI − A =

[
c −1
s0 c + s1

]
, and

det(cI − A) = (c)(c + s1)− (s0)(−1) = s0 + s1c + c2.
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Theorem 3.8.5

Theorem 3.8.5 (continued 1)

Proof (continued). Suppose the result holds for k = n and consider the
case k = n + 1. We have

cI − A =


c −1 0 · · · 0 0
0 c −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · c −1
s0 s1 s2 · · · sk−1 c + sk

 .

Then det(cI − A) can be computed using cofactors and column 1 by
Theorem 3.1.F to give

det(cI − A) = cdet




c −1 0 · · · 0 0
0 c −1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · c −1
s1 s2 s3 · · · sk−1 c + sk



 . . .
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Theorem 3.8.5

Theorem 3.8.5 (continued 2)

Proof (continued). . . .

+(−1)ks0det




−1 0 · · · 0 0
c −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 0
0 0 · · · c −1



 .

By the induction hypothesis, the first determinant is
s1 + s2c + s3c

2 + · · ·+ sk−1c
k−2 + ck−1. Since the second determinant

involves a lower triangular matrix by Theorem 3.1.H (with A = −I and

T =


1 0 · · · 0 0
−c 1 · · · 0 0
...

... · · ·
...

...
0 0 · · · 1 0
0 0 · · · −c 1

) we have that this determinant is

det(−I) = (−1)k ; det(−I) follows from Note 3.1.B.
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Theorem 3.8.5

Theorem 3.8.5 (continued 3)

Theorem 3.8.5. Let q(c) = s0 + s1c + s2c
2 + · · ·+ sn−1c

n−1 + cn be a
monic polynomial. Then q(c) = det(cI − A) for some n × n matrix A. In
particular, q(c) = det(cI − A) for

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−s0 −s1 −s2 · · · −sn−1

 .

Proof (continued). Hence

det(cI −A) = c(s1 + s2c + s3c
2 + · · ·+ sk−1c

k−2 + ck−1) + (−1)k(−1)ks0

= s0 +s1c +s2c
2 + · · ·+sk−1c

k−1 +ck = s0 +s1c +s2c
2 + · · ·+snc

n +cn+1

and the result holds for k = n + 1. Therefore, by Mathematical Induction,
it holds for all n ∈ N.
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Theorem 3.8.6

Theorem 3.8.6

Theorem 3.8.6. Let A be an n × n matrix with eigenvalues c1, c2, . . . , cn.
Then det(A) =

∏n
i=1 ci and tr(A) =

∑n
i=1 ci .

Proof. Since the eigenvalues of A are the roots of the characteristic
polynomial pA(c), then pA(c) = (−1)n(c − c1)(c − c2) · · · (c − cn) (the
coefficient of cn is (−1)n as explained in Note 3.8.A). So

det(A−cI) = (−1)n(cn+(−c1−c2−· · ·−cn)c
n−1+· · ·+(−1)nc1c2 · · · cn) (∗)

and by setting variable c = 0 we see that det(A) = c1c2 · · · cn.

We also have det(A− cI) =

det




a11 − c a12 · · · a1n

a21 a22 − c · · · a2n
...

...
. . .

...
an1 an2 · · · ann − c


 =

∑
π∈Sn

σ(π)
∏n

i=1 bi π(i)

where bi π(i) is the (i , π(i)) entry of A− cI.
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Theorem 3.8.6

Theorem 3.8.6 (continued)

Theorem 3.8.6. Let A be an n × n matrix with eigenvalues c1, c2, . . . , cn.
Then det(A) =

∏n
i=1 ci and tr(A) =

∑n
i=1 ci .

Proof (continued). As described in Note 3.8.A, the only σ(π)
∏n

i=1 bi π(i)

which contains powers of cn or cn−1 is the case when π is the identity. In
this case,

σ(π)
n∏

i=1

bi π(i) =
n∏

i=1

(aii − c)

= (−1)ncn + (−1)n−1(a11 + a22 + · · ·+ ann)c
n−1 + · · ·+ a11a22 · · · ann.

Equating this with (∗) we see that

(−1)n−1tr(A) = (−1)n−1(a11+a22+· · ·+ann) = (−1)n(−c1−c2−· · ·−cn)

or tr(A) = c1 + c2 + · · ·+ cn.
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Theorem 3.8.6

Theorem 3.8.6 (continued)
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Theorem 3.8.8

Theorem 3.8.8

Theorem 3.8.8. Let A be an n × n matrix with distinct eigenvalues
{c1, c2, . . . , ck} and corresponding eigenvectors {x1, x2, . . . , xk} where
(ci , xi ) is an eigenpair for A. Then {x1, x2, . . . , xk} is a set of linearly
independent vectors. That is, eigenvectors associated with distinct
eigenvalues are linearly independent.

Proof. Suppose not. ASSUME that {x1, x2, . . . , xk} is not linearly
independent. Then there is some maximal subset
{y1, y2, . . . , yj} ⊂ {x1, x2, . . . , xk} which is linearly independent and j < k.
Let the corresponding eigenvalues for the yi be
{µ1, µ2, . . . , µj} ⊂ {c1, c2, . . . , ck}.

Then for some element in

{x1, x2, . . . , xk} \ {y1, y2, . . . yj}, say yj+1, we have yj+1 =
∑j

i=1 tiyi for
some ti ∈ C (not all ti = 0) since {y1, y2, . . . , yj+1} is a linearly dependent
set. Since yj+1 is an eigenvector of A, then there is an eigenvalue µj+1 for
yj+1 in {c1, c2, . . . , ck} and by construction, µj+1 is distinct from
µ1, µ2, . . . , µj .
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Theorem 3.8.8

Theorem 3.8.8 (continued)

Theorem 3.8.8. Let A be an n × n matrix with distinct eigenvalues
{c1, c2, . . . , ck} and corresponding eigenvectors {x1, x2, . . . , xk} where
(ci , xi ) is an eigenpair for A. Then {x1, x2, . . . , xk} is a set of linearly
independent vectors. That is, eigenvectors associated with distinct
eigenvalues are linearly independent.

Proof (continued). Now Ayj+1 = µj+1yj+1, so we have

0 = Ayj+1 − µj+1yj+1 = (A− µj+1I)yj+1 = (A− µj+1I)
∑j

i=1 tiyi or

0 =

j∑
i=1

ti (Ayi − µj+1Iyi ) =

j∑
i=1

ti (µiyi − µj+1yi ) =

j∑
i=1

ti (µi − µj+1)yi .

But then the coefficients ti (µi − µj+1) for 1 ≤ i ≤ j are not all 0 and so
this gives a dependence relation on {y1, y2, . . . , yj}, a CONTRADICTION
to the fact that this is a linearly independent set. So the assumption that
{x1, x2, . . . , xk} is not linearly independent is false and so the set is linearly
independent, as claimed.
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Theorem 3.8.9

Theorem 3.8.9

Theorem 3.8.9. For any square matrix A, a Schur factorization exists.

Proof. If A is 1× 1, the result is trivial; take Q = [1] and B = A. If A is
the zero matrix, then we let Q be an identity matrix of the appropriate
size and left B be a zero matrix (which is, in fact, upper triangular).

For n > 1, let (c , v) be an eigenpair of A with eigenvector v normalized.
Form an orthogonal matrix U with v as the first column (this can be done
by taking v followed by the standard basis vectors for Rn and the applying
the Gram-Schmidt process; this produces an orthonormal basis of Rn

which includes vector v [and one of the vectors will be a linear
combination of the others and will become the zero vector leaving n
nonzero vectors]). Let matrix U2 consist of the remaining columns of the
basis so that U = [v | U2].
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Theorem 3.8.9

Theorem 3.8.9 (continued 1)

Proof (continued). So

UTAU =

[
vT

UT
2

]
A[v | U2] =

[
vTA
UT

2 A

]
[v | U2] =

[
vTAv vTAU2

UT
2 Av UT

2 AU2

]
=

[
vT cv vTAU2

UT
2 cv UT

2 AU2

]
since Av = cv

=

[
cvT v vTAU2

cUT
2 v UT

2 AU2

]
=

[
c vTAU2

0 UT
2 AU2

]
= B (∗)

since vT v = ‖v‖2 = 1 and v is orthogonal to each column

of U2 (so the inner product of each column of U2 with v is 0

and U2v
T is a (n − 1)× 1 zero matrix)

where UT
2 AU2 is an (n − 1)× (n − 1) matrix.
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Theorem 3.8.9

Theorem 3.8.9 (continued 2)

Proof (continued). Since U is orthogonal, by Theorem 3.7.1,
UT = U−1. By Theorem 3.8.2(8), the eigenvalues of UTAU = U−1AU
are the same as the eigenvalues of A. If n = 2, then UT

2 AU2 is a scalar
(well a 1× 1 matrix) and the two eigenvalues of A must be c and this
scalar (notice that UTAU = B in this case is upper triangular and so the
eigenvalues are the diagonal entries by Theorem 3.8.2(5)). So the result
holds for k × k where k = 2.

We now show the result holds by induction. Suppose a Schur factorization
exists for all k × k matrices where k = n − 1. Let A be an n × n matrix
with eigenpair (c , v) where v is normalized.

As discussed above in (∗),

UTAU =

[
c vTAU2

0 UT
2 AU2

]
where UT

2 AU2 is an (n − 1)× (n − 1) matrix.

So by the induction hypothesis there exists (n − 1)× (n − 1) orthogonal
matrix V such that

V T (UT
2 AU2)V = T where T is upper triangluar. (∗∗)
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Theorem 3.8.9

Theorem 3.8.9 (continued 3)

Proof (continued). Let Q = U

[
1 0
0 V

]
. Then

QTQ =

[
1 0
0 V T

]
UTU

[
1 0
0 V

]
=

[
1 0
0 VV T

]
=

[
1 0
0 I

]
by Theorem 3.7.1 (which implies UTU = I and VV T = I) and so Q is
orthogonal (by Theorem 3.7.1, again). Next, let

QTAQ =

[
1 0
0 V T

]
UTAU

[
1 0
0 V

]
=

[
1 0
0 V T

] [
c vTAU2

0 UT
2 AU2

] [
1 0
0 V

]
from (∗)

=

[
c vTAU2

0 V TUT
2 AU2

] [
1 0
0 V

]
=

[
c vTAU2V
0 V TUT

2 AU2V

]
=

[
c vTAU2V
0 T

]
= B by (∗∗).
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Theorem 3.8.9

Theorem 3.8.9 (continued 4)

Theorem 3.8.9. For any square matrix A, a Schur factorization exists.

Proof (continued). So

QTAQ =

[
c vTAU2V
0 T

]
= B.

Since c is a constant and T is upper triangular, then B is upper triangular
and the result holds for k = n. Therefore, by Mathematical Induction,
every n × n matrix has a Schur factorization.
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Theorem 3.8.10

Theorem 3.8.10

Theorem 3.8.10. Let A be an n × n matrix, let c1, c2, . . . , cn be (possibly
complex) scalars, and let v1, v2, . . . , vn be nonzero n-vectors. Let V be an
n × n matrix with ith column vi for 1 ≤ i ≤ n and let
C = diag(c1, c2, . . . , cn). Then AV = VC if and only if c1, c2, . . . , cn are
eigenvalues of A and vj is an eigenvector of A corresponding to cj for
j = 1, 2, . . . , n.

Proof. The jth column of VC = [v1, v2, . . . , vn]diag(c1, c2, . . . , cn) is
cjvj . The jth column of AV is Avj . So AV = CV if and only if Avj = cjvj

for 1 ≤ j ≤ n. That is, AV = VC if and only if vj is an eigenvector of A
with corresponding eigenvalue cj .
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Theorem 3.8.11. Diagonalizability Theorem

Theorem 3.8.11

Theorem 3.8.11. Diagonalizability Theorem.
Let A be an n × n matrix with distinct eigenvalues c1, c2, . . . , ck with
algebraic multiplicities m1,m2, . . . ,mk , respectively. Then A is
diagonalizable if and only if rank(A− ciI) = n −mi for i = 1, 2, . . . , k
(that is, each eigenvalue is semisimple).

Proof. For sufficiency, suppose that for each i , 1 ≤ i ≤ k, we have
rank(A− ciI) = n −mi . By Theorem 3.5.4,
dim(N (A− ciI)) = n − rank(A− ciI) = mi . Now N (A− ciI) is the set
of all n-vectors x such that (A− ciI)x = 0. Since dim(N (A− ciI)) = mi ,
there are mi linearly independent x such that Ax = ciIx = cix (these mi

vectors are a basis for the eigenspace of ci ).

By Theorem 3.8.8,
eigenvectors associated with distinct eigenvalues are linearly independent.
So there are m1 + m2 + · · ·+ mk = n linearly independent eigenvectors for
A. That is, for matrix V with the linearly independent eigenvectors as its
columns, we have rank(V ) = n and so V−1 exists.
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Theorem 3.8.11. Diagonalizability Theorem

Theorem 3.8.11 (continued)

Proof (continued). With C a diagonal matrix with cjj as the eigenvalue
associated with eigenvector vj , we have AV = VC by Theorem 3.8.10.
Therefore, A = VCV−1 and A is diagonalizable.
To see the condition is necessary, suppose A is diagonalizable. Then
A = VCV−1 for some invertible V and diagonal C . Then AV = VC and
so by Theorem 3.8.10, C = diag(c1, c2, . . . , cn) where c1, c2, . . . , cn are
eigenvalues of A and V has its jth column an eigenvector of A
corresponding to cj . Since V is invertible then rank(V ) = n and the
eigenvectors in V are linearly independent, with the eigenvalues repeated
in C according to multiplicity. So for 1 ≤ i ≤ k, the diagonal matrix
C − ciI has exactly mi zeros on the diagonal and hence
rank(C − ciI) = n−mi .

Since V and V−1 are invertible and so are of full
rank, then by Theorem 3.3.12,

n −mi = rank(C − ciI) = rank(V (C − ciI)V−1)

= rank(VCV−1 − ciI) = rank(A− ciI), as claimed. �
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Theorem 3.8.11 (continued)
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Theorem 3.8.A

Theorem 3.8.A

Theorem 3.8.A. A (real) n × n matrix A is orthogonally diagonalizable if
and only if A is symmetric.

Proof. First, suppose A is orthogonally diagonalizable. Let C be a
diagonal matrix and let Q be an orthogonal matrix such that
A = QCQT = QCQ−1 (QT = Q−1 by Theorem 3.7.1). Then
AT = (QCQT )T = (QT )TCTQT = QCQT = A and so A is symmetric.

Now suppose A is symmetric. We show that A is orthogonally
diagonalizable using induction. If n = 1 then we take Q = [1] and we have
A = QAQT where C = A, so that A is orthogonally diagonalizable. Now
suppose the result holds for all (n − 1)× (n − 1) matrices. Since A is real
and symmetric then by Theorem 3.8.7, the eigenvalues of A are real. Let c
be some eigenvalue of A. If v is an eigenvector of A associated with c then
det(A− cI) = 0 and since A and c are real then the system of equations
(A− cI)x = 0 (or Ax = cx) has a nontrivial real solution x = v .
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Theorem 3.8.A

Theorem 3.8.A (continued 1)

Proof (continued). Define v1 = v/‖v‖. Then v1 is a real unit
eigenvector of A. Expand the set {v1} to an orthonormal bases of Rn,
{v1, v2, . . . , vn}, which can be done as explained in the proof of Theorem
3.8.9. Form n × n matrix P with ith column vi for 1 ≤ i ≤ n. Then P is
orthogonal so P−1 = PT by Theorem 3.7.1.

Consider P−1AP = PTAP.
This matrix is symmetric because (PTAP)T = PTAT (PT )T = PTAP
(since A is symmetric). The first column of this matrix is

PTAP


1
0
0
...
0

 = PTAv1 = PT cv1 = cPT v1 = c[v1 v2 · · · vn]
T v1 = · · ·
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Theorem 3.8.A

Theorem 3.8.A (continued 2)

Proof (continued).

· · · = c


vT
1

vT
2
...

vT
n

 v1 = c


vT
1 v1

vT
2 v1
...

vT
n v1

 = c


〈v1, v1〉
〈v2, v1〉

...
〈vn, v1〉

 = c


1
0
0
...
0

 =


c
0
0
...
0

 .

Since P−1AP is symmetric, then its first row must be [c 0 0 · · · 0]. So

we must have a partitioning of the form P−1AP =

[
c 0
0 B

]
where B is

an (n − 1)× (n − 1) symmetric matrix. By the induction hypothesis, B is
orthogonally diagonalizable and so B = UDU−1 or D = U−1BU = UTBU
for diagonal matrix D and orthogonal matrix U (matrices B, U, D, and
UT are each (n − 1)× (n − 1)).
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Theorem 3.8.A

Theorem 3.8.A (continued 3)

Proof (continued). For this matrix U, define R =

[
1 0
0 U

]
and notice

that R−1 =

[
1 0
0 U−1

]
=

[
1 0
0 UT

]
= RT . Let Q = PR; notice

QQT = (PR)(PR)T = PRRTPT = I, since P and R are orthogonal, and
so Q is orthogonal. Then

Q−1AQ = (R−1P−1)A(PR) = R−1(P−1AP)R = R−1

[
c 0
0 B

]
R

=

[
1 0
0 U−1

] [
c 0
0 B

] [
1 0
0 U

]
=

[
c 0
0 U−1B

] [
1 0
0 U

]
=

[
c 0
0 U−1BU

]
=

[
c 0
0 D

]
,

so

A = Q

[
c 0
0 D

]
Q−1 = Q

[
c 0
0 D

]
QT = QCQT , . . .
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Theorem 3.8.A

Theorem 3.8.A (continued 4)

Theorem 3.8.A. A (real) n × n matrix A is orthogonally diagonalizable if
and only if A is symmetric.

Proof (continued). . . . where Q is orthogonal and C is diagonal; that is,
A is orthogonally diagonalizable and the result holds for n × n matrices.
Therefore, by Mathematical Induction, the result holds for all square
matrices.
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Theorem 3.8.12

Theorem 3.8.12

Theorem 3.8.12. If A is an n × n diagonalizable matrix where
A = VCV−1 for diagonal C , then

(1) there are n linearly independent eigenvectors of A,

(2) the number of nonzero eigenvalues of A is equal to rank(A).

Proof. (1) Since A = VCV−1 then AV = VC and so by Theorem 3.8.10
the ith column of V is vi where vi is an eigenvector of ci where
C = diag(c1, c2, . . . , cn). Since V is invertible then V is full rank n (see
the definition of inverse matrix in Section 3.3) and so the dimension of the
column space of V is n and hence the n columns of V are linearly
independent.

(2) Since V is invertible then it is full rank n and so by Theorem 3.3.9,
there are matrices P and Q, products of elementary matrices, such that
PVQ = I .
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Theorem 3.8.12

Theorem 3.8.12 (continued)

Theorem 3.8.12. If A is an n × n diagonalizable matrix where
A = VCV−1 for diagonal C , then

(1) there are n linearly independent eigenvectors of A,

(2) the number of nonzero eigenvalues of A is equal to rank(A).

Proof. Now each elementary matrix is invertible (in the notation of
Section 3.2, see the note after Theorem 3.2.3, E−1

pq = Epq, E−1
sp = E(1/s)p,

and E−1
psq = Ep(−s)q) so a product of elementary matrices is invertible and

hence Q−1 exists so that PV = Q−1 and similarly V = P−1Q−1. [We
have shown that an invertible matrix is a product of elementary matrices.]
That is, both V and V−1 are products of elementary matrices, so by
Theorem 3.3.3, rank(A) = rank(VCV−1) = rank(C ). Since
C = diag(c1, c2, . . . , cn) then the ith column of C is ciei where ei is the
ith standard basis vector of Rn. So rank(C ) is the number of nonzero ciei ,
which is the number of nonzero eigenvalues of C .
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Theorem 3.8.13

Theorem 3.8.13

Theorem 3.8.13. If A is a symmetric matrix where (c , v) is an eigenpair
for A with vT v = ‖v‖2 = 1, then for any k ∈ N we have
(A− cvvT )k = Ak − ckvvT .

Proof. We prove the result by induction. Of course it holds for k = 1.
Suppose the result holds for k − 1 so that
(A− cvvT )k−1 = Ak−1 − ck−1vvT .

Then

(A− cvvT )k = (Ak−1 − ck−1vvT )(A− cvvT )

= Ak − ck−1vvTA− cAk−1vvT + ckvvT vvT

= Ak − ck−1vvTA− c(ck−1v)vT + ckvvT since

Ak−1v = Ak−2(cv) = c(Ak−2v) = · · · = ck−1v

= Ak − ck−1vvTA− ckvvT + ckvvT

= Ak − ck−1v(AT v)T = Ak − ck−1v(Av)T since AT = A

= Ak − ck−1v(cvT ) = Ak − ckvvT .

So the result holds for k and the result follows by Math Induction.
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Theorem 3.8.14

Theorem 3.8.14

Theorem 3.8.14. Any real symmetric matrix is positive definite if and
only if all of its eigenvalues are positive. Any real symmetric matrix is
nonnegative definite if and only if all of its eigenvalues are nonnegative.

Proof. By Theorem 3.8.A, A is orthogonally diagonalizable so
A = VCV−1 = VCV T where V is orthogonal (so V−1 = V T ). So for any
x ∈ Rn (where A is n × n) we have

xTAx = xT (VCV T )x = (xTV )C (V T x) = yTCy

where y = V T x .

So, for x 6= 0, xTAx > 0 (notice xTAx is 1× 1; it is a
quadratic form), that is, A is positive definite (by definition), if and only if
yTCy > 0. Now with the entries of y as yi for i = 1, 2, . . . , n, we have
yTCy =

∑n
i=1(yi )

2ci . So if each ci > 0 then yTCy > 0 and hence A is
positive definite.
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Theorem 3.8.14

Theorem 3.8.14 (continued)

Theorem 3.8.14. Any real symmetric matrix is positive definite if and
only if all of its eigenvalues are positive. Any real symmetric matrix is
nonnegative definite if and only if all of its eigenvalues are nonnegative.

Proof (continued). By choosing y as the ith standard basis vector for Rn

(or equivalently by choosing x = Vy where y is the ith standard basis
vector for Rn), we have yTCy = ci . So if A is positive definite then
xTAx = yTCy = ci > 0 and so each eigenvalue ci > 0. The proof for
nonnegative definite is similar.
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Theorem 3.8.14 (continued)
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Theorem 3.8.15

Theorem 3.8.15

Theorem 3.8.15.

(1) If symmetric matrix A is positive definite then there is
nonsingular P such that PTAP = I .

(2) If symmetric matrix A is nonnegative definite and
A = VCV T where V is orthogonal (such V exists by
Theorem 3.8.A) and C = diag(c1, c2, . . . , cn) where the
eigenvalues of A are c1, c2, . . . , cn. Then there is diagonal
nonnegative definite matrix S such that (VSV T )2 = A.

Proof. (1) By Theorem 3.8.A, A = VCV T for orthogonal V where
C = diag(c1, c2, . . . , cn) and the eigenvalues of A are c1, c2, . . . , cn. Since
A is positive definite, by Theorem 3.8.14 each ci > 0. Define
S = diag(

√
c1,

√
c2, . . . ,

√
cn).

Then S2 = C and so
A = VS2V T = VSSV T = VSSTV T = VS(VS)T . Now V is orthogonal
and the ith column of VS is

√
ci times the ith column of V (where

ci > 0), so the columns of VS are linearly independent and VS is full rank
and hence (by definition) invertible.
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√
cn and
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Theorem 3.8.16

Theorem 3.8.16

Theorem 3.8.16. Let A be an n ×m matrix. Then there exists a singular
value decomposition of A.

Proof. First, matrix ATA is a m ×m symmetric matrix which is
nonnegative definite by Theorem 3.3.14(2) and so by Theorem 3.8.14 the
eigenvalues of ATA are nonnegative. By Theorem 3.8.A, ATA is
orthogonally diagonalizable so there is m ×m orthogonal Q such that
ATA = QCQT where C = diag(c1, c2, . . . , cn) where
c1 ≥ c2 ≥ · · · ≥ cn ≥ 0 are the eigenvalues of ATA.

Let r = rank(A). By
Theorem 3.3.14(6), rank(ATA) = r and by Theorem 3.8.12, r is the
number of nonzero eigenvalues of ATA. Define the r × r diagonal matrix
of rank r , D1 = diag(

√
c1,

√
c2, . . . ,

√
cr ). Since D1 is full rank then D−1

1

exists.

() Theory of Matrices June 28, 2020 36 / 42



Theorem 3.8.16

Theorem 3.8.16

Theorem 3.8.16. Let A be an n ×m matrix. Then there exists a singular
value decomposition of A.

Proof. First, matrix ATA is a m ×m symmetric matrix which is
nonnegative definite by Theorem 3.3.14(2) and so by Theorem 3.8.14 the
eigenvalues of ATA are nonnegative. By Theorem 3.8.A, ATA is
orthogonally diagonalizable so there is m ×m orthogonal Q such that
ATA = QCQT where C = diag(c1, c2, . . . , cn) where
c1 ≥ c2 ≥ · · · ≥ cn ≥ 0 are the eigenvalues of ATA. Let r = rank(A). By
Theorem 3.3.14(6), rank(ATA) = r and by Theorem 3.8.12, r is the
number of nonzero eigenvalues of ATA. Define the r × r diagonal matrix
of rank r , D1 = diag(

√
c1,

√
c2, . . . ,

√
cr ). Since D1 is full rank then D−1

1

exists.

() Theory of Matrices June 28, 2020 36 / 42



Theorem 3.8.16

Theorem 3.8.16

Theorem 3.8.16. Let A be an n ×m matrix. Then there exists a singular
value decomposition of A.

Proof. First, matrix ATA is a m ×m symmetric matrix which is
nonnegative definite by Theorem 3.3.14(2) and so by Theorem 3.8.14 the
eigenvalues of ATA are nonnegative. By Theorem 3.8.A, ATA is
orthogonally diagonalizable so there is m ×m orthogonal Q such that
ATA = QCQT where C = diag(c1, c2, . . . , cn) where
c1 ≥ c2 ≥ · · · ≥ cn ≥ 0 are the eigenvalues of ATA. Let r = rank(A). By
Theorem 3.3.14(6), rank(ATA) = r and by Theorem 3.8.12, r is the
number of nonzero eigenvalues of ATA. Define the r × r diagonal matrix
of rank r , D1 = diag(

√
c1,

√
c2, . . . ,

√
cr ). Since D1 is full rank then D−1

1

exists.

() Theory of Matrices June 28, 2020 36 / 42



Theorem 3.8.16

Theorem 3.8.16 (continued 1)

Proof (continued). Partition Q as Q = [Q1 Q2] where Q1 is m× r . Now
define n × r matrix P1 as P1 = AQD−1

1 and let P2 be any n × (n − r)
matrix such that PT

1 P2 = 0 (where 0 is the r × (n − r) zero matrix; one
such choice for P2 is the n × (n − r) zero matrix but we make a particular
choice of P2 later). Create n × n matrix P as P = [P1 P2].

Notice that ATA = QCQT implies QTATAQ = C =

[
D2

1 0
0 0

]
. Also

QTATAQ =

[
QT

1

QT
2

]
ATA[Q1 Q2] =

[
QT

1 ATAQ1 QT
1 ATAQ2

QT
2 ATAQ1 QT

2 ATAQ2

]
where QT

1 ATAQ1 is r × r .

So QT
1 ATAQ1 = D2

1 and
QT

2 ATAQ2 = (AQ2)
TAQ2 = 0. The second equation implies AQ2 = 0 by

Theorem 3.3.14(1). Now P1 = AQ1D
−1
1 by definition, so

PT
1 = D−1

1 QT
1 AT and hence QT

1 AT = D1P
T
1 or AQ1 = P1D1.
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Theorem 3.8.16

Theorem 3.8.16 (continued 2)

Proof (continued). So

PTAQ =

[
PT

1

PT
2

]
A[Q1 Q2] =

[
PT

1 AQ1 PT
1 AQ2

PT
2 AQ1 PT

2 AQ2

]
=

[
(D−1

1 QT
1 AT )AQ1 PT

1 (0)
PT

2 (P1D1) PT
2 (0)

]
since PT

1 = D−1
1 QT

1 AT ,

AQ1 = P1D1, and AQ2 = 0

=

[
D−1

1 (D2
1 ) 0

(PT
1 P2)

TD1 0

]
since QT

1 ATAQ1 = D2
1

=

[
D1 0
0 0

]
since PT

1 P2 = 0. (∗)

Notice that PTAQ is an n ×m matrix. Now

PT
1 P1 = (D−1

1 QT
1 AT )(D−1

1 QT
1 AT )T since PT

1 = D−1
1 QT

1 AT

= D−1
1 QT

1 ATAQ1D
−1
1 = D−1

1 D2
1D−1

1 ( since QT
1 ATAQ1 = D2

1 ) = Ir ,
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Theorem 3.8.16

Theorem 3.8.16 (continued 3)

Proof (continued). . . . so by Theorem 3.7.1, P1 is orthogonal. By
Theorem 3.5.4, dim(N (PT

1 )) = n − rank(PT
1 ). By Theorem 3.3.14(6),

rank(PT
1 P1) = rank(P1) and by Theorem 3.3.2, rank(P1) = rank(PT

1 ). So
rank(PT

1 ) = rank(PT
1 P1) = rank(Ir ) = r . Hence

dim(N (PT
1 )) = n − rank(PT

1 ) = n − r . Let P2 be any n × (n − r) matrix
whose columns form an orthonormal basis of N (PT

1 ). Then PT
1 P2 = 0 as

required above and PT
2 P2 = In−r since P2 is orthogonal (Theorem 3.7.1).

So

PTP =

[
PT

1

PT
2

]
[P1 P2] =

[
PT

1 P1 PT
1 P2

PT
2 P1 PT

2 P2

]
=

[
Ir 0
0 In−r

]
= In,

and P is orthogonal (Theorem 3.7.1).

By (∗), PTAQ =

[
D1 0
0 0

]
:= D,

or A = PDQT where P is an n × n orthogonal matrix and Q is an m ×m
orthogonal matrix. With U = P and V = Q, we see that A has a singular
value decomposition, as claimed.
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Theorem 3.8.17

Theorem 3.8.17

Theorem 3.8.17. Let A be an n ×m matrix with spectral decomposition

A = UDV T =
∑r

i=1 diuiv
T
i . Then 〈uiv

T
i , ujv

T
j 〉 =

{
1 if i = j
0 if i 6= j

and

di = 〈A, uiv
T
i 〉. That is, the spectral decomposition is a Fourier expansion

of A.

Proof. Recall for matrices, 〈A,B〉 =
∑m

k=1 aT
k bk =

∑n
k=1〈ak , bk〉 (see

Section 3.2), and the kth column of uiv
T
i is


u1
i v

k
i

u2
i v

k
i

...
un
i vk

i

 where we use

superscripts to indicate entries in a column vector. Notice that uiv
T
i is

n ×m and so has m columns, each of length n.
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Theorem 3.8.17

Theorem 3.8.17 (continued 1)

Proof (continued). So

〈uiv
T
i , uiv

T
i 〉 =

m∑
k=1

〈[u1
i v

k
i , u2

i v
k
i , . . . , un

i vk
i ]T , [u1

i v
k
i , u2

i v
k
i , . . . , un

i vk
i ]T 〉

=
m∑

k=1

(
(u1

i v
k
i )2 + (u2

i v
k
i )2 + · · ·+ (un

i vk
i )2

)
=

(
(u1

i )
2 + (u2

i )
2 + · · ·+ (un

i )2
) m∑

k=1

(vk
i )2 = ‖ui‖2‖vi‖2 = 1.

Next,

〈uiv
T
i , ujv

T
j 〉 =

m∑
k=1

〈[u1
i v

k
i , u2

i v
k
i , . . . , un

i vk
i ]T , [u1

j v
k
j , u2

j v
k
j , . . . , un

j vk
j ]T 〉

=
m∑

k=1

(
u1
i v

k
i u1

j v
k
j + u2

i v
k
i u2

j v
k
j + · · ·+ un

i vk
i un

j vk
j

)
. . .
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Theorem 3.8.17

Theorem 3.8.17 (continued 2)

Theorem 3.8.17. Let A be an n ×m matrix with spectral decomposition

A = UDV T =
∑r

i=1 diuiv
T
i . Then 〈uiv

T
i , ujv

T
j 〉 =

{
1 if i = j
0 if i 6= j

and

di = 〈A, uiv
T
i 〉. That is, the spectral decomposition is a Fourier expansion

of A.

Proof (continued). . . .

=
m∑

k=1

(
u1
i v

k
i u1

j v
k
j + u2

i v
k
i u2

j v
k
j + · · ·+ un

i vk
i un

j vk
j

)

=
m∑

k=1

vk
i vk

j (u1
i u

1
j + u2

i u
2
j + · · ·+ un

i un
j ) =

m∑
k=1

vk
i vk

j 〈ui , uj〉 = 0.

The proof that di = 〈A, uiv
T
i 〉 is left as a Exercise 3.8.D.
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