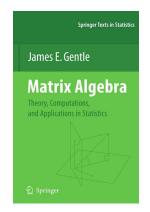
Theory of Matrices

Chapter 3. Basic Properties of Matrices

3.9. Matrix Norm—Proofs of Theorems



Theory of Matrices

July 2, 2020 1 / 1!

Theorem 3.9.2

Theorem 3.9.2 (continued 1)

Proof (continued).

$$||Ax||_{1} = \sum_{i=1}^{m} |x_{i}| ||a_{i}||_{1} \text{ by (2) of the definition of matrix norm}$$

$$\leq \sum_{i=1}^{m} |x_{i}| \max_{1 \leq j \leq m} ||a_{j}||_{1} = \max_{1 \leq j \leq m} ||a_{j}||_{1} \sum_{i=1}^{m} |x_{i}|$$

$$= ||x||_{1} \max_{1 \leq j \leq m} ||a_{j}||_{1} = \max_{1 \leq j \leq m} ||a_{j}||_{1} = \max_{1 \leq j \leq m} \left\{ \sum_{i=1}^{n} |a_{ij}| \right\}.$$

So $\max_{\|x\|_1=1} \|Ax\|_1 \leq \max_{1\leq j\leq m} \{\sum_{i=1}^n |a_{ij}|\}$. Let k satisfy $1\leq k\leq m$ with $\max_{1\leq j\leq m} \|a_j\|_1 = \|a_k\|_1$. Then with $x=e_k$ (the kth standard basis vector for \mathbb{R}^m) we have

$$||Ax||_1 = ||Ae_k||_1 = ||a_k||_1 = \max_{1 \le j \le m} ||a_j||_1 = \max_{1 \le j \le m} \left\{ \sum_{i=1}^n |a_{ij}| \right\}.$$

Theorem 3.9.2

Theorem 3.9.2

Theorem 3.9.2. For $n \times m$ matrix $A = [a_{ij}]$, the L^1 norm satisfies $\|A\|_1 = \max_{1 \le j \le m} \{\sum_{i=1}^n |a_{ij}|\}$ and so it is also called the *column-sum norm*. The L^∞ norm satisfies $\|A\|_\infty = \max_{1 \le i \le n} \left\{\sum_{j=1}^m |a_{ij}|\right\}$ and so it is also called the *row-sum norm*.

Proof. (This proof is based on Horn and Johnson's *Matrix Analysis*, Cambridge University Press, 1985). Let the columns of A be a_1, a_2, \ldots, a_m

so that
$$a_j = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{bmatrix}$$
. Then for any $x = [x_1, x_2, \dots, x_m]^T \in \mathbb{R}^m$ where $\|x\|_1 = 1$ we have
$$\|Ax\|_1 = \|x_1a_1 + x_2a_2 + \dots + x_ma_m\|_1$$

$$\leq \sum_{i=1}^m \|x_ia_i\|_1 \text{ by the Triangle Inequality for } \|\cdot\|_1$$

Theorem 3.9

Theorem 3.9.2 (continued 2)

Proof (continued). Therefore, $||A||_1 = \max_{||x||_1=1} ||Ax||_1$ = $\max_{1 \le j \le m} \{\sum_{i=1}^n |a_{ij}|\}$, as claimed. Let the rows of A be b_1, b_2, \ldots, b_n , so $b_i = [a_{i1}, a_{i2}, \ldots, a_{im}]$. Then for any $x = [x_1, x_2, \ldots, x_m]^T \in \mathbb{R}^m$ where $||x||_{\infty} = 1$ we have

$$||Ax||_{\infty} = \max_{1 \le i \le n} |b_{i}x| = \max_{1 \le i \le n} |\langle b_{i}^{T}, x \rangle| = \max_{1 \le i \le n} \left| \sum_{j=1}^{m} a_{ij} x_{j} \right|$$

$$\leq \max_{1 \le i \le n} \left\{ \sum_{j=1}^{m} |a_{ij}| |x_{j}| \right\} \leq \max_{1 \le i \le n} \left\{ \sum_{j=1}^{m} |a_{ij}| \max_{1 \le j \le m} |x_{j}| \right\}$$

$$= \max_{1 \le i \le n} \left\{ \sum_{j=1}^{m} |a_{ij}| ||x||_{\infty} \right\} = ||x||_{\infty} \max_{1 \le i \le n} \left\{ \sum_{j=1}^{m} |a_{ij}| \right\}$$

$$= \max_{1 \le i \le n} \left\{ \sum_{j=1}^{m} |a_{ij}| \right\}.$$

Theorem 3.9.4

Theorem 3.9.2 (continued 3)

Proof (continued). So, $\max_{\|x\|_{\infty}=1} \|Ax\|_{\infty} \leq \max_{1\leq i\leq n} \left\{\sum_{j=1}^m |a_{ij}|\right\}$. For given $n\times m$ matrix A_* , let k be such that $1\leq k\leq n$ and $\max_{1\leq i\leq n} \left\{\sum_{j=1}^m |a_{ij}|\right\} = \sum_{j=1}^m |a_{kj}|$. Then define $x_* = [\operatorname{sgn}(a_{k1}), \operatorname{sgn}(a_{k2}), \ldots, \operatorname{sgn}(a_{km})]^T \in \mathbb{R}^m$, where $\sup_{1\leq i\leq n} \left\{ \begin{array}{cc} 1 & \text{if } a>0 \\ 0 & \text{if } a=0 \end{array} \right. \text{ (so } \|x_*\|_{\infty} = 1 \text{ unless } A=0 \text{)}. \text{ We then have } -1 & \text{if } a<0 \text{)}$

$$||Ax_*||_{\infty} = \max_{1 \leq i \leq n} |b_i x_*| = \max_{1 \leq i \leq n} |\langle b_i^T, x_* \rangle| = \max_{1 \leq i \leq n} \left\{ \sum_{j=1}^m |a_{ij}| \right\}.$$

Therefore $||A||_{\infty}=\max_{||x||_{\infty}=1}||Ax||_{\infty}=\max_{1\leq i\leq n}\left\{\sum_{j=1}^{m}|a_{ij}|\right\}$, as claimed.

Theory of Matrices

uly 2, 2020 6 / 1

Theorem 3.9.6

Theorem 3.9.6

Theorem 3.9.6. For any matrix norm $\|\cdot\|$ and any square matrix A, $\rho(A) \leq \|A\|$.

Proof. Let (c_i, v_i) be an eigenpair for A. Consider the square matrix $V = [v_i \ 0 \ 0 \ \cdots \ 0]$. Then $AV = c_i V$ and so

 $|c_i|||V|| = ||c_iV||$ by part (2) of the definition of matrix norm = ||AV|| since $AV = c_iV$ $\leq ||A|||V||$ by the Consistency Property.

Since v_i is an eigenvector it is nonzero and so $||V|| \neq 0$. Therefore $|c_i| \leq ||A||$. Since c_i is an arbitrary eigenvalue of A, $\rho(A) \leq ||A||$.

Theorem 3.9.4

Theorem 3.9.4. If square matrices A and B are orthogonally similar then $||A||_F = ||B||_F$.

Proof. If A and B are orthogonally similar $n \times n$ matrices then there is (by definition) orthogonal matrix Q such that $A = Q^T B Q$. Then

$$\|A\|_F^2$$
 = tr(A^TA) as observed above
= tr($(Q^TB^TQ)(Q^TBQ)$) since $A = Q^TBQ$
= tr(Q^TB^TBQ) since $QQ^T = I$
= tr(BQQ^TB^T) = tr(BB^T) since tr(CD) = tr(DC)
for square $C = Q^TB^T$ and $D = BQ$ by Exercise 3.2.E
= tr(B^TB) = $\|B\|_F^2$ by Exercise 3.2.E.

So $||A||_F = ||B||_F$, as claimed.

Theory of Matrices July 2, 2020 7 / 15

Theorem 3.9

Theorem 3.9.7

Theorem 3.9.7. Let A be a square matrix. Then $\lim_{k\to\infty}A^k=0$ if and only if $\rho(A)<1$.

Proof. Suppose $\lim_{k\to\infty} A^k = 0$. Let (c_1, v_1) be an eigenpair for A where c_1 is a dominant eigenvalue of A. Let $\varepsilon > 0$. Then there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $||A^k - 0|| < \varepsilon / ||v_1||$. Then for $n \geq N$,

 $\|A^k v_1 - 0\| = \|A^k v_1\| \le \|A^k\| \|v_1\|$ by the definition of induced norm $< (\varepsilon/\|v_1\|)\|v_1\| = \varepsilon$

and so $\lim_{k\to\infty}(A^kv_1)=0$. Since $A^kv_1=c_1^kv_1$ then we have $\lim_{k\to\infty}c_1^kv_1=0$ and so $|c_1|<1$. Therefore $\rho(A)<1$.

Now suppose $\rho(A) < 1$. By Theorem 3.8.9, there is a Schur factorization of A such that $A = QTQ^{-1}$ where Q is orthogonal, T is upper triangular, and T has the same eigenvalues as A (see the note after Theorem 3.8.9), say c_1, c_2, \ldots, c_n . Fix real scalar d > 0 and form $n \times n$ diagonal matrix $D = \operatorname{diag}(d, d^2, d^3, \ldots, d^n)$.

Theorem 3.9.7

Theorem 3.9.7 (continued 1)

Proof (continued). Then $D^{-1}=\operatorname{diag}(d^{-1},d^{-2},d^{-3},\ldots,d^{-n})$ and DTD^{-1} is upper triangular with the same diagonal entries as T. Now the eigenvalues of a square triangular matrix are the diagonal entries of the triangular matrix (by Example 3.1.A and the definition of eigenvalue), so the eigenvalues of DTD^{-1} , T, and A are all the same. With $T=[t_{ij}]$, $D=[d_{ij}]$, and $D^{-1}=[d'_{ij}]$, the (i,j) entry of DT is $\sum_{k=1}^n d_{ik}t_{kj}=d_{ii}t_{ij}$ and the (i,j) entry of DTD^{-1} is

$$\sum_{k=1}^{n} (d_{ii}t_{ik})(d'_{kj}) = d_{ii}t_{ij}d'_{jj} = d^{i}t_{ij}d^{-j} = d^{i-j}t_{ij}.$$

So the sum of the absolute values of the jth column of DTD^{-1} is

$$\sum_{i=1}^j d^{i-j}|t_{ij}| = |c_j| + \sum_{i=1}^{j-1} d^{i-j}|t_{ij}|.$$

Theory of Matrices

Theorem 3.9.7 (continued 3)

Theorem 3.9

Proof (continued). So in terms of the L_1 norm for DTD^{-1} (that is, the column-sum norm)

$$\|DTD^{-1}\|_1 = \max_{1 \le j \le n} \left\{ |c_j| + \sum_{i=1}^{j-1} d^{i-j} |t_{ij}| \right\} < \rho(A) + \varepsilon \text{ for } d \ge M.$$

Now define norm $\|\cdot\|_d$ for any $n \times n$ matrix X as $\|X\|_d = \|(QD^{-1})^{-1}X(QD^{-1})\|_1$ where Q and D are the matrices above based on matrix A ($\|\cdot\|_d$ actually is a norm by Exercise 3.32). Then

$$||A||_d = ||(QD^{-1})^{-1}A(QD^{-1})||_1 = ||DQ^{-1}AQD^{-1}||_1 = ||DTD^{-1}||_1.$$

By hypothesis, $\rho(A) < 1$, so choose $\varepsilon > 0$ (and corresponding M and d) so that $\rho(A) + \varepsilon < 1$. Then $\|A\|_d = \|DTD^{-1}\|_1 < \rho(A) + \varepsilon < 1$. So $\|A^k\|_d \le \|A\|_d^k$ by the Consistency Property and since $\|A\|_d < 1$ then $\lim_{k \to \infty} \|A^k\|_d \le \lim_{k \to \infty} \|A\|_d^k = 0$. That is, $\lim_{k \to \infty} A^k = 0$ with respect to $\|\cdot\|_d$ (and hence with respect to any matrix norm since all matrix norms are equivalent by Note 3.9.A).

Theorem 397

Theorem 3.9.7 (continued 2)

Theorem 3.9.7. Let A be a square matrix. Then $\lim_{k\to\infty}A^k=0$ if and only if $\rho(A)<1$.

Proof (continued). Since d>0 and i-j<0 for $1\leq i\leq j-1$, then $\lim_{d\to\infty}d^{i-j}=0$ and so for any $\varepsilon>0$ there is $M\in\mathbb{R}$ such that for d>M we have

$$|d^{i-j}-0|=d^{i-j}<\frac{\varepsilon}{(j-1)\max\{|t_{ij}|\}}.$$

So for given $\varepsilon > 0$ and with $d \ge M$, since $|c_j| \le \rho(A)$, we have

$$|c_j| + \sum_{i=1}^{j-1} d^{i-j}|t_{ij}| <
ho(A) + \sum_{i=1}^{j-1} rac{arepsilon}{(j-1)\max\{|t_{ij}|\}}|t_{ij}|$$
 $\leq
ho(A) + \sum_{i=1}^{j-1} rac{arepsilon}{j-1} =
ho(A) + arepsilon.$

Theory of Matrices

July 2, 2020 11 / 3

Theorem 3.9.8

Theorem 3.9.8. For square matrix A, $\lim_{k\to\infty} \|A^k\|^{1/k} = \rho(A)$.

Proof. By Theorem 3.9.6, $\rho(A) \leq ||A||$ (for any matrix norm). By Exercise 3.8.E, $\rho(A^k) = \rho(A)^k$, so $\rho(A)^k = \rho(A^k) \leq ||A^k||$ and

$$\rho(A) \le \|A^k\|^{1/k}.\tag{*}$$

By Theorem 3.8.2(2), if c is an eigenvalue of A then bc is an eigenvalue of bA. So $\rho(bA) = b\rho(A)$. Let $\varepsilon > 0$ and consider $\frac{1}{\rho(A) + \varepsilon}A$. Then

$$\rho\left(\frac{1}{\rho(A)+\varepsilon}A\right) = \frac{\rho(A)}{\rho(A)+\varepsilon} < 1 \text{ and so } \lim_{k\to\infty} \left(\frac{1}{\rho(A)+\varepsilon}A\right)^k = 0 \text{ by}$$
Theorem 3.9.7. So

$$\lim_{k \to \infty} \left\| \frac{1}{(\rho(A) + \varepsilon)^k} A^k \right\| = \lim_{k \to \infty} \frac{\|A^k\|}{(\rho(A) + \varepsilon)^k} = 0$$

(since $A_n \to 0$ if and only if $||A_n - 0|| = ||A_n|| \to 0$).

Theorem 3.9.8

Theorem 3.9.8 (continued)

Theorem 3.9.8. For square matrix A, $\lim_{k\to\infty} ||A^k||^{1/k} = \rho(A)$.

Proof (continued). So by the definition of limit, there is $M \in \mathbb{R}$ such that k > M implies $\|A^k\|/(\rho(A) + \varepsilon)^k < 1$. Then $\|A^k\|^{1/k} < \rho(A) + \varepsilon$ for k > M. We now have from (*) that

$$\rho(A) \le \|A^k\|^{1/k} < \rho(A) + \varepsilon$$

for k > M. Since $\varepsilon > 0$ is arbitrary, we have $\lim_{k \to \infty} ||A^k||^{1/k} = \rho(A)$.

Theorem 3.9.9

Theorem 3.9.9

Theorem 3.9.9. Let A be an $n \times n$ matrix with ||A|| < 1. Then

$$I + \lim_{k \to \infty} \left(\sum_{n=1}^k A^n \right) = (I - A)^{-1}.$$

Proof. First, we introduce the sequence of partial sums $I, I+A, I+A+A^2, \ldots, S_k=I+\sum_{n=1}^k A^n, \ldots$ Then $(I-A)S_k=I-A^{k+1}$. Since $\|A\|<1$ then $A^k\to 0$ (since $\|A^k-0\|=\|A^k\|\leq \|A\|^k$ by the Consistency Property) and so

$$\lim_{k\to\infty}(I-A)S_k=\lim_{k\to\infty}(I-A^{k+1})$$

or

$$(I-A)\lim_{k\to\infty}S_k=I-\lim_{k\to\infty}A^{k+1}=I$$

and so $\lim_{k\to\infty} S_k = (I-A)^{-1}$, as claimed.

Theory of Matrices July 2, 2020 14 / 15