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Theorem 3.9.2

Theorem 3.9.2

Theorem 3.9.2. For n ×m matrix A = [aij ], the L1 norm satisfies
‖A‖1 = max1≤j≤m {

∑n
i=1 |aij |} and so it is also called the column-sum

norm. The L∞ norm satisfies ‖A‖∞ = max1≤i≤n

{∑m
j=1 |aij |

}
and so it is

also called the row-sum norm.

Proof. (This proof is based on Horn and Johnson’s Matrix Analysis,
Cambridge University Press, 1985). Let the columns of A be a1, a2, . . . , am

so that aj =


a1j

a2j
...

anj

 .

Then for any x = [x1, x2, . . . , xm]T ∈ Rm where

‖x‖1 = 1 we have

‖Ax‖1 = ‖x1a1 + x2a2 + · · ·+ xmam‖1

≤
m∑

i=1

‖xiai‖1 by the Triangle Inequality for ‖ · ‖1

() Theory of Matrices July 2, 2020 3 / 15



Theorem 3.9.2

Theorem 3.9.2

Theorem 3.9.2. For n ×m matrix A = [aij ], the L1 norm satisfies
‖A‖1 = max1≤j≤m {

∑n
i=1 |aij |} and so it is also called the column-sum

norm. The L∞ norm satisfies ‖A‖∞ = max1≤i≤n

{∑m
j=1 |aij |

}
and so it is

also called the row-sum norm.

Proof. (This proof is based on Horn and Johnson’s Matrix Analysis,
Cambridge University Press, 1985). Let the columns of A be a1, a2, . . . , am

so that aj =


a1j

a2j
...

anj

 . Then for any x = [x1, x2, . . . , xm]T ∈ Rm where

‖x‖1 = 1 we have

‖Ax‖1 = ‖x1a1 + x2a2 + · · ·+ xmam‖1

≤
m∑

i=1

‖xiai‖1 by the Triangle Inequality for ‖ · ‖1

() Theory of Matrices July 2, 2020 3 / 15



Theorem 3.9.2

Theorem 3.9.2

Theorem 3.9.2. For n ×m matrix A = [aij ], the L1 norm satisfies
‖A‖1 = max1≤j≤m {

∑n
i=1 |aij |} and so it is also called the column-sum

norm. The L∞ norm satisfies ‖A‖∞ = max1≤i≤n

{∑m
j=1 |aij |

}
and so it is

also called the row-sum norm.

Proof. (This proof is based on Horn and Johnson’s Matrix Analysis,
Cambridge University Press, 1985). Let the columns of A be a1, a2, . . . , am

so that aj =


a1j

a2j
...

anj

 . Then for any x = [x1, x2, . . . , xm]T ∈ Rm where

‖x‖1 = 1 we have

‖Ax‖1 = ‖x1a1 + x2a2 + · · ·+ xmam‖1

≤
m∑

i=1

‖xiai‖1 by the Triangle Inequality for ‖ · ‖1

() Theory of Matrices July 2, 2020 3 / 15



Theorem 3.9.2

Theorem 3.9.2 (continued 1)

Proof (continued).

‖Ax‖1 =
m∑

i=1

|xi |‖ai‖1 by (2) of the definition of matrix norm

≤
m∑

i=1

|xi | max
1≤j≤m

‖aj‖1 = max
1≤j≤m

‖aj‖1

m∑
i=1

|xi |

= ‖x‖1 max
1≤j≤m

‖aj‖1 = max
1≤j≤m

‖aj‖1 = max
1≤j≤m

{
n∑

i=1

|aij |

}
.

So max‖x‖1=1 ‖Ax‖1 ≤ max1≤j≤m {
∑n

i=1 |aij |}. Let k satisfy 1 ≤ k ≤ m
with max1≤j≤m ‖aj‖1 = ‖ak‖1. Then with x = ek (the kth standard basis
vector for Rm) we have

‖Ax‖1 = ‖Aek‖1 = ‖ak‖1 = max
1≤j≤m

‖aj‖1 = max
1≤j≤m

{
n∑

i=1

|aij |

}
.
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Theorem 3.9.2

Theorem 3.9.2 (continued 2)

Proof (continued). Therefore, ‖A‖1 = max‖x‖1=1 ‖Ax‖1

= max1≤j≤m {
∑n

i=1 |aij |}, as claimed. Let the rows of A be b1, b2, . . . , bn,
so bi = [ai1, ai2, . . . , aim]. Then for any x = [x1, x2, . . . , xm]T ∈ Rm where
‖x‖∞ = 1 we have

‖Ax‖∞ = max
1≤i≤n

|bix | = max
1≤i≤n

|〈bT
i , x〉| = max

1≤i≤n

∣∣∣∣∣∣
m∑

j=1

aijxj

∣∣∣∣∣∣
≤ max

1≤i≤n


m∑

j=1

|aij ||xj |

 ≤ max
1≤i≤n


m∑

j=1

|aij | max
1≤j≤m

|xj |


= max

1≤i≤n


m∑

j=1

|aij |‖x‖∞

 = ‖x‖∞ max
1≤i≤n


m∑

j=1

|ai j |


= max

1≤i≤n


m∑

j=1

|aij |

 .
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Theorem 3.9.2

Theorem 3.9.2 (continued 3)

Proof (continued). So, max‖x‖∞=1 ‖Ax‖∞ ≤ max1≤i≤n

{∑m
j=1 |aij |

}
.

For given n ×m matrix A∗, let k be such that 1 ≤ k ≤ n and

max1≤i≤n

{∑m
j=1 |aij |

}
=
∑m

j=1 |akj |. Then define

x∗ = [sgn(ak1), sgn(ak2), . . . , sgn(akm)]T ∈ Rm, where

sgn(a) =


1 if a > 0
0 if a = 0
−1 if a < 0

(so ‖x∗‖∞ = 1 unless A = 0). We then have

‖Ax∗‖∞ = max
1≤i≤n

|bix∗| = max
1≤i≤n

|〈bT
i , x∗〉| = max

1≤i≤n


m∑

j=1

|aij |

 .

Therefore ‖A‖∞ = max‖x‖∞=1 ‖Ax‖∞ = max1≤i≤n

{∑m
j=1 |aij |

}
, as

claimed.
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Theorem 3.9.4

Theorem 3.9.4

Theorem 3.9.4. If square matrices A and B are orthogonally similar then
‖A‖F = ‖B‖F .

Proof. If A and B are orthogonally similar n× n matrices then there is (by
definition) orthogonal matrix Q such that A = QTBQ.

Then

‖A‖2
F = tr(ATA) as observed above

= tr((QTBTQ)(QTBQ)) since A = QTBQ

= tr(QTBTBQ) since QQT = I

= tr(BQQTBT ) = tr(BBT ) since tr(CD) = tr(DC )

for square C = QTBT and D = BQ by Exercise 3.2.E

= tr(BTB) = ‖B‖2
F by Exercise 3.2.E.

So ‖A‖F = ‖B‖F , as claimed.
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Theorem 3.9.6

Theorem 3.9.6

Theorem 3.9.6. For any matrix norm ‖ · ‖ and any square matrix A,
ρ(A) ≤ ‖A‖.

Proof. Let (ci , vi ) be an eigenpair for A. Consider the square matrix
V = [vi 0 0 · · · 0]. Then AV = ciV and so

|ci |‖V ‖ = ‖ciV ‖ by part (2) of the definition of matrix norm

= ‖AV ‖since AV = ciV

≤ ‖A‖‖V ‖ by the Consistency Property.

Since vi is an eigenvector it is nonzero and so ‖V ‖ 6= 0. Therefore
|ci | ≤ ‖A‖. Since ci is an arbitrary eigenvalue of A, ρ(A) ≤ ‖A‖.
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Theorem 3.9.7

Theorem 3.9.7

Theorem 3.9.7. Let A be a square matrix. Then limk→∞ Ak = 0 if and
only if ρ(A) < 1.

Proof. Suppose limk→∞ Ak = 0. Let (c1, v1) be an eigenpair for A where
c1 is a dominant eigenvalue of A. Let ε > 0. Then there exists N ∈ N
such that for all n ≥ N, ‖Ak − 0‖ < ε/‖v1‖. Then for n ≥ N,

‖Akv1 − 0‖ = ‖Akv1‖ ≤ ‖Ak‖‖v1‖ by the definition of induced norm

< (ε/‖v1‖)‖v1‖ = ε

and so limk→∞(Akv1) = 0. Since Akv1 = ck
1 v1 then we have

limk→∞ ck
1 v1 = 0 and so |c1| < 1. Therefore ρ(A) < 1.

Now suppose ρ(A) < 1. By Theorem 3.8.9, there is a Schur factorization
of A such that A = QTQ−1 where Q is orthogonal, T is upper triangular,
and T has the same eigenvalues as A (see the note after Theorem 3.8.9),
say c1, c2, . . . , cn. Fix real scalar d > 0 and form n × n diagonal matrix
D = diag(d , d2, d3, . . . , dn).
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Theorem 3.9.7

Theorem 3.9.7 (continued 1)

Proof (continued). Then D−1 = diag(d−1, d−2, d−3, . . . , d−n) and
DTD−1 is upper triangular with the same diagonal entries as T . Now the
eigenvalues of a square triangular matrix are the diagonal entries of the
triangular matrix (by Example 3.1.A and the definition of eigenvalue), so
the eigenvalues of DTD−1, T , and A are all the same. With T = [tij ],
D = [dij ], and D−1 = [d ′ij ], the (i , j) entry of DT is

∑n
k=1 diktkj = dii tij

and the (i , j) entry of DTD−1 is

n∑
k=1

(dii tik)(d ′kj) = dii tijd
′
jj = d i tijd

−j = d i−j tij .

So the sum of the absolute values of the jth column of DTD−1 is

j∑
i=1

d i−j |tij | = |cj |+
j−1∑
i=1

d i−j |tij |.
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Theorem 3.9.7

Theorem 3.9.7 (continued 2)

Theorem 3.9.7. Let A be a square matrix. Then limk→∞ Ak = 0 if and
only if ρ(A) < 1.

Proof (continued). Since d > 0 and i − j < 0 for 1 ≤ i ≤ j − 1, then
limd→∞ d i−j = 0 and so for any ε > 0 there is M ∈ R such that for
d ≥ M we have

|d i−j − 0| = d i−j <
ε

(j − 1) max{|tij |}
.

So for given ε > 0 and with d ≥ M, since |cj | ≤ ρ(A), we have

|cj |+
j−1∑
i=1

d i−j |tij | < ρ(A) +

j−1∑
i=1

ε

(j − 1) max{|tij |}
|tij |

≤ ρ(A) +

j−1∑
i=1

ε

j − 1
= ρ(A) + ε.
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limd→∞ d i−j = 0 and so for any ε > 0 there is M ∈ R such that for
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Theorem 3.9.7

Theorem 3.9.7 (continued 3)

Proof (continued). So in terms of the L1 norm for DTD−1 (that is, the
column-sum norm)

‖DTD−1‖1 = max1≤j≤n

{
|cj |+

∑j−1
i=1 d i−j |tij |

}
< ρ(A) + ε for d ≥ M.

Now define norm ‖ · ‖d for any n × n matrix X as
‖X‖d = ‖(QD−1)−1X (QD−1)‖1 where Q and D are the matrices above
based on matrix A (‖ · ‖d actually is a norm by Exercise 3.32). Then

‖A‖d = ‖(QD−1)−1A(QD−1)‖1 = ‖DQ−1AQD−1‖1 = ‖DTD−1‖1.

By hypothesis, ρ(A) < 1, so choose ε > 0 (and corresponding M and d)
so that ρ(A) + ε < 1. Then ‖A‖d = ‖DTD−1‖1 < ρ(A) + ε < 1. So
‖Ak‖d ≤ ‖A‖k

d by the Consistency Property and since ‖A‖d < 1 then
limk→∞ ‖Ak‖d ≤ limk→∞ ‖A‖k

d = 0. That is, limk→∞ Ak = 0 with respect
to ‖ · ‖d (and hence with respect to any matrix norm since all matrix
norms are equivalent by Note 3.9.A).
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Theorem 3.9.8

Theorem 3.9.8

Theorem 3.9.8. For square matrix A, limk→∞ ‖Ak‖1/k = ρ(A).

Proof. By Theorem 3.9.6, ρ(A) ≤ ‖A‖ (for any matrix norm). By
Exercise 3.8.E, ρ(Ak) = ρ(A)k , so ρ(A)k = ρ(Ak) ≤ ‖Ak‖ and

ρ(A) ≤ ‖Ak‖1/k . (∗)

By Theorem 3.8.2(2), if c is an eigenvalue of A then bc is an eigenvalue of

bA. So ρ(bA) = bρ(A). Let ε > 0 and consider
1

ρ(A) + ε
A. Then

ρ

(
1

ρ(A) + ε
A

)
=

ρ(A)

ρ(A) + ε
< 1 and so lim

k→∞

(
1

ρ(A) + ε
A

)k

= 0 by

Theorem 3.9.7. So

lim
k→∞

∥∥∥∥ 1

(ρ(A) + ε)k
Ak

∥∥∥∥ = lim
k→∞

‖Ak‖
(ρ(A) + ε)k

= 0

(since An → 0 if and only if ‖An − 0‖ = ‖An‖ → 0).
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Theorem 3.9.8

Theorem 3.9.8 (continued)

Theorem 3.9.8. For square matrix A, limk→∞ ‖Ak‖1/k = ρ(A).

Proof (continued). So by the definition of limit, there is M ∈ R such
that k > M implies ‖Ak‖/(ρ(A) + ε)k < 1. Then ‖Ak‖1/k < ρ(A) + ε for
k > M.

We now have from (∗) that

ρ(A) ≤ ‖Ak‖1/k < ρ(A) + ε

for k > M. Since ε > 0 is arbitrary, we have lim
k→∞

‖Ak‖1/k = ρ(A).
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Theorem 3.9.8 (continued)
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Theorem 3.9.9

Theorem 3.9.9

Theorem 3.9.9. Let A be an n × n matrix with ‖A‖ < 1. Then

I + lim
k→∞

(
k∑

n=1

An

)
= (I − A)−1.

Proof. First, we introduce the sequence of partial sums
I , I + A, I + A + A2, . . . ,Sk = I +

∑k
n=1 An, . . .. Then

(I − A)Sk = I − Ak+1. Since ‖A‖ < 1 then Ak → 0 (since
‖Ak − 0‖ = ‖Ak‖ ≤ ‖A‖k by the Consistency Property) and so

lim
k→∞

(I − A)Sk = lim
k→∞

(I − Ak+1)

or
(I − A) lim

k→∞
Sk = I − lim

k→∞
Ak+1 = I

and so limk→∞ Sk = (I − A)−1, as claimed.
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