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Chapter 4. Vector/Matrix Derivatives and Integrals
4.2. Types of Differentiation—Proofs of Theorems
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Theorem 4.2.1

Theorem 4.2.1

Theorem 4.2.1. Differentiation of scalar valued function f satisfies the
following.

(1)
∂f

∂XT
=

(
∂f

∂X

)T

.

(2) For X square and f (X ) = tr(X ),
∂f

∂X
= I.

(3) For AX a square matrix where A is constant,
∂[tr(AX )]

∂X
= AT .

(4)
∂[tr(XTX )]

∂X
= 2X .

(5) With a and b constant vectors,
∂[aTXb]

∂X
= abT .

(6)
∂[det(X )]

∂X
= (adj(X ))T .
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Theorem 4.2.1

Theorem 4.2.1 (continued 1)

(1)
∂f

∂XT
=

(
∂f

∂X

)T

.

(2) For X square and f (X ) = tr(X ),
∂f

∂X
= I.

Proof. (1) From the definition, with XT = [xT
ij ] where xT

ij = xji , we have

∂f

∂XT
=

[
∂f

∂xT
ij

]
=

[
∂f

∂xij

]
=

[
∂f

∂xij

]T

=

(
∂f

∂X

)T

.

(2) With X square and f (X ) = tr(X ) =
∑n

k=1 xkk we have

∂f

∂X
=

[
∂[
∑

xkk ]

∂xij

]
=

[
n∑

k=1

∂xkk

∂xij

]
= I

since ∂xkk
∂xij

=

{
1 if (i , j) = (k, k)
0 if (i , j) 6= (k, k)

for k = 1, 2, . . . , n; that is,

∂[tr(X )]
∂X = I.
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Theorem 4.2.1 (continued 1)
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Theorem 4.2.1

Theorem 4.2.1 (continued 2)

(3) For AX a square matrix where A is constant,
∂[tr(AX )]

∂X
= AT .

Proof. (3) For AX a square matrix where A is constant, the diagonal
entries are

∑n
`=1 ak`x`k for k = 1, 2, . . . , n. So

∂[tr(AX )]

∂X
=

[
∂

∂xij

[
n∑

k=1

n∑
`=1

ak`x`k

]]
= [aji ] = AT

since ∂
∂xij

[
∑n

k=1

∑n
`=1 ak`x`k ] =

∑n
k=1

∑n
`=1 ak`

∂x`k
∂xij

and

∂x`k
∂xij

=

{
1 if (`, k) = (i , j)
0 if (`, k) 6= (i , j)

.
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Theorem 4.2.1

Theorem 4.2.1 (continued 3)

(4)
∂[tr(XTX )]

∂X
= 2X .

Proof. (4) In XTX , the diagonal entries are
∑n

`=1 x`kx`k =
∑n

`=1(x`k)2

and so

∂[tr(XTX )]

∂X
=

[
∂

∂xij

[
n∑

k=1

n∑
`=1

x`k)2

]]
= [2xij ] = 2X

since ∂x`k
∂xij

=

{
1 if (`, k) = (i , j)
0 if (`, k) 6= (i , j)

.
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Theorem 4.2.1

Theorem 4.2.1 (continued 4)

(5) With a and b constant vectors,
∂[aTXb]

∂X
= abT .

Proof. (5) With a = [a1, a2, . . . , an] and b = [b1, b2, . . . bn] constant
vectors, the matrix aTXb is a 1× 1 matrix. Now the kth entry of aTX is∑n

`=1 a`x`k and so

aTXb =

[
n∑

k=1

(
n∑

`=1

a`x`k

)
bk

]
.

Therefore ∂[aT Xb]
∂xij

= aibj since ∂x`k
∂xij

=

{
1 if (`, k) = (i , j)
0 if (`, k) 6= (i , j)

. So

∂[aT Xb]
∂X = [aibj ] = abT .
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Theorem 4.2.1 (continued 4)
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Theorem 4.2.1

Theorem 4.2.1 (continued 5)

(6)
∂[det(X )]

∂X
= (adj(X ))T .

Proof. (6) By Theorem 3.1.F, we can express det(A) by expansion along
row k as det(X ) =

∑n
k=1 xkjχkj where χkj is the cofactor of xkj . None of

the cofactors χkj involve xij so the only occurrence of xij in this
representation of det(X ) is when k = i in the term xijχij . Hence,
∂[det(X )]

∂xij
= χij and ∂[det(X )]

∂X = [χij ]. Recall that the adjoint of X is

adj(X ) = [χij ]
T and so ∂[det(X )]

∂X = [χij ] = (adj(X ))T .
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Theorem 4.2.1 (continued 5)
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