Theory of Matrices

Chapter 4. Vector/Matrix Derivatives and Integrals 4.2. Types of Differentiation—Proofs of Theorems

Table of contents

Theorem 4.2.1

Theorem 4.2.1. Differentiation of scalar valued function f satisfies the following.

(1)
$$
\frac{\partial f}{\partial X^T} = \left(\frac{\partial f}{\partial X}\right)^T
$$
.
\n(2) For X square and $f(X) = \text{tr}(X)$, $\frac{\partial f}{\partial X} = \mathcal{I}$.
\n(3) For AX a square matrix where A is constant,
\n $\frac{\partial [\text{tr}(AX)]}{\partial X} = A^T$.
\n(4) $\frac{\partial [\text{tr}(X^T X)]}{\partial X} = 2X$.
\n(5) With a and b constant vectors, $\frac{\partial [a^T X b]}{\partial X} = ab^T$.
\n(6) $\frac{\partial [\text{det}(X)]}{\partial X} = (\text{adj}(X))^T$.

Theorem 4.2.1 (continued 1)

(1)
$$
\frac{\partial f}{\partial X^T} = \left(\frac{\partial f}{\partial X}\right)^T
$$
.
\n(2) For *X* square and $f(X) = \text{tr}(X)$, $\frac{\partial f}{\partial X} = \mathcal{I}$.

Proof. (1) From the definition, with $X^{\mathcal{T}} = [x_{ij}^{\mathcal{T}}]$ where $x_{ij}^{\mathcal{T}} = x_{ji}$, we have

$$
\frac{\partial f}{\partial X^T} = \left[\frac{\partial f}{\partial x_{ij}^T}\right] = \left[\frac{\partial f}{\partial x_{ij}}\right] = \left[\frac{\partial f}{\partial x_{ij}}\right]^T = \left(\frac{\partial f}{\partial X}\right)^T
$$

(2) With X square and $f(X) = \text{tr}(X) = \sum_{k=1}^{n} x_{kk}$ we have

$$
\frac{\partial f}{\partial X} = \left[\frac{\partial [\sum x_{kk}]}{\partial x_{ij}} \right] = \left[\sum_{k=1}^{n} \frac{\partial x_{kk}}{\partial x_{ij}} \right] = \mathcal{I}
$$

since $\frac{\partial x_{kk}}{\partial x_{ij}} = \begin{cases} 1 & \text{if } (i,j) = (k,k) \\ 0 & \text{if } (i,i) \neq (k,k) \end{cases}$ 0 if $(i, j) = (k, k)$ for $k = 1, 2, ..., n$; that is, $\frac{\partial [tr(X)]}{\partial X} = \mathcal{I}.$

.

Theorem 4.2.1 (continued 1)

(1)
$$
\frac{\partial f}{\partial X^T} = \left(\frac{\partial f}{\partial X}\right)^T
$$
.
\n(2) For *X* square and $f(X) = \text{tr}(X)$, $\frac{\partial f}{\partial X} = \mathcal{I}$.

Proof. (1) From the definition, with $X^{\mathcal{T}} = [x_{ij}^{\mathcal{T}}]$ where $x_{ij}^{\mathcal{T}} = x_{ji}$, we have

$$
\frac{\partial f}{\partial X^T} = \left[\frac{\partial f}{\partial x_{ij}^T}\right] = \left[\frac{\partial f}{\partial x_{ij}}\right] = \left[\frac{\partial f}{\partial x_{ij}}\right]^T = \left(\frac{\partial f}{\partial X}\right)^T
$$

(2) With X square and $f(X) = \text{tr}(X) = \sum_{k=1}^{n} x_{kk}$ we have

$$
\frac{\partial f}{\partial X} = \left[\frac{\partial [\sum x_{kk}]}{\partial x_{ij}} \right] = \left[\sum_{k=1}^{n} \frac{\partial x_{kk}}{\partial x_{ij}} \right] = \mathcal{I}
$$

since $\frac{\partial x_{kk}}{\partial x_{ij}} = \begin{cases} 1 & \text{if } (i,j) = (k,k) \\ 0 & \text{if } (i,i) \neq (k,k) \end{cases}$ 0 if $(i, j) = (k, k)$ for $k = 1, 2, ..., n$; that is, $\frac{\partial [tr(X)]}{\partial X} = \mathcal{I}.$

.

Theorem 4.2.1 (continued 2)

(3) For *AX* a square matrix where *A* is constant,
\n
$$
\frac{\partial [tr(AX)]}{\partial X} = A^T.
$$

Proof. (3) For AX a square matrix where A is constant, the diagonal entries are $\sum_{\ell=1}^n a_{k\ell}x_{\ell k}$ for $k=1,2,\ldots,n$. So

$$
\frac{\partial[\text{tr}(AX)]}{\partial X} = \left[\frac{\partial}{\partial x_{ij}}\left[\sum_{k=1}^{n}\sum_{\ell=1}^{n}a_{k\ell}x_{\ell k}\right]\right] = [a_{ji}] = A^{T}
$$

since
$$
\frac{\partial}{\partial x_{ij}} \left[\sum_{k=1}^{n} \sum_{\ell=1}^{n} a_{k\ell} x_{\ell k} \right] = \sum_{k=1}^{n} \sum_{\ell=1}^{n} a_{k\ell} \frac{\partial x_{\ell k}}{\partial x_{ij}}
$$
 and $\frac{\partial x_{\ell k}}{\partial x_{ij}} = \begin{cases} 1 & \text{if } (\ell, k) = (i, j) \\ 0 & \text{if } (\ell, k) \neq (i, j) \end{cases}$.

Theorem 4.2.1 (continued 3)

$$
(4) \frac{\partial [\text{tr}(X^T X)]}{\partial X} = 2X.
$$

Proof. (4) In $X^{\mathsf{T}}X$, the diagonal entries are $\sum_{\ell=1}^n x_{\ell k}x_{\ell k} = \sum_{\ell=1}^n (x_{\ell k})^2$ and so

$$
\frac{\partial[\text{tr}(X^TX)]}{\partial X} = \left[\frac{\partial}{\partial x_{ij}} \left[\sum_{k=1}^n \sum_{\ell=1}^n x_{\ell k}\right]^2\right] = [2x_{ij}] = 2X
$$

since $\frac{\partial x_{\ell k}}{\partial x_{ij}} = \begin{cases} 1 & \text{if } (\ell, k) = (i, j) \\ 0 & \text{if } (\ell, k) \neq (i, j) \end{cases}$.

Theorem 4.2.1 (continued 4)

(5) With *a* and *b* constant vectors,
$$
\frac{\partial [a^T X b]}{\partial X} = ab^T.
$$

Proof. (5) With $a = [a_1, a_2, \ldots, a_n]$ and $b = [b_1, b_2, \ldots, b_n]$ constant vectors, the matrix $\mathsf{a}^T X \mathsf{b}$ is a 1×1 matrix. Now the k th entry of $\mathsf{a}^T X$ is $\sum_{\ell=1}^n a_\ell x_{\ell k}$ and so

$$
\mathbf{a}^T \mathbf{X} \mathbf{b} = \left[\sum_{k=1}^n \left(\sum_{\ell=1}^n a_\ell x_{\ell k} \right) \mathbf{b}_k \right].
$$

Therefore $\frac{\partial [a^T \mathbf{X} b]}{\partial x_{ij}} = a_i b_j$ since $\frac{\partial x_{\ell k}}{\partial x_{ij}} = \begin{cases} 1 & \text{if } (\ell, k) = (i, j) \\ 0 & \text{if } (\ell, k) \neq (i, j) \end{cases}$. So $\frac{\partial [a^T \mathbf{X} b]}{\partial \mathbf{X}} = [a_i b_j] = a b^T.$

 ∂

Theorem 4.2.1 (continued 4)

(5) With *a* and *b* constant vectors,
$$
\frac{\partial [a^T X b]}{\partial X} = ab^T.
$$

Proof. (5) With $a = [a_1, a_2, \ldots, a_n]$ and $b = [b_1, b_2, \ldots, b_n]$ constant vectors, the matrix $\mathsf{a}^T X \mathsf{b}$ is a 1×1 matrix. Now the k th entry of $\mathsf{a}^T X$ is $\sum_{\ell=1}^n a_\ell x_{\ell k}$ and so

$$
a^T X b = \left[\sum_{k=1}^n \left(\sum_{\ell=1}^n a_\ell x_{\ell k} \right) b_k \right].
$$

Therefore $\frac{\partial [a^T X b]}{\partial x_{ij}} = a_i b_j$ since $\frac{\partial x_{\ell k}}{\partial x_{ij}} = \begin{cases} 1 & \text{if } (\ell, k) = (i, j) \\ 0 & \text{if } (\ell, k) \neq (i, j) \end{cases}$. So $\frac{\partial [a^T X b]}{\partial X} = [a_i b_j] = ab^T.$

Theorem 4.2.1 (continued 5)

$$
(6) \ \frac{\partial[\det(X)]}{\partial X} = (\text{adj}(X))^T.
$$

Proof. (6) By Theorem 3.1.F, we can express $det(A)$ by expansion along row k as $\det(X) = \sum_{k=1}^n x_{kj} \chi_{kj}$ where χ_{kj} is the cofactor of x_{kj} . None of the cofactors χ_{ki} involve x_{ii} so the only occurrence of x_{ii} in this representation of det(X) is when $k = i$ in the term $x_{ii} \chi_{ii}$. Hence, ∂ [det(X)] $\frac{|\textsf{et}(X)|}{\partial x_{ij}} = \chi_{ij}$ and $\frac{\partial [\textsf{det}(X)]}{\partial X} = [\chi_{ij}]$. Recall that the adjoint of X is $\textsf{adj}(X) = [\chi_{ij}]^{\mathsf{T}}$ and so $\frac{\partial [\textsf{det}(X)]}{\partial X} = [\chi_{ij}] = (\textsf{adj}(X))^{\mathsf{T}}$.

Theorem 4.2.1 (continued 5)

$$
(6) \ \frac{\partial[\det(X)]}{\partial X} = (\text{adj}(X))^T.
$$

Proof. (6) By Theorem 3.1.F, we can express $det(A)$ by expansion along row k as $\det(X) = \sum_{k=1}^n x_{kj} \chi_{kj}$ where χ_{kj} is the cofactor of x_{kj} . None of the cofactors χ_{ki} involve x_{ii} so the only occurrence of x_{ii} in this representation of det(X) is when $k = i$ in the term $x_{ii} \chi_{ii}$. Hence, ∂ [det(X)] $\frac{|\textsf{et}(X)|}{\partial x_{ij}}=\chi_{ij}$ and $\frac{\partial [\textsf{det}(X)]}{\partial X}=[\chi_{ij}].$ Recall that the adjoint of X is $\mathsf{adj}(X) = [\chi_{ij}]^{\mathsf{T}}$ and so $\frac{\partial [\mathsf{det}(X)]}{\partial X} = [\chi_{ij}] = (\mathsf{adj}(X))^{\mathsf{T}}$.