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Chapter 4. Vector/Matrix Derivatives and Integrals
4.5. Integration and Expectation—Proofs of Theorems
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Theorem 4.5.1

Theorem 4.5.1

Theorem 4.5.1. For A(x) = [aij(x)] an n × n matrix function of scalar
variable x , we have∫ b

a
tr(A(x)) dx = tr

(∫ b

a
A(x) dx

)
.

Proof. Recall that tr(A) = tr([aij ]) =
∑n

i=1 aii . So∫ b

a
tr(A(x)) dx =

∫ b

a

(
n∑

i=1

aii (x)

)
dx

=
n∑

i=1

(∫ b

a
aii (x) dx

)
by the linearity properties

of definite integrals

= tr

([∫ b

a
aij(x)

])
= tr

(∫ b

a
A(x) dx

)
.
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Theorem 4.5.3. Atiken’s Integral

Theorem 4.5.3

Theorem 4.5.3. Atiken’s Integral.
For Σ−1 a symmetric positive definite d × d matrix, is a constant
d-vector, and x ∈ Rd we have∫

Rd

e−(x−µ)T Σ−1(x−µ)/2 dx = (2π)d/2(det(Σ))1/2.

Proof. We know that
∫

R e−x2
dx =

√
2π, based on the standard normal

distribution. If we let y = x − µ then we also have∫
R

e−y2
dy =

∫
R

e−(x−µ)2 dx =
√

2π.

Now we make a change of variables and let y = x − µ where y ∈ Rd .
Then as x ranges over all of Rd , so does y and hence∫

Rd

e−(x−µ)T Σ−1(x−µ)/2 dx =

∫
Rd

e−yT Σ−1y/2 dy .
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Theorem 4.5.3. Atiken’s Integral

Theorem 4.5.3 (continued 1)

Theorem 4.5.3. Atiken’s Integral.
For Σ−1 a symmetric positive definite d × d matrix, is a constant
d-vector, and x ∈ Rd we have

Proof (continued). By Theorem 3.8.15(1), since Σ−1 is symmetric and
positive definite, then PTΣ−1P = I for some nonsingular P. We now
make another change of variables to z = P−1y (and so y = Pz). The
change of variables requires that we introduce the Jacobian, as described
at the beginning of the section (but now in d-dimensions) we need det(P).
Since PTΣ−1P = I then by Theorem 3.2.4,
det(PT )det(Σ−1)det(P) = det(I) = 1, and since det(PT ) = det(P) by
Theorem 3.1.A and det(Σ−1) = a/det(Σ) (also by Theorem 3.1.A), then
(det(P))2 = det(Σ) or det(P) = (det(Σ))1/2.
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Theorem 4.5.3. Atiken’s Integral

Theorem 4.5.3 (continued 2)

Proof (continued). So∫
Rd

e−yT Σ−1y/2 dt =

∫
Rd

e−(Pz)T Σ−1(Pz)/2(det(Σ))1/2 dz

=

∫
Rd

e−zT (PT Σ−1P)z/2(det(Σ))1/2 dz

=

∫
Rd

ezT z/2(det(Σ))1/2 dz since PTΣ−1P = I

= (det(Σ))1/2

∫
Rd

e−|z|2/2 dz

= (det(Σ))1/2

∫
Rd

e−(z2
1+z2

2+···+z2
d )/2 dz

where vector z has components zi

· · ·
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Theorem 4.5.3. Atiken’s Integral

Theorem 4.5.3 (continued 3)

Theorem 4.5.3. Atiken’s Integral.
For Σ−1 a symmetric positive definite d × d matrix, is a constant
d-vector, and x ∈ Rd we have∫

Rd

e−(x−µ)T Σ−1(x−µ)/2 dx = (2π)d/2(det(Σ))1/2.

Proof (continued). . . .∫
Rd

e−(x−µ)T Σ−1(x−µ)/2 dx =

∫
Rd

e−yT Σ−1y/2 dy

= (det(Σ))1/2

∫
R

∫
R
· · ·
∫

R
e−z2

1 e−z2
2 · · · e−z2

d dz1 dz2 · · · dzd

= (det(Σ))1/2

∫
R

e−z2
1 dz1

∫
R

e−z2
2 dz2 · · ·

∫
R

e−z2
d dzd

= (det(Σ))1/2((2π)1/2)d as described above

= (2π)d/2(det(Σ))1/2.
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