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Theorem 4.5.1

Theorem 4.5.1. For A(x) = [ajj(x)] an n x n matrix function of scalar
variable x, we have

/a b (Ax)) d = tr < / e dx) .
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Theorem 4.5.1

Theorem 4.5.1. For A(x) = [ajj(x)] an n x n matrix function of scalar
variable x, we have

/a b (Ax)) d = tr < / e dx) .

Proof. Recall that tr(A) = tr([a;]) = >_7_; aji. So

/a btr(A(x))dx - / ’ (ga,-,-(x)> dx

n

b
= Z </ aii(x) dx> by the linearity properties
i=1 W@
of definite integrals

o[l (re)
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Theorem 4.5.3

Theorem 4.5.3. Atiken’s Integral.
For ¥~1 a symmetric positive definite d x d matrix, is a constant
d-vector, and x € R we have

/ e~ (mTET /2 gy — (27)9/2(det(3)) V2.
Rd
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Theorem 4.5.3

Theorem 4.5.3. Atiken’s Integral.
For ¥~1 a symmetric positive definite d x d matrix, is a constant
d-vector, and x € R we have

/ e~ (mTET /2 gy — (27)9/2(det(3)) V2.
Rd

Proof. We know that fR e dx = \/2m, based on the standard normal
distribution. If we let y = x — p then we also have

/ e’ dy = / e~ 1) dy = /27
R R

Now we make a change of variables and let y = x — ;1 where y € R¥.
Then as x ranges over all of R?, so does y and hence

/ o (m) TE M) /2 gy / VT2,
R4 R4
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Theorem 4.5.3 (continued 1)

Theorem 4.5.3. Atiken’s Integral.
For ! a symmetric positive definite d x d matrix, is a constant

d-vector, and x € R? we have

Proof (continued). By Theorem 3.8.15(1), since X! is symmetric and
positive definite, then PTYy-1p — 7 for some nonsingular P. We now
make another change of variables to z = P!y (and so y = Pz). The
change of variables requires that we introduce the Jacobian, as described
at the beginning of the section (but now in d-dimensions) we need det(P).
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Theorem 4.5.3 (continued 1)

Theorem 4.5.3. Atiken’s Integral.
For ! a symmetric positive definite d x d matrix, is a constant
d-vector, and x € R? we have

Proof (continued). By Theorem 3.8.15(1), since X! is symmetric and
positive definite, then PTYy-1p — 7 for some nonsingular P. We now
make another change of variables to z = P!y (and so y = Pz). The
change of variables requires that we introduce the Jacobian, as described
at the beginning of the section (but now in d-dimensions) we need det(P).
Since PTY 1P = T then by Theorem 3.2.4,

det(PT)det(X1)det(P) = det(Z) = 1, and since det(P ') = det(P) by
Theorem 3.1.A and det(X ') = a/det(X) (also by Theorem 3.1.A), then
(det(P))? = det(X) or det(P) = (det(X))/2.
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Theorem 4.5.3 (continued 2)

Proof (continued). So
_,Ty-1 . Ts—1
[ = [ P gen(m)) 2 0z
Rd Rd
_ —zT(PTZ-1P)z/2 7))1/2
/R e (det(X))/2 dz
= / eZTZ/2(det(Z))1/2 dz since PTY 1P =1
Rd
— (det(x)) / o112 gy

Rd

= () [ g,
Rd
where vector z has components z;
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Theorem 4.5.3 (continued 3)

Theorem 4.5.3. Atiken’s Integral.
For ¥~1 a symmetric positive definite d x d matrix, is a constant
d-vector, and x € R we have

/ e~ CmWTET /2 g — (27)/?(det(5)) /2,
Rd

Proof (continued). ...

/ e~ (- TE )2 gy / eI gy
Rd Rd

= (det(Z))l/Z / / N / e_zfe_zg e e_Z(zi dzl d22 e dZd
RJR R

= (det(Z))l/z/ e 4 dzl/ e % d22~~-/ e =% dzy
R R R

= (det(X))2((27)*/?)9 as described above
(27)4/2(det(X))¥2. O
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