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Theorem 5.6.A

Theorem 5.6.A (continued 1)

Theorem 5.6.A. If Ais an n x m matrix which can be put in row echelon
form without interchanging rows then there is a lower triangular n x n
matrix L and an upper triangular n x m matrix U such that A= LU.

Proof (continued). Following the Gauss-Jordan method (where the first
column is processed from top to bottom, then the second column, etc.),
then matrix Eh_1 differs from the identity only in row n and column n—1
(though it is also possible that this entry is 0). Then E, % differs from the
identity only in row n and column n— 2, and Eh__l2 differs from the identity
only in row n — 1 and column n— 2, and so forth. So as the inverse
matrices are multiplied together in product £, *E; - E; L E;! the
entries in the product are filled in as follows.
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Theorem 5.6.A

Theorem 5.6.A. If Ais an n x m matrix which can be put in row echelon
form without interchanging rows then there is a lower triangular n x n
matrix L and an upper triangular n x m matrix U such that A= LU.

Proof. As described in the previous note, there is a sequence of n X n
elementary matrices E; such that E E,_1--- E;E; A = U where each E; is
an elementary matrix associated with the elementary row operation of row
addition. Since U is upper triangular then the row operations need only
involve adding a multiple of one row to a lower row (R, — R, + sRq where
p > q). The elementary matrix associated with R, — R, + sRq has all
entries the same as the n x n identity except that the (p, q) entry is s.
The inverse of this elementary matrix has all entries the same as the n x n
identity except that the (p, q) entry is —s. So matrix A is of the form
A=E'Eyt - EN ESTU. We now show that £y M Ey - B L E s
lower triangular.
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Theorem 5.6.A (continued 2)

Proof (continued). The E, ''s are applied in the order
Eh’l, Eh’_ll, E;_lz, ..., E;1 and this order (and the entries they affect) is
given by the colored numbers; the colored numbers are not values!

100 .- 0 0O0OO
010 - 0 0O0O0O
oo01.- 0 0O0O0O
0 00 1 0000
0 00 101 0 0O
0 00 9 6 100
0 00 8 5310
0 00 7 4 2 11

Therefore L = E1_1E2_1 e Eh__llEh_1 is lower triangular and A= LU. O
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Theorem 5.6.B

Theorem 5.6.B. Unique Factorization.
Let A be an n X m matrix. When a factorization A = LDU exists where

1. Lis a lower triangular n x n matrix with all main diagonal
entries 1,

2. U is upper triangular n x m matrix with all diagonal entries
1, and

3. D is a diagonal n x n matrix with all main diagonal entries
nonzero,

it is unique.

Proof. Suppose that A= L1D1U; = LoyD>U; are two such factorizations.
Then L;* and L, ! are also lower triangular, D;* and D5 ' are both
diagonal and Ul_1 and U2_1 are both upper triangular. Since the diagonal
entries of Ly, Ly, Uy, Us are all 1 then the diagonal entries of

LY LY U, Uyt are also all 1.
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Theorem 5.6.B

Theorem 5.6.B (continued)

Theorem 5.6.B. Unique Factorization.
Let A be a square matrix. When a factorization A = LDU exists where

1. Lis a lower triangular matrix with all main diagonal entries 1,
2. U is upper triangular matrix with all diagonal entries 1, and
3. D is a diagonal matrix with all main diagonal entries nonzero,

it is unique.

Proof (continued). Since A= L;D;U; = LyDyUs, we have

L2_1L1 =Dy, Ul_lDl_l. A product of upper/lower triangular matrices is
upper/lower triangular, so L2_1L1 is lower triangular and D, U> Ul_lDl_1 is
upper triangular. Since L2_1L1 = D2U2U1_1D1_1 then both sides of this
equation must be the identity. So L2_1L1 =1 and Ly = L. Similarly, we
can conclude U; U2_1 = D1_1L1_1L2D2 and both sides must be the identity.
So U; = Us. We then have L1D;yU; = L1D,U; and since all matrices are
invertible, we conclude D; = D,. We therefore have L1 = L, U; = U,
and D; = D,. So the factorization of A is unique. O
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