Theory of Matrices

Chapter 5. Matrix Transformations and Factorizations 5.6. LU and LDU Factorizations—Proofs of Theorems

Table of contents

Theorem 5.6.A

Theorem 5.6.A. If A is an $n \times m$ matrix which can be put in row echelon form without interchanging rows then there is a lower triangular $n \times n$ matrix L and an upper triangular $n \times m$ matrix U such that $A = LU$.

Proof. As described in the previous note, there is a sequence of $n \times n$ elementary matrices E_i such that $E_h E_{h-1} \cdots E_2 E_1 A = U$ where each E_i is an elementary matrix associated with the elementary row operation of row addition. Since U is upper triangular then the row operations need only involve adding a multiple of one row to a lower row $(R_p \rightarrow R_p + sR_q$ where $p > q$).

Theorem 5.6.A

Theorem 5.6.A. If A is an $n \times m$ matrix which can be put in row echelon form without interchanging rows then there is a lower triangular $n \times n$ matrix L and an upper triangular $n \times m$ matrix U such that $A = LU$.

Proof. As described in the previous note, there is a sequence of $n \times n$ elementary matrices E_i such that $E_h E_{h-1} \cdots E_2 E_1 A = U$ where each E_i is an elementary matrix associated with the elementary row operation of row addition. Since U is upper triangular then the row operations need only involve adding a multiple of one row to a lower row $(R_p \rightarrow R_p + sR_q$ where $p > q$). The elementary matrix associated with $R_p \rightarrow R_p + sR_q$ has all entries the same as the $n \times n$ identity except that the (p, q) entry is s. The inverse of this elementary matrix has all entries the same as the $n \times n$ identity except that the (p, q) entry is $-s$. So matrix A is of the form $A = E_1^{-1} E_2^{-1} \cdots E_{h-1}^{-1}$ $\frac{f-1}{h-1}E_h^{-1}U$. We now show that $E_1^{-1}E_2^{-1}\cdots E_{h-1}^{-1}$ $\frac{1}{h-1}E_h^{-1}$ h^{-1} is lower triangular.

Theorem 5.6.A

Theorem 5.6.A. If A is an $n \times m$ matrix which can be put in row echelon form without interchanging rows then there is a lower triangular $n \times n$ matrix L and an upper triangular $n \times m$ matrix U such that $A = LU$.

Proof. As described in the previous note, there is a sequence of $n \times n$ elementary matrices E_i such that $E_h E_{h-1} \cdots E_2 E_1 A = U$ where each E_i is an elementary matrix associated with the elementary row operation of row addition. Since U is upper triangular then the row operations need only involve adding a multiple of one row to a lower row $(R_p \rightarrow R_p + sR_q$ where $p > q$). The elementary matrix associated with $R_p \rightarrow R_p + sR_q$ has all entries the same as the $n \times n$ identity except that the (p, q) entry is s. The inverse of this elementary matrix has all entries the same as the $n \times n$ identity except that the (p, q) entry is $-s$. So matrix A is of the form $A = E_1^{-1} E_2^{-1} \cdots E_{h-1}^{-1}$ $\frac{f-1}{h-1}E_h^{-1}U$. We now show that $E_1^{-1}E_2^{-1}\cdots E_{h-1}^{-1}$ $\frac{-1}{h-1}E_h^{-1}$ h^{-1} is lower triangular.

Theorem 5.6.A (continued 1)

Theorem 5.6.A. If A is an $n \times m$ matrix which can be put in row echelon form without interchanging rows then there is a lower triangular $n \times n$ matrix L and an upper triangular $n \times m$ matrix U such that $A = LU$.

Proof (continued). Following the Gauss-Jordan method (where the first column is processed from top to bottom, then the second column, etc.), then matrix E_h^{-1} $\frac{d-1}{b}$ differs from the identity only in row n and column $n-1$ (though it is also possible that this entry is 0). Then E_{h-}^{-1} \bar{h}_{h-1}^{-1} differs from the identity only in row n and column $n-2$, and E_{h-1}^{-1} \bar{h}_{h-2}^{-1} differs from the identity only in row $n - 1$ and column $n - 2$, and so forth. So as the inverse matrices are multiplied together in product $E_1^{-1} E_2^{-1} \cdots E_{h-1}^{-1}$ $\frac{-1}{h-1}E_h^{-1}$ h^{-1} the entries in the product are filled in as follows.

Theorem 5.6.A. If A is an $n \times m$ matrix which can be put in row echelon form without interchanging rows then there is a lower triangular $n \times n$ matrix L and an upper triangular $n \times m$ matrix U such that $A = LU$.

Proof (continued). Following the Gauss-Jordan method (where the first column is processed from top to bottom, then the second column, etc.), then matrix E_h^{-1} $\frac{d-1}{b}$ differs from the identity only in row n and column $n-1$ (though it is also possible that this entry is 0). Then E_{h-}^{-1} \bar{h}_{h-1}^{-1} differs from the identity only in row n and column $n-2$, and E_{h-1}^{-1} \bar{h}_{h-2}^{-1} differs from the identity only in row $n - 1$ and column $n - 2$, and so forth. So as the inverse matrices are multiplied together in product $E_1^{-1} E_2^{-1} \cdots E_{h-1}^{-1}$ $\frac{-1}{h-1}E_h^{-1}$ h^{-1} the entries in the product are filled in as follows.

Theorem 5.6.A (continued 2)

Proof (continued). The E_k^{-1} $\frac{(-1)^n}{k}$'s are applied in the order E_h^{-1} $\zeta_h^{-1}, \zeta_{h-1}^{-1}$ $\zeta_{h-1}^{-1}, \zeta_{h-1}^{-1}$ $\zeta_{h-2}^{-1}, \ldots, \zeta_1^{-1}$ and this order (and the entries they affect) is given by the colored numbers; the colored numbers are not values!

Therefore $L = E_1^{-1} E_2^{-1} \cdots E_{h-1}^{-1}$ $\frac{-1}{h-1}E_h^{-1}$ λ_h^{-1} is lower triangular and $A = LU$.

Theorem 5.6 B

Theorem 5.6.B. Unique Factorization.

Let A be an $n \times m$ matrix. When a factorization $A = LDU$ exists where

- 1. L is a lower triangular $n \times n$ matrix with all main diagonal entries 1,
- 2. U is upper triangular $n \times m$ matrix with all diagonal entries 1, and
- 3. D is a diagonal $n \times n$ matrix with all main diagonal entries nonzero,

it is unique.

Proof. Suppose that $A = L_1D_1U_1 = L_2D_2U_2$ are two such factorizations. Then L_1^{-1} and L_2^{-1} are also lower triangular, D_1^{-1} and D_2^{-1} are both diagonal and U_1^{-1} and U_2^{-1} are both upper triangular. Since the diagonal entries of L_1, L_2, U_1, U_2 are all 1 then the diagonal entries of $L_1^{-1}, L_2^{-1}, U_1^{-1}, U_2^{-1}$ are also all 1.

Theorem 5.6.B

Theorem 5.6.B. Unique Factorization.

Let A be an $n \times m$ matrix. When a factorization $A = LDU$ exists where

- 1. L is a lower triangular $n \times n$ matrix with all main diagonal entries 1,
- 2. U is upper triangular $n \times m$ matrix with all diagonal entries 1, and
- 3. D is a diagonal $n \times n$ matrix with all main diagonal entries nonzero,

it is unique.

Proof. Suppose that $A = L_1D_1U_1 = L_2D_2U_2$ are two such factorizations. Then L_1^{-1} and L_2^{-1} are also lower triangular, D_1^{-1} and D_2^{-1} are both diagonal and U_1^{-1} and U_2^{-1} are both upper triangular. Since the diagonal entries of L_1, L_2, U_1, U_2 are all 1 then the diagonal entries of $L_1^{-1}, L_2^{-1}, U_1^{-1}, U_2^{-1}$ are also all 1.

Theorem 5.6.B (continued)

Theorem 5.6.B. Unique Factorization.

Let A be a square matrix. When a factorization $A = LDU$ exists where

- 1. L is a lower triangular matrix with all main diagonal entries 1,
- 2. U is upper triangular matrix with all diagonal entries 1, and

3. D is a diagonal matrix with all main diagonal entries nonzero,

it is unique.

Proof (continued). Since $A = L_1D_1U_1 = L_2D_2U_2$, we have $L_2^{-1}L_1 = D_2U_2U_1^{-1}D_1^{-1}$. A product of upper/lower triangular matrices is upper/lower triangular, so $L_2^{-1}L_1$ is lower triangular and $D_2U_2U_1^{-1}D_1^{-1}$ is **upper triangular**. Since $L_2^{-1}L_1 = D_2U_2U_1^{-1}D_1^{-1}$ then both sides of this equation must be the identity. So $L_2^{-1}L_1 = I$ and $L_1 = L_2$. Similarly, we can conclude $U_1U_2^{-1} = D_1^{-1}L_1^{-1}L_2D_2$ and both sides must be the identity. So $U_1 = U_2$.

Theorem 5.6.B (continued)

Theorem 5.6.B. Unique Factorization.

Let A be a square matrix. When a factorization $A = LDU$ exists where

1. L is a lower triangular matrix with all main diagonal entries 1,

2. U is upper triangular matrix with all diagonal entries 1, and

3. D is a diagonal matrix with all main diagonal entries nonzero,

it is unique.

Proof (continued). Since $A = L_1D_1U_1 = L_2D_2U_2$, we have $L_2^{-1}L_1 = D_2U_2U_1^{-1}D_1^{-1}$. A product of upper/lower triangular matrices is upper/lower triangular, so $L_2^{-1}L_1$ is lower triangular and $D_2U_2U_1^{-1}D_1^{-1}$ is upper triangular. Since $L_2^{-1}\bar{L}_1 = D_2U_2U_1^{-1}D_1^{-1}$ then both sides of this equation must be the identity. So $L_2^{-1}L_1 = I$ and $L_1 = L_2$. Similarly, we can conclude $U_1U_2^{-1}=D_1^{-1}L_1^{-1}L_2D_2$ and both sides must be the identity. **So** $U_1 = U_2$ **.** We then have $L_1D_1U_1 = L_1D_2U_1$ and since all matrices are invertible, we conclude $D_1 = D_2$. We therefore have $L_1 = L_2$, $U_1 = U_2$. and $D_1 = D_2$. So the factorization of A is unique.

Theorem 5.6.B (continued)

Theorem 5.6.B. Unique Factorization.

Let A be a square matrix. When a factorization $A = LDU$ exists where

1. L is a lower triangular matrix with all main diagonal entries 1,

2. U is upper triangular matrix with all diagonal entries 1, and

3. D is a diagonal matrix with all main diagonal entries nonzero,

it is unique.

Proof (continued). Since $A = L_1D_1U_1 = L_2D_2U_2$, we have $L_2^{-1}L_1 = D_2U_2U_1^{-1}D_1^{-1}$. A product of upper/lower triangular matrices is upper/lower triangular, so $L_2^{-1}L_1$ is lower triangular and $D_2U_2U_1^{-1}D_1^{-1}$ is upper triangular. Since $L_2^{-1}\bar{L}_1 = D_2U_2U_1^{-1}D_1^{-1}$ then both sides of this equation must be the identity. So $L_2^{-1}L_1 = I$ and $L_1 = L_2$. Similarly, we can conclude $U_1U_2^{-1}=D_1^{-1}L_1^{-1}L_2D_2$ and both sides must be the identity. So $U_1 = U_2$. We then have $L_1D_1U_1 = L_1D_2U_1$ and since all matrices are invertible, we conclude $D_1 = D_2$. We therefore have $L_1 = L_2$, $U_1 = U_2$, and $D_1 = D_2$. So the factorization of A is unique.