Theory of Matrices

Chapter 5. Matrix Transformations and Factorizations 5.7. QR Factorization—Proofs of Theorems

Table of contents

Theorem 5.7.A

Theorem 5.7.A. Let $\{a_1, a_2, \ldots, a_k\}$ be a linearly independent set of vectors. There exists unique scalars x_{ij} where $1 \leq j \leq k$ and $0 < i < j$ such that the k vectors

$$
b_1 = a_1
$$

\n
$$
b_2 = a_2 - x_{12}b_1
$$

\n
$$
\vdots
$$

\n
$$
b_j = a_j - x_{j-1,j}b_{j-1} - x_{j-2,j}b_{j-2} - \cdots - x_{1j}b_1
$$

\n
$$
\vdots
$$

\n
$$
b_m = a_m - x_{m-1,m}b_{m-1} - x_{m-2,m}b_{m-2} - \cdots - x_{1m}b_1
$$

form an orthogonal set. The vectors b_1, b_2, \ldots, b_k are nonzero and $\langle x_{ij} = \langle a_j,b_i \rangle / \langle b_i,b_i \rangle$ for $1 \leq j \leq m$ and $0 < i < m.$

Theorem 5.7.A (continued 1)

Proof (continued). We prove this by induction on k . The result is trivial for $k = 1$ since we have $b_1 = a_1$ and there are no x_{ii} . Suppose the result holds for $m = k - 1$. That is, suppose there exists unique x_{ij} for $1 \leq j \leq k-1$ and $0 < i < j$ such that $b_1, b_2, \ldots, b_{k-1}$ defined as given in the statement of the theorem form an orthogonal set of nonzero vectors $\mathsf{where}\; \mathsf{x}_{\boldsymbol{ij}} = \langle \mathsf{a}_{\boldsymbol{j}}, \boldsymbol{b}_{\boldsymbol{i}} \rangle / \langle \mathsf{b}_{\boldsymbol{i}}, \boldsymbol{b}_{\boldsymbol{i}} \rangle$. We define $\mathsf{b}_{\boldsymbol{k}}$ as given in the statement of the theorem and we must show that b_k is nonzero and that the coefficients x_{ii} are as claimed for $j = k$ and $0 < i < j$. Notice that for $0 < i < j$ we have

$$
\langle b_k, b_i \rangle = \langle a_k - x_{k-1,k} b_{k-1} - x_{k-2,k} b_{k-2} - \cdots - x_{1k} b_1, b_i \rangle
$$

$$
= \langle a_k, b_i \rangle - x_{k-1, k} \langle b_{k-1}, b_i \rangle - \cdots - x_{i,k} \langle b_i, b_i \rangle - \cdots - x_{1k} \langle b_1, b_i \rangle
$$

= $\langle a_k, b_i \rangle - x_{ik} \langle b_i, b_i \rangle$.

Theorem 5.7.A (continued 1)

Proof (continued). We prove this by induction on k . The result is trivial for $k = 1$ since we have $b_1 = a_1$ and there are no x_{ii} . Suppose the result holds for $m = k - 1$. That is, suppose there exists unique x_{ij} for $1 \leq j \leq k-1$ and $0 < i < j$ such that $b_1, b_2, \ldots, b_{k-1}$ defined as given in the statement of the theorem form an orthogonal set of nonzero vectors where $x_{ij} = \langle {\sf a}_j, {\sf b}_i \rangle / \langle {\sf b}_i, {\sf b}_i \rangle.$ We define ${\sf b}_k$ as given in the statement of the theorem and we must show that b_k is nonzero and that the coefficients x_{ii} are as claimed for $j = k$ and $0 < i < j$. Notice that for $0 < i < j$ we have

$$
\langle b_k, b_j \rangle = \langle a_k - x_{k-1,k} b_{k-1} - x_{k-2,k} b_{k-2} - \cdots - x_{1k} b_1, b_j \rangle
$$

$$
= \langle a_k, b_i \rangle - x_{k-1, k} \langle b_{k-1}, b_i \rangle - \cdots - x_{i,k} \langle b_i, b_i \rangle - \cdots - x_{1k} \langle b_1, b_i \rangle
$$

= $\langle a_k, b_i \rangle - x_{ik} \langle b_i, b_i \rangle$.

So $\langle b_k , b_i \rangle = 0$ if and only if $\langle a_k , b_i \rangle - x_{ik} \langle b_i , b_i \rangle = 0$ or, since $b_i \neq 0$ by the induction hypothesis, $\langle b_k, b_i \rangle = 0$ (that is, $b_1, b_2, \ldots, b_{k-1}, b_k$ form an orthogonal set) if and only if $x_{ik} = \langle a_k , b_i \rangle / \langle b_i , b_i \rangle$.

Theorem 5.7.A (continued 1)

Proof (continued). We prove this by induction on k . The result is trivial for $k = 1$ since we have $b_1 = a_1$ and there are no x_{ij} . Suppose the result holds for $m = k - 1$. That is, suppose there exists unique x_{ij} for $1 \leq j \leq k-1$ and $0 < i < j$ such that $b_1, b_2, \ldots, b_{k-1}$ defined as given in the statement of the theorem form an orthogonal set of nonzero vectors where $x_{ij} = \langle {\sf a}_j, {\sf b}_i \rangle / \langle {\sf b}_i, {\sf b}_i \rangle.$ We define ${\sf b}_k$ as given in the statement of the theorem and we must show that b_k is nonzero and that the coefficients x_{ii} are as claimed for $j = k$ and $0 < i < j$. Notice that for $0 < i < j$ we have

$$
\langle b_k, b_j \rangle = \langle a_k - x_{k-1,k} b_{k-1} - x_{k-2,k} b_{k-2} - \cdots - x_{1k} b_1, b_j \rangle
$$

$$
= \langle a_k, b_i \rangle - x_{k-1, k} \langle b_{k-1}, b_i \rangle - \cdots - x_{i,k} \langle b_i, b_i \rangle - \cdots - x_{1k} \langle b_1, b_i \rangle
$$

= $\langle a_k, b_i \rangle - x_{ik} \langle b_i, b_i \rangle$.

So $\langle b_k , b_i \rangle = 0$ if and only if $\langle a_k , b_i \rangle - x_{ik} \langle b_i , b_i \rangle = 0$ or, since $b_i \neq 0$ by the induction hypothesis, $\langle b_k, b_i \rangle = 0$ (that is, $b_1, b_2, \ldots, b_{k-1}, b_k$ form an orthogonal set) if and only if $x_{ik} = \langle a_k , b_i \rangle / \langle b_i , b_i \rangle$.

Theorem 5.7.A (continued 2)

Proof (continued). So the scalars x_{ii} for $j = k$ and $0 < i < j$ must satisfy $x_{ik}=\langle a_k , b_i \rangle/\langle b_i , b_i \rangle$. So by induction, the x_{ij} are as claimed for $1 \leq j \leq k$ and $0 < i < j$.

We just need to show that b_k is nonzero. From the definition of b_1, b_2, \ldots, b_k we can express:

- b_1 in terms of a_1 with a coefficient of 1 for a_1 ,
- b_2 in terms of a_2 and a_1 with a coefficient of 1 for a_2 ,
- b_3 in terms of a_3 , a_2 , and a_1 with a coefficient of 1 for a_3 , . . . , and
- b_k in terms of $a_k, a_{k-1}, \ldots, a_1$ with a coefficient of 1 for a_k .

Theorem 5.7.A (continued 2)

Proof (continued). So the scalars x_{ii} for $j = k$ and $0 < i < j$ must satisfy $x_{ik}=\langle a_k , b_i \rangle/\langle b_i , b_i \rangle$. So by induction, the x_{ij} are as claimed for $1 \leq j \leq k$ and $0 < i < j$.

We just need to show that b_k is nonzero. From the definition of b_1, b_2, \ldots, b_k we can express:

- b_1 in terms of a_1 with a coefficient of 1 for a_1 ,
- b_2 in terms of a_2 and a_1 with a coefficient of 1 for a_2 ,
- b_3 in terms of a_3 , a_2 , and a_1 with a coefficient of 1 for a_3 , . . . , and
- b_k in terms of $a_k, a_{k-1}, \ldots, a_1$ with a coefficient of 1 for a_k .

Since $\{a_1, a_2, \ldots, a_k\}$ is a linearly independent set and when expressing b_k as a linear combination of these vectors the coefficient of a_k is nonzero then b_k is nonzero. So the result holds for $m = k$ and therefore holds in general by induction.

Theorem 5.7.A (continued 2)

Proof (continued). So the scalars x_{ii} for $j = k$ and $0 < i < j$ must satisfy $x_{ik}=\langle a_k , b_i \rangle/\langle b_i , b_i \rangle$. So by induction, the x_{ij} are as claimed for $1 \leq j \leq k$ and $0 < i < j$.

We just need to show that b_k is nonzero. From the definition of b_1, b_2, \ldots, b_k we can express:

- b_1 in terms of a_1 with a coefficient of 1 for a_1 ,
- b_2 in terms of a_2 and a_1 with a coefficient of 1 for a_2 ,
- b_3 in terms of a_3 , a_2 , and a_1 with a coefficient of 1 for a_3 , . . . , and

• b_k in terms of $a_k, a_{k-1}, \ldots, a_1$ with a coefficient of 1 for a_k . Since $\{a_1, a_2, \ldots, a_k\}$ is a linearly independent set and when expressing b_k as a linear combination of these vectors the coefficient of a_k is nonzero then b_k is nonzero. So the result holds for $m = k$ and therefore holds in general by induction.

Theorem 5.7.B

Theorem 5.7.B. Let A be an $n \times m$ matrix of full column rank (that is, rank $(A) = m$). Then there is $n \times m$ matrix B, where the columns of B are mutually orthogonal and nonzero, and $m \times m$ upper triangular matrix X, with all diagonal entries 1, such that $A = BX$.

Proof. Denote the (linearly independent) columns of A as a_1, a_2, \ldots, a_m . Recursively define (column) vectors b_1, b_2, \ldots, b_m as

$$
b_1 = a_1
$$

\n
$$
b_2 = a_2 - x_{12}b_1
$$

\n
$$
b_3 = a_3 - x_{23}b_2 - x_{13}b_1
$$

\n
$$
\vdots
$$

\n
$$
b_j = a_j - x_{j-1,j}b_{j-1} - x_{j-2,j}b_{j-2} - \cdots - x_{1j}b_1
$$

\n
$$
\vdots
$$

\n
$$
b_m = a_m - x_{m-1,m}b_{m-1} - x_{m-2,m}b_{m-2} - \cdots - x_{1m}b_1
$$

Theorem 5.7.B

Theorem 5.7.B. Let A be an $n \times m$ matrix of full column rank (that is, rank $(A) = m$). Then there is $n \times m$ matrix B, where the columns of B are mutually orthogonal and nonzero, and $m \times m$ upper triangular matrix X, with all diagonal entries 1, such that $A = BX$.

Proof. Denote the (linearly independent) columns of A as a_1, a_2, \ldots, a_m . Recursively define (column) vectors b_1, b_2, \ldots, b_m as

$$
b_1 = a_1
$$

\n
$$
b_2 = a_2 - x_{12}b_1
$$

\n
$$
b_3 = a_3 - x_{23}b_2 - x_{13}b_1
$$

\n
$$
\vdots
$$

\n
$$
b_j = a_j - x_{j-1,j}b_{j-1} - x_{j-2,j}b_{j-2} - \cdots - x_{1j}b_1
$$

\n
$$
\vdots
$$

\n
$$
b_m = a_m - x_{m-1,m}b_{m-1} - x_{m-2,m}b_{m-2} - \cdots - x_{1m}b_1
$$

Theorem 5.7.B (continued 1)

Proof (continued). \dots where $x_{ij} = \langle a_j, b_i \rangle / \langle b_i, b_i \rangle$. The b_1, b_2, \dots, b_m are mutually orthogonal and each is nonzero by Theorem 5.7.A. We can rearrange the equations defining the b_i 's to express the a_j 's as linear combinations of the b_i 's:

$$
a_1 = b_1
$$

\n
$$
a_2 = b_2 + x_{12}b_1
$$

\n
$$
\vdots
$$

\n
$$
a_j = b_j + x_{j-1,j}b_{j-1} + x_{j-2,j}b_{j-2} + \cdots + x_{1j}b_1
$$

\n
$$
\vdots
$$

\n
$$
a_m = b_m + x_{m-1,m}b_{m-1} + x_{m-2,m}b_{m-2} + \cdots + x_{1m}b_1
$$

\n
$$
(*)
$$

where $x_{ij} = \langle a_j, b_i \rangle / \langle b_i, b_i \rangle$.

Theorem 5.7.B (continued 2)

Theorem 5.7.B. Let A be an $n \times m$ matrix of full column rank (that is, rank(A) = m). Then there is $n \times m$ matrix B, where the columns of B are mutually orthogonal and nonzero, and $m \times m$ upper triangular matrix X, with all diagonal entries 1, such that $A = BX$.

Proof (continued). Define $n \times m$ matrix B with columns b_1, b_2, \ldots, b_m and $m \times m$ matrix X with entry (i, j) as x_{ii} for $i < j$, $x_{ii} = 1$, and $x_{ii} = 0$ for $i > i$. So the columns of B are orthogonal and X is upper triangular with diagonal entries of 1. From $(*)$, we see that $A = BX$, as claimed. \square