Theory of Matrices

Chapter 5. Matrix Transformations and Factorizations 5.7. *QR* Factorization—Proofs of Theorems

Table of contents

Theorem 5.7.A

Theorem 5.7.A. Let $\{a_1, a_2, ..., a_k\}$ be a linearly independent set of vectors. There exists unique scalars x_{ij} where $1 \le j \le k$ and 0 < i < j such that the k vectors

$$b_{1} = a_{1}$$

$$b_{2} = a_{2} - x_{12}b_{1}$$

$$\vdots$$

$$b_{j} = a_{j} - x_{j-1,j}b_{j-1} - x_{j-2,j}b_{j-2} - \dots - x_{1j}b_{1}$$

$$\vdots$$

$$b_{m} = a_{m} - x_{m-1,m}b_{m-1} - x_{m-2,m}b_{m-2} - \dots - x_{1m}b_{1}$$

form an orthogonal set. The vectors b_1, b_2, \ldots, b_k are nonzero and $x_{ij} = \langle a_j, b_i \rangle / \langle b_i, b_i \rangle$ for $1 \le j \le m$ and 0 < i < m.

Theorem 5.7.A (continued 1)

Proof (continued). We prove this by induction on k. The result is trivial for k = 1 since we have $b_1 = a_1$ and there are no x_{ij} . Suppose the result holds for m = k - 1. That is, suppose there exists unique x_{ij} for $1 \le j \le k - 1$ and 0 < i < j such that $b_1, b_2, \ldots, b_{k-1}$ defined as given in the statement of the theorem form an orthogonal set of nonzero vectors where $x_{ij} = \langle a_j, b_i \rangle / \langle b_i, b_i \rangle$. We define b_k as given in the statement of the theorem and we must show that b_k is nonzero and that the coefficients x_{ij} are as claimed for j = k and 0 < i < j. Notice that for 0 < i < j we have

$$\langle b_k, b_i \rangle = \langle a_k - x_{k-1, k} b_{k-1} - x_{k-2, k} b_{k-2} - \dots - x_{1k} b_1, b_i \rangle$$

$$= \langle a_k, b_i \rangle - x_{k-1, k} \langle b_{k-1}, b_i \rangle - \dots - x_{i, k} \langle b_i, b_i \rangle - \dots - x_{1k} \langle b_1, b_i \rangle$$
$$= \langle a_k, b_i \rangle - x_{ik} \langle b_i, b_i \rangle.$$

Theorem 5.7.A (continued 1)

Proof (continued). We prove this by induction on k. The result is trivial for k = 1 since we have $b_1 = a_1$ and there are no x_{ij} . Suppose the result holds for m = k - 1. That is, suppose there exists unique x_{ij} for $1 \le j \le k - 1$ and 0 < i < j such that $b_1, b_2, \ldots, b_{k-1}$ defined as given in the statement of the theorem form an orthogonal set of nonzero vectors where $x_{ij} = \langle a_j, b_i \rangle / \langle b_i, b_i \rangle$. We define b_k as given in the statement of the theorem and we must show that b_k is nonzero and that the coefficients x_{ij} are as claimed for j = k and 0 < i < j. Notice that for 0 < i < j we have

$$\langle b_k, b_i \rangle = \langle a_k - x_{k-1, k} b_{k-1} - x_{k-2, k} b_{k-2} - \dots - x_{1k} b_1, b_i \rangle$$

$$= \langle a_k, b_i \rangle - x_{k-1, k} \langle b_{k-1}, b_i \rangle - \dots - x_{i, k} \langle b_i, b_i \rangle - \dots - x_{1k} \langle b_1, b_i \rangle$$
$$= \langle a_k, b_i \rangle - x_{ik} \langle b_i, b_i \rangle.$$

So $\langle b_k, b_i \rangle = 0$ if and only if $\langle a_k, b_i \rangle - x_{ik} \langle b_i, b_i \rangle = 0$ or, since $b_i \neq 0$ by the induction hypothesis, $\langle b_k, b_i \rangle = 0$ (that is, $b_1, b_2, \ldots, b_{k-1}, b_k$ form an orthogonal set) if and only if $x_{ik} = \langle a_k, b_i \rangle / \langle b_i, b_i \rangle$.

Theorem 5.7.A (continued 1)

Proof (continued). We prove this by induction on k. The result is trivial for k = 1 since we have $b_1 = a_1$ and there are no x_{ij} . Suppose the result holds for m = k - 1. That is, suppose there exists unique x_{ij} for $1 \le j \le k - 1$ and 0 < i < j such that $b_1, b_2, \ldots, b_{k-1}$ defined as given in the statement of the theorem form an orthogonal set of nonzero vectors where $x_{ij} = \langle a_j, b_i \rangle / \langle b_i, b_i \rangle$. We define b_k as given in the statement of the theorem and we must show that b_k is nonzero and that the coefficients x_{ij} are as claimed for j = k and 0 < i < j. Notice that for 0 < i < j we have

$$\langle b_k, b_i \rangle = \langle a_k - x_{k-1, k} b_{k-1} - x_{k-2, k} b_{k-2} - \dots - x_{1k} b_1, b_i \rangle$$

$$= \langle a_k, b_i \rangle - x_{k-1, k} \langle b_{k-1}, b_i \rangle - \dots - x_{i, k} \langle b_i, b_i \rangle - \dots - x_{1k} \langle b_1, b_i \rangle$$
$$= \langle a_k, b_i \rangle - x_{ik} \langle b_i, b_i \rangle.$$

So $\langle b_k, b_i \rangle = 0$ if and only if $\langle a_k, b_i \rangle - x_{ik} \langle b_i, b_i \rangle = 0$ or, since $b_i \neq 0$ by the induction hypothesis, $\langle b_k, b_i \rangle = 0$ (that is, $b_1, b_2, \ldots, b_{k-1}, b_k$ form an orthogonal set) if and only if $x_{ik} = \langle a_k, b_i \rangle / \langle b_i, b_i \rangle$.

Theorem 5.7.A (continued 2)

Proof (continued). So the scalars x_{ij} for j = k and 0 < i < j must satisfy $x_{ik} = \langle a_k, b_i \rangle / \langle b_i, b_i \rangle$. So by induction, the x_{ij} are as claimed for $1 \le j \le k$ and 0 < i < j.

We just need to show that b_k is nonzero. From the definition of b_1, b_2, \ldots, b_k we can express:

- b_1 in terms of a_1 with a coefficient of 1 for a_1 ,
- b_2 in terms of a_2 and a_1 with a coefficient of 1 for a_2 ,
- b_3 in terms of a_3 , a_2 , and a_1 with a coefficient of 1 for a_3 , ..., and
- b_k in terms of $a_k, a_{k-1}, \ldots, a_1$ with a coefficient of 1 for a_k .

Theorem 5.7.A (continued 2)

Proof (continued). So the scalars x_{ij} for j = k and 0 < i < j must satisfy $x_{ik} = \langle a_k, b_i \rangle / \langle b_i, b_i \rangle$. So by induction, the x_{ij} are as claimed for $1 \le j \le k$ and 0 < i < j.

We just need to show that b_k is nonzero. From the definition of b_1, b_2, \ldots, b_k we can express:

- b_1 in terms of a_1 with a coefficient of 1 for a_1 ,
- b_2 in terms of a_2 and a_1 with a coefficient of 1 for a_2 ,
- *b*₃ in terms of *a*₃, *a*₂, and *a*₁ with a coefficient of 1 for *a*₃, ..., and
- b_k in terms of $a_k, a_{k-1}, \ldots, a_1$ with a coefficient of 1 for a_k .

Since $\{a_1, a_2, \ldots, a_k\}$ is a linearly independent set and when expressing b_k as a linear combination of these vectors the coefficient of a_k is nonzero then b_k is nonzero. So the result holds for m = k and therefore holds in general by induction.

Theorem 5.7.A (continued 2)

Proof (continued). So the scalars x_{ij} for j = k and 0 < i < j must satisfy $x_{ik} = \langle a_k, b_i \rangle / \langle b_i, b_i \rangle$. So by induction, the x_{ij} are as claimed for $1 \le j \le k$ and 0 < i < j.

We just need to show that b_k is nonzero. From the definition of b_1, b_2, \ldots, b_k we can express:

- b_1 in terms of a_1 with a coefficient of 1 for a_1 ,
- b_2 in terms of a_2 and a_1 with a coefficient of 1 for a_2 ,
- *b*₃ in terms of *a*₃, *a*₂, and *a*₁ with a coefficient of 1 for *a*₃, ..., and

• b_k in terms of $a_k, a_{k-1}, \ldots, a_1$ with a coefficient of 1 for a_k . Since $\{a_1, a_2, \ldots, a_k\}$ is a linearly independent set and when expressing b_k as a linear combination of these vectors the coefficient of a_k is nonzero then b_k is nonzero. So the result holds for m = k and therefore holds in general by induction.

Theorem 5.7.B

Theorem 5.7.B. Let A be an $n \times m$ matrix of full column rank (that is, rank(A) = m). Then there is $n \times m$ matrix B, where the columns of B are mutually orthogonal and nonzero, and $m \times m$ upper triangular matrix X, with all diagonal entries 1, such that A = BX.

Proof. Denote the (linearly independent) columns of A as a_1, a_2, \ldots, a_m . Recursively define (column) vectors b_1, b_2, \ldots, b_m as

$$b_{1} = a_{1}$$

$$b_{2} = a_{2} - x_{12}b_{1}$$

$$b_{3} = a_{3} - x_{23}b_{2} - x_{13}b_{1}$$

$$\vdots$$

$$b_{j} = a_{j} - x_{j-1,j}b_{j-1} - x_{j-2,j}b_{j-2} - \dots - x_{1j}b_{1}$$

$$\vdots$$

$$b_{m} = a_{m} - x_{m-1,m}b_{m-1} - x_{m-2,m}b_{m-2} - \dots - x_{1m}b_{m}b_{m-1}$$

Theorem 5.7.B

Theorem 5.7.B. Let A be an $n \times m$ matrix of full column rank (that is, rank(A) = m). Then there is $n \times m$ matrix B, where the columns of B are mutually orthogonal and nonzero, and $m \times m$ upper triangular matrix X, with all diagonal entries 1, such that A = BX.

Proof. Denote the (linearly independent) columns of A as a_1, a_2, \ldots, a_m . Recursively define (column) vectors b_1, b_2, \ldots, b_m as

$$b_{1} = a_{1}$$

$$b_{2} = a_{2} - x_{12}b_{1}$$

$$b_{3} = a_{3} - x_{23}b_{2} - x_{13}b_{1}$$

$$\vdots$$

$$b_{j} = a_{j} - x_{j-1,j}b_{j-1} - x_{j-2,j}b_{j-2} - \dots - x_{1j}b_{1}$$

$$\vdots$$

$$b_{m} = a_{m} - x_{m-1,m}b_{m-1} - x_{m-2,m}b_{m-2} - \dots - x_{1m}b_{1}$$

Theorem 5.7.B (continued 1)

Proof (continued). ... where $x_{ij} = \langle a_j, b_i \rangle / \langle b_i, b_i \rangle$. The b_1, b_2, \ldots, b_m are mutually orthogonal and each is nonzero by Theorem 5.7.A. We can rearrange the equations defining the b_i 's to express the a_j 's as linear combinations of the b_i 's:

$$a_{1} = b_{1}$$

$$a_{2} = b_{2} + x_{12}b_{1}$$

$$\vdots$$

$$a_{j} = b_{j} + x_{j-1,j}b_{j-1} + x_{j-2,j}b_{j-2} + \dots + x_{1j}b_{1}$$

$$\vdots$$

$$a_{m} = b_{m} + x_{m-1,m}b_{m-1} + x_{m-2,m}b_{m-2} + \dots + x_{1m}b_{1} \quad (*)$$

where $x_{ij} = \langle a_j, b_i \rangle / \langle b_i, b_i \rangle$.

Theorem 5.7.B (continued 2)

Theorem 5.7.B. Let A be an $n \times m$ matrix of full column rank (that is, rank(A) = m). Then there is $n \times m$ matrix B, where the columns of B are mutually orthogonal and nonzero, and $m \times m$ upper triangular matrix X, with all diagonal entries 1, such that A = BX.

Proof (continued). Define $n \times m$ matrix B with columns b_1, b_2, \ldots, b_m and $m \times m$ matrix X with entry (i, j) as x_{ij} for i < j, $x_{ii} = 1$, and $x_{ij} = 0$ for i > j. So the columns of B are orthogonal and X is upper triangular with diagonal entries of 1. From (*), we see that A = BX, as claimed.