Chapter 5. Matrix Transformations and Factorizations
5.7. QR Factorization—Proofs of Theorems
Table of contents

1 Theorem 5.7.A

2 Theorem 5.7.B
Theorem 5.7.A. Let \(\{a_1, a_2, \ldots, a_k\} \) be a linearly independent set of vectors. There exists unique scalars \(x_{ij} \) where \(1 \leq j \leq k \) and \(0 < i < j \) such that the \(k \) vectors

\[
\begin{align*}
b_1 &= a_1 \\
b_2 &= a_2 - x_{12}b_1 \\
&\vdots \\
b_j &= a_j - x_{j-1,j}b_{j-1} - x_{j-2,j}b_{j-2} - \cdots - x_{1j}b_1 \\
&\vdots \\
b_m &= a_m - x_{m-1,m}b_{m-1} - x_{m-2,m}b_{m-2} - \cdots - x_{1m}b_1
\end{align*}
\]

form an orthogonal set. The vectors \(b_1, b_2, \ldots, b_k \) are nonzero and \(x_{ij} = \langle a_j, b_i \rangle / \langle b_i, b_i \rangle \) for \(1 \leq j \leq m \) and \(0 < i < m \).
Theorem 5.7.A (continued 1)

Proof (continued). We prove this by induction on \(k \). The result is trivial for \(k = 1 \) since we have \(b_1 = a_1 \) and there are no \(x_{ij} \). Suppose the result holds for \(m = k - 1 \). That is, suppose there exists unique \(x_{ij} \) for \(1 \leq j \leq k - 1 \) and \(0 < i < j \) such that \(b_1, b_2, \ldots, b_{k-1} \) defined as given in the statement of the theorem form an orthogonal set of nonzero vectors where \(x_{ij} = \langle a_j, b_i \rangle / \langle b_i, b_i \rangle \). We define \(b_k \) as given in the statement of the theorem and we must show that \(b_k \) is nonzero and that the coefficients \(x_{ij} \) are as claimed for \(j = k \) and \(0 < i < j \). Notice that for \(0 < i < j \) we have

\[
\langle b_k, b_i \rangle = \langle a_k - x_{k-1,k} b_{k-1} - x_{k-2,k} b_{k-2} - \cdots - x_{1k} b_1, b_i \rangle
\]

\[
= \langle a_k, b_i \rangle - x_{k-1,k} \langle b_{k-1}, b_i \rangle - x_{k-2,k} \langle b_{k-2}, b_i \rangle - \cdots - x_{1k} \langle b_1, b_i \rangle
\]

\[
= \langle a_k, b_i \rangle - x_{ik} \langle b_i, b_i \rangle.
\]
Theorem 5.7.A (continued 1)

Proof (continued). We prove this by induction on \(k \). The result is trivial for \(k = 1 \) since we have \(b_1 = a_1 \) and there are no \(x_{ij} \). Suppose the result holds for \(m = k - 1 \). That is, suppose there exists unique \(x_{ij} \) for \(1 \leq j \leq k - 1 \) and \(0 < i < j \) such that \(b_1, b_2, \ldots, b_{k-1} \) defined as given in the statement of the theorem form an orthogonal set of nonzero vectors where \(x_{ij} = \langle a_j, b_i \rangle / \langle b_i, b_i \rangle \). We define \(b_k \) as given in the statement of the theorem and we must show that \(b_k \) is nonzero and that the coefficients \(x_{ij} \) are as claimed for \(j = k \) and \(0 < i < j \). Notice that for \(0 < i < j \) we have

\[
\langle b_k, b_i \rangle = \langle a_k - x_{k-1,k} b_{k-1} - x_{k-2,k} b_{k-2} - \cdots - x_{1,k} b_1, b_i \rangle
\]

\[
= \langle a_k, b_i \rangle - x_{k-1,k} \langle b_{k-1}, b_i \rangle - x_{k-2,k} \langle b_{k-2}, b_i \rangle - \cdots - x_{i,k} \langle b_i, b_i \rangle - \cdots - x_{1,k} \langle b_1, b_i \rangle
\]

\[
= \langle a_k, b_i \rangle - x_{ik} \langle b_i, b_i \rangle.
\]

So \(\langle b_k, b_i \rangle = 0 \) if and only if \(\langle a_k, b_i \rangle - x_{ik} \langle b_i, b_i \rangle = 0 \) or, since \(b_i \neq 0 \) by the induction hypothesis, \(\langle b_k, b_i \rangle = 0 \) (that is, \(b_1, b_2, \ldots, b_{k-1}, b_k \) form an orthogonal set) if and only if \(x_{ik} = \langle a_k, b_i \rangle / \langle b_i, b_i \rangle \).
Theorem 5.7.A (continued 1)

Proof (continued). We prove this by induction on k. The result is trivial for $k = 1$ since we have $b_1 = a_1$ and there are no x_{ij}. Suppose the result holds for $m = k - 1$. That is, suppose there exists unique x_{ij} for $1 \leq j \leq k - 1$ and $0 < i < j$ such that $b_1, b_2, \ldots, b_{k-1}$ defined as given in the statement of the theorem form an orthogonal set of nonzero vectors where $x_{ij} = \langle a_j, b_i \rangle / \langle b_i, b_i \rangle$. We define b_k as given in the statement of the theorem and we must show that b_k is nonzero and that the coefficients x_{ij} are as claimed for $j = k$ and $0 < i < j$. Notice that for $0 < i < j$ we have

$$\langle b_k, b_i \rangle = \langle a_k - x_{k-1}, k b_{k-1} - x_{k-2}, k b_{k-2} - \cdots - x_1 k b_1, b_i \rangle$$

$$= \langle a_k, b_i \rangle - x_{k-1}, k \langle b_{k-1}, b_i \rangle - x_{k-2}, k \langle b_{k-2} - \cdots - x_i, k \langle b_i, b_i \rangle - \cdots - x_1 k \langle b_1, b_i \rangle$$

$$= \langle a_k, b_i \rangle - x_{ik} \langle b_i, b_i \rangle.$$

So $\langle b_k, b_i \rangle = 0$ if and only if $\langle a_k, b_i \rangle - x_{ik} \langle b_i, b_i \rangle = 0$ or, since $b_i \neq 0$ by the induction hypothesis, $\langle b_k, b_i \rangle = 0$ (that is, $b_1, b_2, \ldots, b_{k-1}, b_k$ form an orthogonal set) if and only if $x_{ik} = \langle a_k, b_i \rangle / \langle b_i, b_i \rangle$.

Theorem 5.7.A (continued 2)

Proof (continued). So the scalars x_{ij} for $j = k$ and $0 < i < j$ must satisfy $x_{ik} = \langle a_k, b_i \rangle / \langle b_i, b_i \rangle$. So by induction, the x_{ij} are as claimed for $1 \leq j \leq j$ and $0 < i < j$.

We just need to show that b_k is nonzero. From the definition of b_1, b_2, \ldots, b_k we can express:

- b_1 in terms of a_1 with a coefficient of 1 for a_1,
- b_2 in terms of a_2 and a_1 with a coefficient of 1 for a_2,
- b_3 in terms of a_3, a_2, and a_1 with a coefficient of 1 for a_3, \ldots, and
- b_k in terms of a_k, a_{k-1}, \ldots, a_1 with a coefficient of 1 for a_k.

Since \{a_1, a_2, \ldots, a_k\} is a linearly independent set and when expressing b_k as a linear combination of these vectors the coefficient of a_k is nonzero then b_k is nonzero. So the result holds for $m = k$ and therefore holds in general by induction.
Theorem 5.7.A (continued 2)

Proof (continued). So the scalars x_{ij} for $j = k$ and $0 < i < j$ must satisfy $x_{ik} = \langle a_k, b_i \rangle / \langle b_i, b_i \rangle$. So by induction, the x_{ij} are as claimed for $1 \leq j \leq j$ and $0 < i < j$.

We just need to show that b_k is nonzero. From the definition of b_1, b_2, \ldots, b_k we can express:

- b_1 in terms of a_1 with a coefficient of 1 for a_1,
- b_2 in terms of a_2 and a_1 with a coefficient of 1 for a_2,
- b_3 in terms of $a_3, a_2,$ and a_1 with a coefficient of 1 for a_3, \ldots, and
- b_k in terms of $a_k, a_{k-1}, \ldots, a_1$ with a coefficient of 1 for a_k.

Since $\{a_1, a_2, \ldots, a_k\}$ is a linearly independent set and when expressing b_k as a linear combination of these vectors the coefficient of a_k is nonzero then b_k is nonzero. So the result holds for $m = k$ and therefore holds in general by induction.
Theorem 5.7.A (continued 2)

Proof (continued). So the scalars x_{ij} for $j = k$ and $0 < i < j$ must satisfy $x_{ik} = \langle a_k, b_i \rangle / \langle b_i, b_i \rangle$. So by induction, the x_{ij} are as claimed for $1 \leq j \leq j$ and $0 < i < j$.

We just need to show that b_k is nonzero. From the definition of b_1, b_2, \ldots, b_k we can express:

- b_1 in terms of a_1 with a coefficient of 1 for a_1,
- b_2 in terms of a_2 and a_1 with a coefficient of 1 for a_2,
- b_3 in terms of a_3, a_2, and a_1 with a coefficient of 1 for a_3, \ldots, and
- b_k in terms of $a_k, a_{k-1}, \ldots, a_1$ with a coefficient of 1 for a_k.

Since $\{a_1, a_2, \ldots, a_k\}$ is a linearly independent set and when expressing b_k as a linear combination of these vectors the coefficient of a_k is nonzero then b_k is nonzero. So the result holds for $m = k$ and therefore holds in general by induction.
Theorem 5.7.B. Let A be an $n \times m$ matrix of full rank (that is, $\text{rank}(A) = m$). Then there is $n \times m$ matrix B, where the columns of B are mutually orthogonal and nonzero, and $m \times m$ upper triangular matrix X, with all diagonal entries 1, such that $A = BX$.

Proof. Denote the columns of A as a_1, a_2, \ldots, a_m. Recursively define (column) vectors b_1, b_2, \ldots, b_m as

\[
\begin{align*}
 b_1 &= a_1 \\
 b_2 &= a_2 - x_{12} b_1 \\
 b_3 &= a_3 - x_{23} b_2 - x_{13} b_1 \\
 & \vdots \\
 b_j &= a_j - x_{j-1,j} b_{j-1} - x_{j-2,j} b_{j-2} - \cdots - x_{1,j} b_1 \\
 & \vdots \\
 b_m &= a_m - x_{m-1,m} b_{m-1} - x_{m-2,m} b_{m-2} - \cdots - x_{1,m} b_1
\end{align*}
\]
Theorem 5.7.B

Theorem 5.7.B. Let A be an $n \times m$ matrix of full rank (that is, $\text{rank}(A) = m$). Then there is $n \times m$ matrix B, where the columns of B are mutually orthogonal and nonzero, and $m \times m$ upper triangular matrix X, with all diagonal entries 1, such that $A = BX$.

Proof. Denote the columns of A as a_1, a_2, \ldots, a_m. Recursively define (column) vectors b_1, b_2, \ldots, b_m as

\[
\begin{align*}
 b_1 &= a_1 \\
 b_2 &= a_2 - x_{12} b_1 \\
 b_3 &= a_3 - x_{23} b_2 - x_{13} b_1 \\
 &\vdots \\
 b_j &= a_j - x_{j-1,j} b_{j-1} - x_{j-2,j} b_{j-2} - \cdots - x_{1j} b_1 \\
 &\vdots \\
 b_m &= a_m - x_{m-1,m} b_{m-1} - x_{m-2,m} b_{m-2} - \cdots - x_{1m} b_1
\end{align*}
\]
Theorem 5.7.B (continued 1)

Proof (continued 1). ... where \(x_{ij} = \langle a_j, b_i \rangle / \langle b_i, b_i \rangle \). We now show \(b_1, b_2, \ldots, b_m \) are mutually orthogonal and each is nonzero. This claim is trivially true for \(m = 1 \). Suppose it holds for \(m = k - 1 \). That is, suppose any linearly independent \(a_1, a_2, \ldots, a_{k-1} \) produce mutually orthogonal nonzero \(b_1, b_2, \ldots, b_{k-1} \). Now consider linearly independent \(a_1, a_2, \ldots, a_{k-1}, a_k \) and \(b_1, b_2, \ldots, b_{k-1}, b_k \). For any \(i \) with \(1 \leq i \leq k - 1 \) we have

\[
\langle b_k, b_i \rangle = \langle a_k - x_{k-1,k}b_{k-1} - x_{k-2,k}b_{k-2} - \cdots - x_{1,k}b_1, b_i \rangle
\]

\[
= \langle a_k, b_i \rangle - x_{k-1,k} \langle b_{k-1}, b_i \rangle - x_{k-2,k} \langle b_{k-2}, b_i \rangle - \cdots - x_{i,k} \langle b_i, b_i \rangle - \cdots - x_{1,k} \langle b_1, b_i \rangle
\]

\[
= \langle a_k, b_i \rangle - x_{ik} \langle b_i, b_i \rangle \text{ since } \langle b_j, b_i \rangle = 0 \text{ for } 1 \leq j \leq k - 1 \text{ and } j \neq i \text{ by the induction hypothesis}
\]

\[
= \langle a_k, b_i \rangle - \frac{\langle a_k, b_i \rangle}{\langle b_i, b_i \rangle} \langle b_i, b_i \rangle = 0.
\]
Theorem 5.7.B (continued 1)

Proof (continued 1). ... where \(x_{ij} = \langle a_j, b_i \rangle / \langle b_i, b_i \rangle \). We now show \(b_1, b_2, \ldots, b_m \) are mutually orthogonal and each is nonzero. This claim is trivially true for \(m = 1 \). Suppose it holds for \(m = k - 1 \). That is, suppose any linearly independent \(a_1, a_2, \ldots, a_{k-1} \) produce mutually orthogonal nonzero \(b_1, b_2, \ldots, b_{k-1} \). Now consider linearly independent \(a_1, a_2, \ldots, a_{k-1}, a_k \) and \(b_1, b_2, \ldots, b_{k-1}, b_k \). For any \(i \) with \(1 \leq i \leq k - 1 \) we have

\[
\langle b_k, b_i \rangle = \langle a_k - x_{k-1,k}b_{k-1} - x_{k-2,k}b_{k-2} - \cdots - x_{1,k}b_1, b_i \rangle
\]

\[
= \langle a_k, b_i \rangle - x_{k-1,k} \langle b_{k-1}, b_i \rangle - x_{k-2,k} \langle b_{k-2}, b_i \rangle - \cdots - x_{i,k} \langle b_i, b_i \rangle - \cdots - x_{1,k} \langle b_1, b_i \rangle
\]

\[
= \langle a_k, b_i \rangle - x_{ik} \langle b_i, b_i \rangle \text{ since } \langle b_j, b_i \rangle = 0 \text{ for } 1 \leq j \leq k - 1 \text{ and } j \neq i \text{ by the induction hypothesis}
\]

\[
= \langle a_k, b_i \rangle - \frac{\langle a_k, b_i \rangle}{\langle b_i, b_i \rangle} \langle b_i, b_i \rangle = 0.
\]
Proof (continued 2). So \(b_k \) is orthogonal to \(b_i \) for \(1 \leq i \leq k - 1 \). To see that \(b_k \) is nonzero, we observe that \(b_k \) can be written as a linear combination of \(a_1, a_2, \ldots, a_k \) (use the definition of \(b_k \) and substitution to eliminate \(b_1, b_2, \ldots, b_{k-1} \)) with not all coefficients 0 (since the coefficient of \(a_k \) is 1); since \(a_1, a_2, \ldots, a_k \) are linearly independent then \(b_k \) is not the zero vector. So, by induction, \(b_1, b_2, \ldots, b_m \) are mutually orthogonal.

(Notice that the \(b_i \)'s are constructed similar to the Gram-Schmidt Process, but without the normalization.) We can rearrange the equation defining the \(b_i \)'s to express the \(a_j \)'s as linear combinations of the \(b_i \)'s:
Proof (continued 2). So b_k is orthogonal to b_i for $1 \leq i \leq k - 1$. To see that b_k is nonzero, we observe that b_k can be written as a linear combination of a_1, a_2, \ldots, a_k (use the definition of b_k and substitution to eliminate $b_1, b_2, \ldots, b_{k-1}$) with not all coefficients 0 (since the coefficient of a_k is 1); since a_1, a_2, \ldots, a_k are linearly independent then b_k is not the zero vector. So, by induction, b_1, b_2, \ldots, b_m are mutually orthogonal. (Notice that the b_i’s are constructed similar to the Gram-Schmidt Process, but without the normalization.) We can rearrange the equation defining the b_i’s to express the a_j’s as linear combinations of the b_i’s:
Theorem 5.7.B (continued 3)

Proof (continued 3).

\[
\begin{align*}
a_1 &= b_1 \\
a_2 &= b_2 + x_{12}b_1 \\
\vdots \\
a_j &= b_j + x_{j-1,j}b_{j-1} + x_{j-2,j}b_{j-2} + \cdots + x_{1j}b_1 \\
\vdots \\
a_m &= b_m + x_{m-1,m}b_{m-1} + x_{m-2,m}b_{m-2} + \cdots + x_{1m}b_1 \quad (\star)
\end{align*}
\]

where \(x_{ij} = \langle a_j, b_i \rangle / \langle b_i, b_i \rangle \). Define \(n \times m \) matrix \(B \) with columns \(b_1, b_2, \ldots, b_m \) and \(m \times m \) matrix \(X \) with entry \((i, j) \) as \(x_{ij} \) for \(i < j \), \(x_{ii} = 1 \), and \(x_{ij} = 0 \) for \(i > j \). So the columns of \(B \) are orthogonal and \(X \) is upper triangular with diagonal entries of 1. From \((\star)\), we see that \(A = BX \), as claimed.
Theorem 5.7.B (continued 3)

Proof (continued 3).

\[
\begin{align*}
 a_1 &= b_1 \\
 a_2 &= b_2 + x_{12} b_1 \\
 &\vdots \\
 a_j &= b_j + x_{j-1,j} b_{j-1} + x_{j-2,j} b_{j-2} + \cdots + x_{1j} b_1 \\
 &\vdots \\
 a_m &= b_m + x_{m-1,m} b_{m-1} + x_{m-2,m} b_{m-2} + \cdots + x_{1m} b_1
\end{align*}
\]

where \(x_{ij} = \langle a_j, b_i \rangle / \langle b_i, b_i \rangle \). Define \(n \times m \) matrix \(B \) with columns \(b_1, b_2, \ldots, b_m \) and \(m \times m \) matrix \(X \) with entry \((i, j) \) as \(x_{ij} \) for \(i < j \), \(x_{ii} = 1 \), and \(x_{ij} = 0 \) for \(i > j \). So the columns of \(B \) are orthogonal and \(X \) is upper triangular with diagonal entries of 1. From (\(\ast \)), we see that \(A = BX \), as claimed.