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Theorem 5.9.1

Theory of Matrices Theorem 5.9.1. Let A be a symmetric nonnegative definite matrix and
Iet B be a symmetric nonnegative definite matrix such that B2 = A. Then
Chapter 5. Matrix Transformations and Factorizations = VCY2VT = VSVT where S = C1/2 = diag(c)’?, ct/?,... . /%)
5.9. Factorizations of Nonnegative Definite Matrices—Proofs of Theorems Where C1,C,...,Cy are the eigenvalues of A and V is orthogonal.

Proof. By Theorem 3.8.A and Theorem 3.8.10, A= VCV'T where V is
orthogonal and C = diag(ci, ¢2,. .., ¢n). We have
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— VC1/2 VT ( C1/2VT ) (*)
h ‘ since B is symmetric.
g‘? Since B is symmetric nonnegative definite then, by Theorem 3.8.15(2),
B = UDU for orthogonal U and diagonal D = diag(d1, da, . . ., dn),
where each d; is nonnegative by Theorem 3.8.14.
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Theorem 5.9.1
Theorem 5.9.1 (continued 1) Theorem 5.9.1 (continued 2)
Proof (continued). Now Proof (continued). We therefore have
vTup? = vTUDUTU)D(UTU) since U is orthogonal vcl2yvTe = vC2vT(UDUT) since B = UDUT
= vT(wpbuT)(ubuTu = vTB2U = vcY2(vTup)uT
= VTAU = VT(VCY2VT2yu = vTvc2yTvcl2yTy = VCY2(CY2vTU)UT since VTUD = CY2vTU
— CY2¢Y2v T U since V is orthogonal = VCVTUUT = VCVT since U is orthogonal
= cvTu. () = Asince A= VCVT.
Let the (i, /) entry of VT U be z;. Since D is diagonal, the (i, j) entry of From (x) we have

VT UD? is z;d?. Since C is diagonal,the (i, /) entry of CVT U is ¢;z;.
Since VTUD2J: CVTU by (**), then z,-jdj2 = cjzjj or djzzg = c,-z,-? or (B-VC2VT)? = 2A-VvC2VTB - (VC2VTE)T

_ A AT o 12T _
dj|z,-j|:c,.1/2|z,-j| ordjsgn(z,-j)|z,-j|:c,.l/2sgn(z,j)|z,-j|,and so = 2A-A- A since VCEVIB = A

dizj = ¢/*zj. Now the (i,j) entry of VT UD is z;d; and the (i, j) entry
of CY2VT U is ¢/'?z;. Hence VTUD = CY2VTU. =

= 2A —2A since A is symmetric
0.



Theorem 5.9.1 (continued 3)

Theorem 5.9.1. Let A be a symmetric nonnegative definite matrix and
let B be a symmetric nonnegative definite matrix such that B?> = A. Then
B = VCY2VT = VSVT where S = CY/2 = diag(c}”*, ci/?, ..., c¥'?)
where c1, ¢, ..., Cc, are the eigenvalues of A.

Proof (continued). Now B and VC/2VT are both symmetric, so

B — VCY/2VT is symmetric. In a symmetric matrix S, 2 = SS7 and the
the (i,j) entries of S2 are the inner product of the ith row of S with the
ith column of ST; that is, the (i,}) entry of S% is ||s;||2 (the Frobenius
norm or Euclidean matrix norm) where s; is the ith column of S. So the
only way §%2 = 0 for a symmetric matrix is when S = 0. Therefore we have
B = VCY2VT and this is the unique square root of A. O
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Theorem 5.9.2

Theorem 5.9.2. If A is a symmetric positive definite matrix, then A has a
Cholesky factorization.

Proof. We give an inductive proof. If Ais 1 x 1, say A = [a11], then
a11 > 0 since A is positive definite and so we take T = [\/a11]. Then
TTT = [\/a11][/a11] = [a11] = A, and so A has a Cholesky factorization.

Now suppose all n x n symmetric positive definite matrices have Cholesky
decompositions. Consider (n+ 1) x (n+ 1) matrix A. Partition A as
A [An A1z ] _ [ air A
A2 Ax A2 Ax
Schur complement of Ay in A, Z = Ay — %HA21A12- By Exercise 5.9.A,
n x n matrix Z is symmetric and positive definite. So by the induction
hypothesis, Z has a Cholesky factorization, say Z = TZT Tz where Tz is
an n x n upper triangular matrix with positive diagonal entries.

] where Aj; = [a11]. Consider the
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Theorem 5.9.2

Theorem 5.9.2. If A is a symmetric positive definite matrix, then A has a
Cholesky factorization.
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Theorem 5.9.2 (continued)

1
V/ —A
Proof (continued). Define T as T = 311 V""171_ 2 | . Since Tz is
z

upper triangular with positive diagonal entries, then T also has these two
properties. Finally,

TTT = \1/311T OT Vi \/%Au
_\/TjAlz T7 0 Tz

_ [ all A1 _ ail A2
AL ALAL+T] T, Ani s-AnA+Z

since A{z = A1 because A is symmetric
a1 A . 1
= 1 12 = A, since Z = A22 — —A21A12.
| A1 Ax a1l

So (n+1) x (n+ 1) matrix A has a Cholesky factorization and so the
claim holds by induction. O

Theory of Matrices July 9, 2020 8 /10



Theorem 5.9.A Theorem 5.9.A

Theorem 5.9.A Theorem 5.9.A (continued)
Theorem 5.9.A. An invertible matrix A has a Cholesky factorization if Theorem 5.9.A. An invertible matrix A has a Cholesky factorization if
and only if A is symmetric and positive definite. and only if A is symmetric and positive definite.

Proof (continued). Since A is hypothesized to be invertible, then

Proof. If A is symmetric and positive definite, then it has a Cholesky det(A) # 0 by Theorem 3.3.16 and

factorization by Theorem 5.9.2 (whether A is invertible or not).

If A is invertible and has a Cholesky factorization, then A = TT T where det(A) = det(T'T)

T is an upper triangular matrix with positive diagonal entries. Then = det(T ")det(T) by Theorem 3.2.4
AT =(TTT)T =TT(T")T = TTT = A and so A is symmetric. Let x = det(T)det(T) by Theorem 3.1.A
be a nonzero in R". Then — det(T)?

T _ T Tr, _ T _
xIAx = x TTTx = (xT)" Tx = (Tx, Tx) and so det(T) # 0; that is, T is invertible. So for x # 0 we have Tx # 0

= || Tx||r (the Fobenius norm or Euclidean matrix norm of Tx). (since T is invertible implies a unique solution to Tx = 0 and, of course, 0
(%) is that unique solution, see Note 3.5.A). Therefore || Tx||r # 0 (since || - ||
is a norm) and so by (x), x” Ax > 0 and A is positive definite. O



