Theory of Matrices

Chapter 5. Matrix Transformations and Factorizations

5.9. Factorizations of Nonnegative Definite Matrices—Proofs of Theorems

Theory of Matrices

July 9, 2020 1 / 10

()

Theory of Matrices

July 9, 2020 3

Theorem 5.9.

Theorem 5.9.1 (continued 1)

Proof (continued). Now

$$V^{T}UD^{2} = V^{T}UD(U^{T}U)D(U^{T}U) \text{ since } U \text{ is orthogonal}$$

$$= V^{T}(UDU^{T})(UDU^{T})U = V^{T}B^{2}U$$

$$= V^{T}AU = V^{T}(VC^{1/2}V^{T})^{2}U = V^{T}VC^{1/2}V^{T}VC^{1/2}V^{T}U$$

$$= C^{1/2}C^{1/2}V^{T}U \text{ since } V \text{ is orthogonal}$$

$$= CV^{T}U. \qquad (**)$$

Let the (i,j) entry of $V^T U$ be z_{ij} . Since D is diagonal, the (i,j) entry of $V^T U D^2$ is $z_{ij} d_j^2$. Since C is diagonal,the (i,j) entry of $CV^T U$ is $c_i z_{ij}$. Since $V^T U D^2 = CV^T U$ by (**), then $z_{ij} d_j^2 = c_i z_{ij}$ or $d_j^2 z_{ij}^2 = c_i z_{ij}^2$ or $d_j |z_{ij}| = c_i^{1/2} |z_{ij}|$ or $d_j \operatorname{sgn}(z_{ij}) |z_{ij}| = c_i^{1/2} \operatorname{sgn}(z_{ij}) |z_{ij}|$, and so $d_j z_{ij} = c_i^{1/2} z_{ij}$. Now the (i,j) entry of $V^T U D$ is $z_{ij} d_j$ and the (i,j) entry of $C^{1/2} V^T U$ is $c_i^{1/2} z_{ij}$. Hence $V^T U D = C^{1/2} V^T U$.

Theorem 5.9.1

Theorem 5.9.1. Let A be a symmetric nonnegative definite matrix and let B be a symmetric nonnegative definite matrix such that $B^2 = A$. Then $B = VC^{1/2}V^T = VSV^T$ where $S = C^{1/2} = \text{diag}(c_1^{1/2}, c_2^{1/2}, \ldots, c_n^{1/2})$ where c_1, c_2, \ldots, c_n are the eigenvalues of A and V is orthogonal.

Proof. By Theorem 3.8.A and Theorem 3.8.10, $A = VCV^T$ where V is orthogonal and $C = \text{diag}(c_1, c_2, \dots, c_n)$. We have

$$(B - VC^{1/2}V^{T})^{2} = (B - VC^{1/2}V^{T})(B - VC^{1/2}V^{T})$$

$$= B^{2} - VC^{1/2}V^{T}B - BVC^{1/2}V^{T} + (VC^{1/2}V^{T})^{2}$$

$$= A - VC^{1/2}V^{T}B - (VC^{1/2}V^{T}B^{T})^{T} + A$$

$$= 2A - VC^{1/2}V^{T}B - (VC^{1/2}V^{T}B)^{T} \qquad (*)$$
since B is symmetric.

Since B is symmetric nonnegative definite then, by Theorem 3.8.15(2), $B = UDU^T$ for orthogonal U and diagonal $D = \text{diag}(d_1, d_2, \dots, d_n)$, where each d_i is nonnegative by Theorem 3.8.14.

Theorem 5.9

Theorem 5.9.1 (continued 2)

Proof (continued). We therefore have

$$VC^{1/2}V^TB = VC^{1/2}V^T(UDU^T)$$
 since $B = UDU^T$
 $= VC^{1/2}(V^TUD)U^T$
 $= VC^{1/2}(C^{1/2}V^TU)U^T$ since $V^TUD = C^{1/2}V^TU$
 $= VCV^TUU^T = VCV^T$ since U is orthogonal
 $= A$ since $A = VCV^T$.

From (*) we have

$$(B - VC^{1/2}V^T)^2 = 2A - VC^{1/2}V^TB - (VC^{1/2}V^TB)^T$$

$$= 2A - A - A^T \text{ since } VC^{1/2}V^TB = A$$

$$= 2A - 2A \text{ since } A \text{ is symmetric}$$

$$= 0.$$

Theory of Matrices July 9, 2020 4 / 10

ory of Matrices

July 9, 2020 5 / 10

Theorem 5.9.2

Theorem 5.9.1 (continued 3)

Theorem 5.9.1. Let A be a symmetric nonnegative definite matrix and let B be a symmetric nonnegative definite matrix such that $B^2 = A$. Then $B = VC^{1/2}V^T = VSV^T$ where $S = C^{1/2} = \text{diag}(c_1^{1/2}, c_2^{1/2}, \dots, c_n^{1/2})$ where c_1, c_2, \dots, c_n are the eigenvalues of A.

Proof (continued). Now B and $VC^{1/2}V^T$ are both symmetric, so $B - VC^{1/2}V^T$ is symmetric. In a symmetric matrix S, $S^2 = SS^T$ and the the (i,j) entries of S^2 are the inner product of the ith row of S with the ith column of S^T ; that is, the (i,j) entry of S^2 is $||s_i||_F^2$ (the Frobenius norm or Euclidean matrix norm) where s_i is the ith column of S. So the only way $S^2 = 0$ for a symmetric matrix is when S = 0. Therefore we have $B = VC^{1/2}V^T$ and this is the unique square root of A.

Theory of Matrices

Cholesky factorization. **Proof.** We give an inductive proof. If A is 1×1 , say $A = [a_{11}]$, then $a_{11} > 0$ since A is positive definite and so we take $T = [\sqrt{a_{11}}]$. Then

Theorem 5.9.2. If A is a symmetric positive definite matrix, then A has a

Now suppose all $n \times n$ symmetric positive definite matrices have Cholesky decompositions. Consider $(n+1) \times (n+1)$ matrix A.

 $T^T T = [\sqrt{a_{11}}][\sqrt{a_{11}}] = [a_{11}] = A$, and so A has a Cholesky factorization.

luly 9, 2020 6 / 3

ory of Matrices July 9, 2020 7 / 10

Theorem 5.9.2

Theorem 5.9.2

Theorem 5.9.2. If A is a symmetric positive definite matrix, then A has a Cholesky factorization.

Proof. We give an inductive proof. If A is 1×1 , say $A = [a_{11}]$, then $a_{11} > 0$ since A is positive definite and so we take $T = [\sqrt{a_{11}}]$. Then $T^T T = [\sqrt{a_{11}}][\sqrt{a_{11}}] = [a_{11}] = A$, and so A has a Cholesky factorization.

Now suppose all $n \times n$ symmetric positive definite matrices have Cholesky decompositions. Consider $(n+1) \times (n+1)$ matrix A. Partition A as

$$A = \left[egin{array}{cc} A_{11} & A_{12} \ A_{21} & A_{22} \end{array}
ight] = \left[egin{array}{cc} a_{11} & A_{12} \ A_{21} & A_{22} \end{array}
ight]$$
 where $A_{11} = [a_{11}]$. Consider the

Schur complement of A_{11} in A, $Z = A_{22} - \frac{1}{a_{11}}A_{21}A_{12}$. By Exercise 5.9.A, $n \times n$ matrix Z is symmetric and positive definite. So by the induction hypothesis, Z has a Cholesky factorization, say $Z = T_Z^T T_Z$ where T_Z is an $n \times n$ upper triangular matrix with positive diagonal entries.

Theorem 5.9

Theorem 5.9.2 (continued)

Theorem 5.9.2

Proof (continued). Define T as $T = \begin{bmatrix} \sqrt{a_{11}} & \frac{1}{\sqrt{a_{11}}} A_{12} \\ 0 & T_Z \end{bmatrix}$. Since T_Z is upper triangular with positive diagonal entries, then T also has these two properties. Finally,

$$T^{T}T = \begin{bmatrix} \sqrt{a_{11}} & 0 \\ \frac{1}{\sqrt{a_{11}}} A_{12}^{T} & T_{Z}^{T} \end{bmatrix} \begin{bmatrix} \sqrt{a_{11}} & \frac{1}{\sqrt{a_{11}}} A_{12} \\ 0 & T_{Z} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & A_{12} \\ A_{12}^{T} & \frac{1}{a_{11}} A_{12}^{T} A_{12} + T_{Z}^{T} T_{Z} \end{bmatrix} = \begin{bmatrix} a_{11} & A_{12} \\ A_{21} & \frac{1}{a_{11}} A_{21} A_{12} + Z \end{bmatrix}$$
since $A_{12}^{T} = A_{21}$ because A is symmetric
$$= \begin{bmatrix} a_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = A, \text{ since } Z = A_{22} - \frac{1}{a_{11}} A_{21} A_{12}.$$

So $(n+1)\times(n+1)$ matrix A has a Cholesky factorization and so the claim holds by induction.

Theory of Matrices

Theorem 5.9.A

Theorem 5.9.A. An invertible matrix A has a Cholesky factorization if and only if A is symmetric and positive definite.

Proof. If *A* is symmetric and positive definite, then it has a Cholesky factorization by Theorem 5.9.2 (whether *A* is invertible or not).

If A is invertible and has a Cholesky factorization, then $A = T^T T$ where T is an upper triangular matrix with positive diagonal entries. Then $A^T = (T^T T)^T = T^T (T^T)^T = T^T T = A$ and so A is symmetric. Let X be a nonzero in \mathbb{R}^n . Then

$$x^T A x = x^T T^T T x = (xT)^T T x = \langle Tx, Tx \rangle$$

= $||Tx||_F$ (the Fobenius norm or Euclidean matrix norm of Tx). (*)

Theorem 5.9.A (continued)

Theorem 5.9.A. An invertible matrix A has a Cholesky factorization if and only if A is symmetric and positive definite.

Proof (continued). Since A is hypothesized to be invertible, then $det(A) \neq 0$ by Theorem 3.3.16 and

$$det(A) = det(T^T T)$$

$$= det(T^T)det(T) \text{ by Theorem 3.2.4}$$

$$= det(T)det(T) \text{ by Theorem 3.1.A}$$

$$= det(T)^2$$

and so $\det(T) \neq 0$; that is, T is invertible. So for $x \neq 0$ we have $Tx \neq 0$ (since T is invertible implies a unique solution to Tx = 0 and, of course, 0 is that unique solution, see Note 3.5.A). Therefore $||Tx||_F \neq 0$ (since $||\cdot||_F$ is a norm) and so by (*), $x^TAx > 0$ and A is positive definite.

Theory of Matrices July 9, 2020 9 / 10 () Theory of Matrices July 9, 2020 10 / 10