Theory of Matrices

Chapter 5. Matrix Transformations and Factorizations 5.9. Factorizations of Nonnegative Definite Matrices—Proofs of Theorems

Theorem 5.9.1. Let A be a symmetric nonnegative definite matrix and let B be a symmetric nonnegative definite matrix such that $B^2=A$. Then $B=V\mathcal{C}^{1/2}V^{\mathcal{T}}=V\mathsf{S}V^{\mathcal{T}}$ where $\mathcal{S}=\mathcal{C}^{1/2}=\mathsf{diag}(\mathcal{C}_1^{1/2})$ $\zeta_1^{1/2}, \zeta_2^{1/2}$ $c_1^{1/2}, \ldots, c_n^{1/2}$ where c_1, c_2, \ldots, c_n are the eigenvalues of A and V is orthogonal.

Proof. By Theorem 3.8.A and Theorem 3.8.10, $A = VCV^{T}$ where V is orthogonal and $C = diag(c_1, c_2, \ldots, c_n)$.

Theorem 5.9.1. Let A be a symmetric nonnegative definite matrix and let B be a symmetric nonnegative definite matrix such that $B^2=A$. Then $B=V\mathcal{C}^{1/2}V^{\mathcal{T}}=V\mathsf{S}V^{\mathcal{T}}$ where $\mathcal{S}=\mathcal{C}^{1/2}=\mathsf{diag}(\mathcal{C}_1^{1/2})$ $\zeta_1^{1/2}, \zeta_2^{1/2}$ $c_1^{1/2}, \ldots, c_n^{1/2}$ where c_1, c_2, \ldots, c_n are the eigenvalues of A and V is orthogonal.

Proof. By Theorem 3.8.A and Theorem 3.8.10, $A = VCV^T$ where V is orthogonal and $C = diag(c_1, c_2, \ldots, c_n)$. We have

$$
(B - VC^{1/2}V^{T})^{2} = (B - VC^{1/2}V^{T})(B - VC^{1/2}V^{T})
$$

= $B^{2} - VC^{1/2}V^{T}B - BVC^{1/2}V^{T} + (VC^{1/2}V^{T})^{2}$
= $A - VC^{1/2}V^{T}B - (VC^{1/2}V^{T}B^{T})^{T} + A$
= $2A - VC^{1/2}V^{T}B - (VC^{1/2}V^{T}B)^{T}$ (*)
since *B* is symmetric.

Theorem 5.9.1. Let A be a symmetric nonnegative definite matrix and let B be a symmetric nonnegative definite matrix such that $B^2=A$. Then $B=V\mathcal{C}^{1/2}V^{\mathcal{T}}=V\mathsf{S}V^{\mathcal{T}}$ where $\mathcal{S}=\mathcal{C}^{1/2}=\mathsf{diag}(\mathcal{C}_1^{1/2})$ $\zeta_1^{1/2}, \zeta_2^{1/2}$ $c_1^{1/2}, \ldots, c_n^{1/2}$ where c_1, c_2, \ldots, c_n are the eigenvalues of A and V is orthogonal.

Proof. By Theorem 3.8.A and Theorem 3.8.10, $A = VCV^T$ where V is orthogonal and $C = diag(c_1, c_2, \ldots, c_n)$. We have

$$
(B - VC^{1/2}V^{T})^{2} = (B - VC^{1/2}V^{T})(B - VC^{1/2}V^{T})
$$

= $B^{2} - VC^{1/2}V^{T}B - BVC^{1/2}V^{T} + (VC^{1/2}V^{T})^{2}$
= $A - VC^{1/2}V^{T}B - (VC^{1/2}V^{T}B^{T})^{T} + A$
= $2A - VC^{1/2}V^{T}B - (VC^{1/2}V^{T}B)^{T}$ (*)
since *B* is symmetric.

Since B is symmetric nonnegative definite then, by Theorem 3.8.15(2), $B = UDU^T$ for orthogonal U and diagonal $D = diag(d_1, d_2, \ldots, d_n)$, where each d_i is nonnegative by Theorem 3.8.14.

Theorem 5.9.1. Let A be a symmetric nonnegative definite matrix and let B be a symmetric nonnegative definite matrix such that $B^2=A$. Then $B=V\mathcal{C}^{1/2}V^{\mathcal{T}}=V\mathsf{S}V^{\mathcal{T}}$ where $\mathcal{S}=\mathcal{C}^{1/2}=\mathsf{diag}(\mathcal{C}_1^{1/2})$ $\zeta_1^{1/2}, \zeta_2^{1/2}$ $c_1^{1/2}, \ldots, c_n^{1/2}$ where c_1, c_2, \ldots, c_n are the eigenvalues of A and V is orthogonal.

Proof. By Theorem 3.8.A and Theorem 3.8.10, $A = VCV^T$ where V is orthogonal and $C = diag(c_1, c_2, \ldots, c_n)$. We have

$$
(B - VC^{1/2}V^{T})^{2} = (B - VC^{1/2}V^{T})(B - VC^{1/2}V^{T})
$$

= $B^{2} - VC^{1/2}V^{T}B - BVC^{1/2}V^{T} + (VC^{1/2}V^{T})^{2}$
= $A - VC^{1/2}V^{T}B - (VC^{1/2}V^{T}B^{T})^{T} + A$
= $2A - VC^{1/2}V^{T}B - (VC^{1/2}V^{T}B)^{T}$ (*)
since *B* is symmetric.

Since B is symmetric nonnegative definite then, by Theorem $3.8.15(2)$, $B = UDU^T$ for orthogonal U and diagonal $D = diag(d_1, d_2, \ldots, d_n)$, where each d_i is nonnegative by Theorem 3.8.14.

Theorem 5.9.1 (continued 1)

Proof (continued). Now

$$
V^T U D^2 = V^T U D (U^T U) D (U^T U) \text{ since } U \text{ is orthogonal}
$$

= $V^T (U D U^T) (U D U^T) U = V^T B^2 U$
= $V^T A U = V^T (V C^{1/2} V^T)^2 U = V^T V C^{1/2} V^T V C^{1/2} V^T U$
= $C^{1/2} C^{1/2} V^T U$ since V is orthogonal
= $C V^T U$. (*)

Let the (i,j) entry of $V^\mathcal{T} U$ be z_{ij} . Since D is diagonal, the (i,j) entry of $V^T U D^2$ is $z_{ij} d_j^2$. Since C is diagonal, the (i, j) entry of $CV^T U$ is $c_i z_{ij}$. Since $V^T U D^2 = C V^T U$ by $(**)$, then $z_{ij} d_j^2 = c_i z_{ij}$ or $d_j^2 z_{ij}^2 = c_i z_{ij}^2$ or $|d_j|z_{ij}|=c_j^{1/2}$ $\vert z_i^{1/2} \vert z_{ij} \vert$ or d_j sgn $(z_{ij}) \vert z_{ij} \vert = c_i^{1/2}$ $\sum_{i}^{1/2}$ sgn $(z_{ij})|z_{ij}|$, and so $d_j z_{ij} = c_i^{1/2}$ $i_j^{1/2}z_{ij}$. Now the (i,j) entry of $V^\mathcal{T}UD$ is $z_{ij}d_j$ and the (i,j) entry of $C^{1/2}V^TU$ is $c_i^{1/2}$ $\int_{i}^{1/2} z_{ij}$. Hence $V^{\mathsf{T}} U D = C^{1/2} V^{\mathsf{T}} U$.

Theorem 5.9.1 (continued 1)

Proof (continued). Now

$$
V^T U D^2 = V^T U D (U^T U) D (U^T U) \text{ since } U \text{ is orthogonal}
$$

= $V^T (U D U^T) (U D U^T) U = V^T B^2 U$
= $V^T A U = V^T (V C^{1/2} V^T)^2 U = V^T V C^{1/2} V^T V C^{1/2} V^T U$
= $C^{1/2} C^{1/2} V^T U$ since V is orthogonal
= $C V^T U$. (*)

Let the (i,j) entry of $V^\mathcal{T} U$ be z_{ij} . Since D is diagonal, the (i,j) entry of $V^T U D^2$ is $z_{ij} d_j^2$. Since C is diagonal,the (i, j) entry of $CV^T U$ is $c_i z_{ij}$. Since $V^\mathcal{T} U D^2 = C V^\mathcal{T} U$ by $(**)$, then $z_{ij} d^2_j = c_i z_{ij}$ or $d^2_j z_{ij}^2 = c_i z_{ij}^2$ or $\vert d_j \vert z_{ij} \vert = c_i^{1/2}$ $\vert z_i^{1/2} \vert z_{ij} \vert$ or d_j sgn $(z_{ij}) \vert z_{ij} \vert = c_i^{1/2}$ $\sum_{i}^{1/2}$ sgn $(z_{ij})|z_{ij}|$, and so $d_j z_{ij} = c_i^{1/2}$ $i_j^{1/2}z_{ij}$. Now the (i,j) entry of $V^\mathcal{T}UD$ is $z_{ij}d_j$ and the (i,j) entry of $C^{1/2}V^TU$ is $c_i^{1/2}$ $\int_i^{1/2} z_{ij}$. Hence $V^T U D = C^{1/2} V^T U$.

Theorem 5.9.1 (continued 2)

Proof (continued). We therefore have

$$
VC^{1/2}V^{T}B = VC^{1/2}V^{T}(UDU^{T}) \text{ since } B = UDU^{T}
$$

=
$$
VC^{1/2}(V^{T}UD)U^{T}
$$

=
$$
VC^{1/2}(C^{1/2}V^{T}U)U^{T} \text{ since } V^{T}UD = C^{1/2}V^{T}U
$$

=
$$
VCV^{T}UU^{T} = VCV^{T} \text{ since } U \text{ is orthogonal}
$$

=
$$
A \text{ since } A = VCV^{T}.
$$

From (∗) we have

$$
(B - VC^{1/2}V^{T})^{2} = 2A - VC^{1/2}V^{T}B - (VC^{1/2}V^{T}B)^{T}
$$

= 2A - A - A^T since VC^{1/2}V^TB = A
= 2A - 2A since A is symmetric
= 0.

Theorem 5.9.1 (continued 2)

Proof (continued). We therefore have

$$
VC^{1/2}V^{T}B = VC^{1/2}V^{T}(UDU^{T}) \text{ since } B = UDU^{T}
$$

=
$$
VC^{1/2}(V^{T}UD)U^{T}
$$

=
$$
VC^{1/2}(C^{1/2}V^{T}U)U^{T} \text{ since } V^{T}UD = C^{1/2}V^{T}U
$$

=
$$
VCV^{T}UU^{T} = VCV^{T} \text{ since } U \text{ is orthogonal}
$$

=
$$
A \text{ since } A = VCV^{T}.
$$

From (∗) we have

$$
(B - VC^{1/2}V^{T})^{2} = 2A - VC^{1/2}V^{T}B - (VC^{1/2}V^{T}B)^{T}
$$

= 2A - A - A^T since VC^{1/2}V^TB = A
= 2A - 2A since A is symmetric
= 0.

Theorem 5.9.1 (continued 3)

Theorem 5.9.1. Let A be a symmetric nonnegative definite matrix and let B be a symmetric nonnegative definite matrix such that $B^2=A$. Then $B=V\mathcal{C}^{1/2}V^{\mathcal{T}}=V\mathsf{S}V^{\mathcal{T}}$ where $\mathcal{S}=\mathcal{C}^{1/2}=\mathsf{diag}(\mathcal{C}_1^{1/2})$ $\zeta_1^{1/2}, \zeta_2^{1/2}$ $c_1^{1/2}, \ldots, c_n^{1/2}$ where c_1, c_2, \ldots, c_n are the eigenvalues of A.

Proof (continued). Now B and $VC^{1/2}V^T$ are both symmetric, so $B-V\mathcal{C}^{1/2}V^{\mathcal{T}}$ is symmetric. In a symmetric matrix $S, \ S^2 = SS^{\mathcal{T}}$ and the the $\left({i,j} \right)$ entries of ${{\cal S}^2}$ are the inner product of the i th row of ${{\cal S}}$ with the *i*th column of $\mathcal{S}^{\mathcal{T}}$; that is, the (i,j) entry of \mathcal{S}^2 is $\|s_i\|_F^2$ (the Frobenius norm or Euclidean matrix norm) where s_i is the *i*th column of $S.$ So the only way $\mathcal{S}^2=0$ for a symmetric matrix is when $\mathcal{S}=0.$ Therefore we have $B=VC^{1/2}V^T$ and this is the unique square root of A.

Theorem 5.9.2. If A is a symmetric positive definite matrix, then A has a Cholesky factorization.

Proof. We give an inductive proof. If A is 1×1 , say $A = \begin{bmatrix} a_{11} \end{bmatrix}$, then a₁₁ > 0 since A is positive definite and so we take $T = [\sqrt{a_{11}}]$. Then $T^T T = [\sqrt{a_{11}}][\sqrt{a_{11}}] = [a_{11}] = A$, and so A has a Cholesky factorization.

Now suppose all $n \times n$ symmetric positive definite matrices have Cholesky decompositions. Consider $(n + 1) \times (n + 1)$ matrix A.

Theorem 5.9.2. If A is a symmetric positive definite matrix, then A has a Cholesky factorization.

Proof. We give an inductive proof. If A is 1×1 , say $A = [a_{11}]$, then a₁₁ > 0 since A is positive definite and so we take $T = [\sqrt{a_{11}}]$. Then $T^T T = [\sqrt{a_{11}}][\sqrt{a_{11}}] = [a_{11}] = A$, and so A has a Cholesky factorization.

Now suppose all $n \times n$ symmetric positive definite matrices have Cholesky decompositions. Consider $(n + 1) \times (n + 1)$ matrix A. Partition A as

 $A=\left[\begin{array}{cc} A_{11} & A_{12} \ A_{21} & A_{22} \end{array}\right]=\left[\begin{array}{cc} \mathsf{a}_{11} & A_{12} \ A_{21} & A_{22} \end{array}\right]$ where $A_{11}=[\mathsf{a}_{11}]$. Consider the Schur complement of A_{11} in A , $Z = A_{22} - \frac{1}{a_1}$ $\frac{1}{a_{11}}A_{21}A_{12}$. By Exercise 5.9.A, $n \times n$ matrix Z is symmetric and positive definite.

Theorem 5.9.2. If A is a symmetric positive definite matrix, then A has a Cholesky factorization.

Proof. We give an inductive proof. If A is 1×1 , say $A = [a_{11}]$, then a₁₁ > 0 since A is positive definite and so we take $T = [\sqrt{a_{11}}]$. Then $T^T T = [\sqrt{a_{11}}][\sqrt{a_{11}}] = [a_{11}] = A$, and so A has a Cholesky factorization.

Now suppose all $n \times n$ symmetric positive definite matrices have Cholesky decompositions. Consider $(n + 1) \times (n + 1)$ matrix A. Partition A as $\mathcal{A}=\left[\begin{array}{cc} A_{11} & A_{12} \ A_{21} & A_{22} \end{array}\right]=\left[\begin{array}{cc} \mathsf{a}_{11} & A_{12} \ A_{21} & A_{22} \end{array}\right]$ where $\mathcal{A}_{11}=[\mathsf{a}_{11}]$. Consider the Schur complement of A_{11} in A , $Z = A_{22} - \frac{1}{a_1}$ $\frac{1}{a_{11}}A_{21}A_{12}$. By Exercise 5.9.A, $n \times n$ matrix Z is symmetric and positive definite. So by the induction hypothesis, Z has a Cholesky factorization, say $Z = T_Z^T T_Z$ where T_Z is an $n \times n$ upper triangular matrix with positive diagonal entries.

Theorem 5.9.2. If A is a symmetric positive definite matrix, then A has a Cholesky factorization.

Proof. We give an inductive proof. If A is 1×1 , say $A = [a_{11}]$, then a₁₁ > 0 since A is positive definite and so we take $T = [\sqrt{a_{11}}]$. Then $T^T T = [\sqrt{a_{11}}][\sqrt{a_{11}}] = [a_{11}] = A$, and so A has a Cholesky factorization.

Now suppose all $n \times n$ symmetric positive definite matrices have Cholesky decompositions. Consider $(n + 1) \times (n + 1)$ matrix A. Partition A as $\mathcal{A}=\left[\begin{array}{cc} A_{11} & A_{12} \ A_{21} & A_{22} \end{array}\right]=\left[\begin{array}{cc} \mathsf{a}_{11} & A_{12} \ A_{21} & A_{22} \end{array}\right]$ where $\mathcal{A}_{11}=[\mathsf{a}_{11}]$. Consider the Schur complement of A_{11} in A , $Z = A_{22} - \frac{1}{a_1}$ $\frac{1}{a_{11}}A_{21}A_{12}$. By Exercise 5.9.A, $n \times n$ matrix Z is symmetric and positive definite. So by the induction hypothesis, Z has a Cholesky factorization, say $Z = \mathcal{T}_Z^\mathcal{T} \mathcal{T}_Z$ where \mathcal{T}_Z is an $n \times n$ upper triangular matrix with positive diagonal entries.

Theorem 5.9.2 (continued)

Proof (continued). Define $\mathcal T$ as $\mathcal T=$ $\left[\begin{array}{cc} \sqrt{a_{11}} & \frac{1}{\sqrt{a}} \end{array}\right]$ $\frac{1}{a_{11}}A_{12}$ 0 T_Z \mathbb{I} . Since T_Z is upper triangular with positive diagonal entries, then T also has these two properties. Finally,

$$
T^{T}T = \begin{bmatrix} \frac{\sqrt{a_{11}}}{\sqrt{a_{11}}} & 0\\ \frac{1}{\sqrt{a_{11}}}A_{12}^{T} & T_{Z}^{T} \end{bmatrix} \begin{bmatrix} \sqrt{a_{11}} & \frac{1}{\sqrt{a_{11}}}A_{12} \\ 0 & T_{Z} \end{bmatrix}
$$

= $\begin{bmatrix} a_{11} & A_{12} \\ A_{12}^{T} & \frac{1}{a_{11}}A_{12}^{T}A_{12} + T_{Z}^{T}T_{Z} \end{bmatrix} = \begin{bmatrix} a_{11} & A_{12} \\ A_{21} & \frac{1}{a_{11}}A_{21}A_{12} + Z \end{bmatrix}$
since $A_{12}^{T} = A_{21}$ because A is symmetric
= $\begin{bmatrix} a_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = A$, since $Z = A_{22} - \frac{1}{a_{11}}A_{21}A_{12}$.

So $(n+1) \times (n+1)$ matrix A has a Cholesky factorization and so the claim holds by induction.

Theorem 5.9.2 (continued)

Proof (continued). Define $\mathcal T$ as $\mathcal T=$ $\left[\begin{array}{cc} \sqrt{a_{11}} & \frac{1}{\sqrt{a}} \end{array}\right]$ $\frac{1}{a_{11}}A_{12}$ 0 T_Z \mathbb{I} . Since T_Z is upper triangular with positive diagonal entries, then T also has these two properties. Finally,

$$
T^{T}T = \begin{bmatrix} \frac{\sqrt{a_{11}}}{1} & 0\\ \frac{1}{\sqrt{a_{11}}}A_{12}^{T} & T_{Z}^{T} \end{bmatrix} \begin{bmatrix} \sqrt{a_{11}} & \frac{1}{\sqrt{a_{11}}}A_{12} \\ 0 & T_{Z} \end{bmatrix}
$$

= $\begin{bmatrix} a_{11} & A_{12} \\ A_{12}^{T} & \frac{1}{a_{11}}A_{12}^{T}A_{12} + T_{Z}^{T}T_{Z} \end{bmatrix} = \begin{bmatrix} a_{11} & A_{12} \\ A_{21} & \frac{1}{a_{11}}A_{21}A_{12} + Z \end{bmatrix}$
since $A_{12}^{T} = A_{21}$ because A is symmetric
= $\begin{bmatrix} a_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = A$, since $Z = A_{22} - \frac{1}{a_{11}}A_{21}A_{12}$.

So $(n+1) \times (n+1)$ matrix A has a Cholesky factorization and so the claim holds by induction.

Theorem 5.9.A. An invertible matrix A has a Cholesky factorization if and only if A is symmetric and positive definite.

Proof. If A is symmetric and positive definite, then it has a Cholesky factorization by Theorem 5.9.2 (whether A is invertible or not).

Theorem 5.9.A. An invertible matrix A has a Cholesky factorization if and only if A is symmetric and positive definite.

Proof. If A is symmetric and positive definite, then it has a Cholesky factorization by Theorem 5.9.2 (whether A is invertible or not).

If A is invertible and has a Cholesky factorization, then $A = \mathsf{T}^\mathsf{T} \mathsf{T}$ where \overline{T} is an upper triangular matrix with positive diagonal entries. Then $A^\mathcal{T} = (\mathcal{T}^\mathcal{T}\mathcal{T})^\mathcal{T} = \mathcal{T}^\mathcal{T}(\mathcal{T}^\mathcal{T})^\mathcal{T} = \mathcal{T}^\mathcal{T}\mathcal{T} = A$ and so A is symmetric. Let x be a nonzero in \mathbb{R}^n .

Theorem 5.9.A. An invertible matrix A has a Cholesky factorization if and only if A is symmetric and positive definite.

Proof. If A is symmetric and positive definite, then it has a Cholesky factorization by Theorem 5.9.2 (whether A is invertible or not).

If A is invertible and has a Cholesky factorization, then $A = \mathsf{\mathcal{T}}^{\mathsf{\mathcal{T}}} \mathsf{\mathcal{T}}$ where T is an upper triangular matrix with positive diagonal entries. Then $A^{\mathcal{T}}=(\mathcal{T}^{\mathcal{T}}\mathcal{T})^{\mathcal{T}}=\mathcal{T}^{\mathcal{T}}(\mathcal{T}^{\mathcal{T}})^{\mathcal{T}}=\mathcal{T}^{\mathcal{T}}\mathcal{T}=A$ and so A is symmetric. Let x be a nonzero in \mathbb{R}^n . Then

 $x^T Ax = x^T T^T Tx = (xT)^T Tx = (Tx, Tx)$ $= \|Tx\|_F$ (the Fobenius norm or Euclidean matrix norm of Tx). (∗)

Theorem 5.9.A. An invertible matrix A has a Cholesky factorization if and only if A is symmetric and positive definite.

Proof. If A is symmetric and positive definite, then it has a Cholesky factorization by Theorem 5.9.2 (whether A is invertible or not).

If A is invertible and has a Cholesky factorization, then $A = \mathsf{\mathcal{T}}^{\mathsf{\mathcal{T}}} \mathsf{\mathcal{T}}$ where T is an upper triangular matrix with positive diagonal entries. Then $A^{\mathcal{T}}=(\mathcal{T}^{\mathcal{T}}\mathcal{T})^{\mathcal{T}}=\mathcal{T}^{\mathcal{T}}(\mathcal{T}^{\mathcal{T}})^{\mathcal{T}}=\mathcal{T}^{\mathcal{T}}\mathcal{T}=A$ and so A is symmetric. Let x be a nonzero in \mathbb{R}^n . Then

$$
x^{T}Ax = x^{T}T^{T}Tx = (xT)^{T}Tx = \langle Tx, Tx \rangle
$$

= $||Tx||_F$ (the Fobenius norm or Euclidean matrix norm of Tx).
(*)

Theorem 5.9.A (continued)

Theorem 5.9.A. An invertible matrix A has a Cholesky factorization if and only if A is symmetric and positive definite.

Proof (continued). Since A is hypothesized to be invertible, then $det(A) \neq 0$ by Theorem 3.3.16 and

$$
det(A) = det(TT T)
$$

= det(T^T)det(T) by Theorem 3.2.4
= det(T)det(T) by Theorem 3.1.A
= det(T)²

and so det(T) \neq 0; that is, T is invertible. So for $x \neq 0$ we have $Tx \neq 0$ (since T is invertible implies a unique solution to $Tx = 0$ and, of course, 0 *is* that unique solution, see Note 3.5.A). Therefore $||Tx||_F \neq 0$ (since $||\cdot||_F$ is a norm) and so by ($*$), $x^{\mathcal{T}}Ax>0$ and A is positive definite.

Theorem 5.9.A (continued)

Theorem 5.9.A. An invertible matrix A has a Cholesky factorization if and only if A is symmetric and positive definite.

Proof (continued). Since A is hypothesized to be invertible, then $det(A) \neq 0$ by Theorem 3.3.16 and

$$
det(A) = det(TT T)
$$

= det(T^T)det(T) by Theorem 3.2.4
= det(T)det(T) by Theorem 3.1.A
= det(T)²

and so det(T) \neq 0; that is, T is invertible. So for $x \neq 0$ we have $Tx \neq 0$ (since T is invertible implies a unique solution to $Tx = 0$ and, of course, 0 *is* that unique solution, see Note 3.5.A). Therefore $||Tx||_F \neq 0$ (since $|| \cdot ||_F$ is a norm) and so by ($*$), $x^{\mathcal{T}}Ax>0$ and A is positive definite.