
Theory of Matrices

July 9, 2020

Chapter 5. Matrix Transformations and Factorizations
5.9. Factorizations of Nonnegative Definite Matrices—Proofs of Theorems
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Theorem 5.9.1

Theorem 5.9.1

Theorem 5.9.1. Let A be a symmetric nonnegative definite matrix and
let B be a symmetric nonnegative definite matrix such that B2 = A. Then

B = VC 1/2V T = VSV T where S = C 1/2 = diag(c
1/2
1 , c

1/2
2 , . . . , c

1/2
n )

where c1, c2, . . . , cn are the eigenvalues of A and V is orthogonal.

Proof. By Theorem 3.8.A and Theorem 3.8.10, A = VCV T where V is
orthogonal and C = diag(c1, c2, . . . , cn).

We have

(B − VC 1/2V T )2 = (B − VC 1/2V T )(B − VC 1/2V T )

= B2 − VC 1/2V TB − BVC 1/2V T + (VC 1/2V T )2

= A − VC 1/2V TB − (VC 1/2V TBT )T + A

= 2A − VC 1/2V TB − (VC 1/2V TB)T (∗)
since B is symmetric.

Since B is symmetric nonnegative definite then, by Theorem 3.8.15(2),
B = UDUT for orthogonal U and diagonal D = diag(d1, d2, . . . , dn),
where each di is nonnegative by Theorem 3.8.14.
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Theorem 5.9.1

Theorem 5.9.1 (continued 1)

Proof (continued). Now

V TUD2 = V TUD(UTU)D(UTU) since U is orthogonal

= V T (UDUT )(UDUT )U = V TB2U

= V TAU = V T (VC 1/2V T )2U = V TVC 1/2V TVC 1/2V TU

= C 1/2C 1/2V TU since V is orthogonal

= CV TU. (∗∗)

Let the (i , j) entry of V TU be zij . Since D is diagonal, the (i , j) entry of
V TUD2 is zijd

2
j . Since C is diagonal,the (i , j) entry of CV TU is cizij .

Since V TUD2 = CV TU by (∗∗), then zijd
2
j = cizij or d2

j z2
ij = ciz

2
ij or

dj |zij | = c
1/2
i |zij | or dj sgn(zij)|zij | = c

1/2
i sgn(zij)|zij |, and so

djzij = c
1/2
i zij . Now the (i , j) entry of V TUD is zijdj and the (i , j) entry

of C 1/2V TU is c
1/2
i zij . Hence V TUD = C 1/2V TU.
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Theorem 5.9.1

Theorem 5.9.1 (continued 2)

Proof (continued). We therefore have

VC 1/2V TB = VC 1/2V T (UDUT ) since B = UDUT

= VC 1/2(V TUD)UT

= VC 1/2(C 1/2V TU)UT since V TUD = C 1/2V TU

= VCV TUUT = VCV T since U is orthogonal

= A since A = VCV T .

From (∗) we have

(B − VC 1/2V T )2 = 2A − VC 1/2V TB − (VC 1/2V TB)T

= 2A − A − AT since VC 1/2V TB = A

= 2A − 2A since A is symmetric

= 0.
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Theorem 5.9.1

Theorem 5.9.1 (continued 3)

Theorem 5.9.1. Let A be a symmetric nonnegative definite matrix and
let B be a symmetric nonnegative definite matrix such that B2 = A. Then

B = VC 1/2V T = VSV T where S = C 1/2 = diag(c
1/2
1 , c

1/2
2 , . . . , c

1/2
n )

where c1, c2, . . . , cn are the eigenvalues of A.

Proof (continued). Now B and VC 1/2V T are both symmetric, so
B − VC 1/2V T is symmetric. In a symmetric matrix S , S2 = SST and the
the (i , j) entries of S2 are the inner product of the ith row of S with the
ith column of ST ; that is, the (i , j) entry of S2 is ‖si‖2

F (the Frobenius
norm or Euclidean matrix norm) where si is the ith column of S . So the
only way S2 = 0 for a symmetric matrix is when S = 0. Therefore we have
B = VC 1/2V T and this is the unique square root of A.

() Theory of Matrices July 9, 2020 6 / 10



Theorem 5.9.2

Theorem 5.9.2

Theorem 5.9.2. If A is a symmetric positive definite matrix, then A has a
Cholesky factorization.

Proof. We give an inductive proof. If A is 1 × 1, say A = [a11], then
a11 > 0 since A is positive definite and so we take T = [

√
a11]. Then

TTT = [
√

a11][
√

a11] = [a11] = A, and so A has a Cholesky factorization.

Now suppose all n × n symmetric positive definite matrices have Cholesky
decompositions. Consider (n + 1) × (n + 1) matrix A.

Partition A as

A =

[
A11 A12

A21 A22

]
=

[
a11 A12

A21 A22

]
where A11 = [a11]. Consider the

Schur complement of A11 in A, Z = A22 − 1
a11

A21A12. By Exercise 5.9.A,
n × n matrix Z is symmetric and positive definite. So by the induction
hypothesis, Z has a Cholesky factorization, say Z = TT

Z TZ where TZ is
an n × n upper triangular matrix with positive diagonal entries.
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Theorem 5.9.2

Theorem 5.9.2 (continued)

Proof (continued). Define T as T =

[ √
a11

1√
a11

A12

0 TZ

]
. Since TZ is

upper triangular with positive diagonal entries, then T also has these two
properties. Finally,

TTT =

[ √
a11 0

1√
a11

AT
12 TT

Z

] [ √
a11

1√
a11

A12

0 TZ

]

=

[
a11 A12

AT
12

1
a11

AT
12A12 + TT

Z TZ

]
=

[
a11 A12

A21
1

a11
A21A12 + Z

]
since AT

12 = A21 because A is symmetric

=

[
a11 A12

A21 A22

]
= A, since Z = A22 −

1

a11
A21A12.

So (n + 1) × (n + 1) matrix A has a Cholesky factorization and so the
claim holds by induction.
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Theorem 5.9.A

Theorem 5.9.A

Theorem 5.9.A. An invertible matrix A has a Cholesky factorization if
and only if A is symmetric and positive definite.

Proof. If A is symmetric and positive definite, then it has a Cholesky
factorization by Theorem 5.9.2 (whether A is invertible or not).

If A is invertible and has a Cholesky factorization, then A = TTT where
T is an upper triangular matrix with positive diagonal entries. Then
AT = (TTT )T = TT (TT )T = TTT = A and so A is symmetric. Let x
be a nonzero in Rn. Then

xTAx = xTTTTx = (xT )TTx = 〈Tx ,Tx〉
= ‖Tx‖F (the Fobenius norm or Euclidean matrix norm of Tx).

(∗)
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Theorem 5.9.A

Theorem 5.9.A (continued)

Theorem 5.9.A. An invertible matrix A has a Cholesky factorization if
and only if A is symmetric and positive definite.

Proof (continued). Since A is hypothesized to be invertible, then
det(A) 6= 0 by Theorem 3.3.16 and

det(A) = det(TTT )

= det(TT )det(T ) by Theorem 3.2.4

= det(T )det(T ) by Theorem 3.1.A

= det(T )2

and so det(T ) 6= 0; that is, T is invertible. So for x 6= 0 we have Tx 6= 0
(since T is invertible implies a unique solution to Tx = 0 and, of course, 0
is that unique solution, see Note 3.5.A). Therefore ‖Tx‖F 6= 0 (since ‖ · ‖F

is a norm) and so by (∗), xTAx > 0 and A is positive definite.

() Theory of Matrices July 9, 2020 10 / 10



Theorem 5.9.A

Theorem 5.9.A (continued)

Theorem 5.9.A. An invertible matrix A has a Cholesky factorization if
and only if A is symmetric and positive definite.

Proof (continued). Since A is hypothesized to be invertible, then
det(A) 6= 0 by Theorem 3.3.16 and

det(A) = det(TTT )

= det(TT )det(T ) by Theorem 3.2.4

= det(T )det(T ) by Theorem 3.1.A

= det(T )2

and so det(T ) 6= 0; that is, T is invertible. So for x 6= 0 we have Tx 6= 0
(since T is invertible implies a unique solution to Tx = 0 and, of course, 0
is that unique solution, see Note 3.5.A). Therefore ‖Tx‖F 6= 0 (since ‖ · ‖F

is a norm) and so by (∗), xTAx > 0 and A is positive definite.

() Theory of Matrices July 9, 2020 10 / 10


	Theorem 5.9.1
	Theorem 5.9.2
	Theorem 5.9.A

