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Chapter 2. Vectors and Vector Spaces

Section 2.1. Operations on Vectors

Note. In this section, we define several arithmetic operations on vectors (especially,

vector addition and scalar multiplication). We reintroduce much of the terminology

associated with vectors from sophomore level Linear Algebra (MATH 2010).

Definition. A (real) vector space is a set V of vectors along with an operation

of addition + of vectors and multiplication of a vector by a scalar (real number),

which satisfies the following. For all vectors x, y, z ∈ V and for all scalars a, b ∈ R:

(A1) (x + y) + z = x + (y + z) (Associativity of Vector Addition)

(A2) x + y = y + x (Commutivity of Vector Addition)

(A3) There exists 0 ∈ V such that 0 + x = x (Additive Identity)

(A4) x + (−x) = 0 (Additive Inverses)

(S1) a(x+y) = ax+ay (Distribution of Scalar Multiplication over Vector Addition)

(S2) (a+b)x = ax+bx (Distribution of Scalar Addition over Scalar Multiplication)

(S3) a(bx) = (ab)x (Associativity)

(S4) 1x = x (Preservation of Scale).

Note. More generally, we can consider a vector space over a field. For details, see

my online notes on “Vector Spaces” for Introduction to Modern Algebra 2 (MATH

4137/5137). However, unless otherwise noted, we only consider finite dimensional

vector spaces with real scalars.

http://faculty.etsu.edu/gardnerr/4127/notes/VI-30.pdf
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Definition. Two vectors in Rn, x = [x1, x2, . . . , xn] and y = [y1, y2, . . . , yn] are

equal if xi = yi for i = 1, 2, . . . , n. The zero vector in Rn is 0n = 0 = [0, 0, . . . , 0].

The one vector in Rn (also called the “summing vector”) is 1n = 1 = [1, 1, . . . , 1].

(Later when using 1n to generate sums, we will treat it as a column vector.)

Definition. Let x = [x1, x2, . . . , xn] and y = [y1, y2, . . . , yn] be vectors in Rn. Let

a ∈ R be a scalar. Define

(1) x + y = [x1 + y1, x2 + y2, . . . , xn + yn], and

(2) ax = [ax1, ax2, . . . , axn].

Theorem 2.1.1. Properties of Vector Algebra in Rn.

Let x, y, z ∈ Rn and let a, b ∈ R be scalars. Then:

A1. (x + y) + z = x + (y + z) (Associativity of Vector Addition)

A2. x + y = y + x (Commutivity of Vector Addition)

A3. 0 + x = x (Additive Identity)

A4. x + (−x) = 0 (Additive Inverses)

S1. a(x+y) = ax+ay (Distribution of Scalar Multiplication over Vector Addition)

S2. (a+ b)x = ax+ bx (Distribution of Scalar Addition over Scalar Multiplication)

S3. a(bx) = (ab)x (Associativity)

S4. 1x = x (Preservation of Scale)
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Note. The statement of Theorem 2.1.1 is as it is stated in Fraleigh and Beaure-

gard’s Linear Algebra, 3rd Edition, Addison-Wesley Publishing Company (1995).

The proof is very elementary and is based on the definition of vector addition,

scalar multiplication, and the field properties of R.

Definition. With vectors v1, v2, . . . , vk ∈ Rn and scalars a1, a2, . . . , ak ∈ R, we

have the linear combination a1v1 +a2v2 + · · ·+akvk ∈ Rn. The set of vectors in Rn,

{v1, v2, . . . , vk} is linearly independent if the equation a1v1 + a2v2 + · · · + akvk = 0

implies that a1 = a2 = · · · = ak = 0. A set of vectors in Rn is linearly dependent if

it is not linearly independent.

Note. If the set of vectors in Rn, {v1, v2, . . . , vk}, is linearly dependent then there

are some scalars a1, a2, . . . , ak ∈ R not all zero such that a1v1+a2v2+ · · ·+akvk = 0.

Note. In Exercise 2.1, the following is established:

Exercise 2.1. The maximum number of vectors in Rn that forms a linearly inde-

pendent set is n.

Definition. A set of n-vectors, V ⊂ Rn, is a vector space if it is closed under

linear combinations. That is, if for any x, y ∈ V and any scalars a, b ∈ R we have

ax + by ∈ V .
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Note. The above definition may seem unusually simple to you. Technically, we are

basing all the properties in the traditional definition of “vector space” on Theorem

2.1.1 and the previous definition just justifies the fact that V is a subspace of Rn.

Note. In Exercise 2.1.B you are asked to prove:

“For vector space V (as defined above), if W1 and W2 are finite subsets

of V which are linearly independent and of maximal size then W1 and

W2 are the same size (or “cardinality”); that is, |W1| = |W2|.”

Notice that by Exercise 2.1, for linearly independent sets W1 and W2 we have

|W1| ≤ n and |W2| ≤ n. This justifies the following definition.

Definition. The maximum number of linearly independent n-vectors in a vector

space V is the dimension of the vector space, denoted dim(V ). When V consists

of n-vectors, n is the order of vector space V .

Definition. Two vector spaces V1 and V2 both of order n are essentially disjoint

if V1 ∩ V2 = {0}.

Definition. The ith unit vector in Rn, denoted ei, has a 1 in the ith position and

0’s in all other positions: ei = [0, 0, . . . , 0, 1, 0, . . . , 0]. For x = [x1, x2, . . . , xn] ∈ Rn,

the sign vector is defined as sign(x) = [sign(x1), sign(x2), . . . , sign(xn)] ∈ Rn where

sign(xi) =


1 if xi > 0

0 if xi = 0

−1 if xi < 0.
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Note. An ordering � on a set is a reflexive, antisymmetric, transitive relation.

A total ordering on set A is an ordering on A such that for any a, b ∈ A either

a � b or b � a. An ordering on set A which is not a total ordering is a partial

ordering. Applications of partial orderings often involve the partial ordering of

subset inclusion. For example, ⊆ is a partial ordering on A = {{a}, {b}, {a, b}}

since {a} ⊆ {a, b}, {b} ⊆ {a, b}, but neither {a} ⊂ {b} nor {b} ⊆ {a} holds.

Definition. We define a partial ordering on Rn as follows. We say x is greater

than y denoted x > y if xi > yi for i = 1, 2, . . . , n. Similarly, we say x is greater

than or equal to y, denoted x ≥ y, if xi ≥ yi for i = 1, 2, . . . , n.

Definition. A subset of a vector space V that is itself a vector space is a subspace

of V .

Theorem 2.1.2. Let V1 and V2 be vector spaces of n-vectors. Then V1 ∩ V2 is a

vector space.

Note. A union of two vector spaces of n-vectors need not be a vector space, as

you will show by example in Exercise 2.2.

Note. The text refers to a set of vectors of the same order as a “space of vectors.”

A better term would be a “set of n-vectors.”
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Definition. If V1 and V2 are sets of n-vectors, then the sum of V1 and V2 is

V1 + V2 = {v1 + v2 | v1 ∈ V1, v2 ∈ V2}.

Theorem 2.1.3. If V1 and V2 are vector spaces of n-vectors, then V1 + V2 is a

vector space.

Definition. If V1 and V2 are essentially disjoint vector spaces of n-vectors, then

the vector space V1 + V2 is the direct sum of V1 and V2, denoted V1 ⊕ V2.

Theorem 2.1.4. If vector spaces V1 and V2 are essentially disjoint then every

element of V1⊕V2 can be written as v1 +v2, where v1 ∈ V1 and v2 ∈ V2, in a unique

way.

Definition. A set of n-vectors that contains all positive scalar multiples of any

vector in the set and contains the zero vector is a cone. A set of vectors C is a

convex cone if for all v1, v2 ∈ C and all a, b ≥ 0, we have av1 + bv2 ∈ C.

Example. In R2, C1 = {[x, 0], [0, y] | x > 0, y > 0} ∪ {[0, 0]} is a cone but not

a convex cone (see the figure below). The set C2 = {v ∈ R2 | v > 0} ∪ {[0, 0]}

(which includes all vectors in R2 which when in standard position with their tail at

the origin, have their head in the first quadrant of the Cartesian plane) is a convex

cone. Similarly, a “single cone” (not double-cone) with its vertex at the origin in

Rn is a cone in the sense defined here; this follows from the parallelogram law of

addition of vectors.
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The cones C1, C2, and a “single cone” in R3, mentioned above.

Definition. Let G be a subset of vector space V of n-vectors. If each vector in V

is some linear combination of elements of G, then G is a spanning set (or generating

set) of V . The set of all linear combinations of elements of G is the span of G,

denoted span(G). If a spanning set G of V is linearly independent, then it is a

basis of V .

Theorem 2.1.5. If {v1, v2, . . . , vk} is a basis for a vector space V , then each

element can be uniquely represented as a linear combination of the basis vectors.

Note. If B1 is a basis for V1 and B2 is a basis for V2 where V1 and V2 are essentially

disjoint vector space of n-vectors, then B1 ∪B2 is a basis for V1 ⊕ V2. This follows

from Theorems 2.1.4 and 2.1.5.
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Definition. A set of vectors S = {vi | i = 1, 2, . . .} such that for any vector v in a

cone C there exists scalars ai ≥ 0 for i = 1, 2, . . . , k so that v =
∑k

i=1 aivi and if for

scalars bi ≥ 0 for i = 1, 2, . . . , k and
∑n

i=1 bivi = 0 then bi = 0 for i = 1, 2, . . . , k is a

spanning set (or generating set) for cone C. If a spanning set of a cone has a finite

number of elements, the cone is a polyhedron. A spanning set of a cone consisting

of a minimum number of vectors of any spanning set for that cone is a basis set for

the cone.

Example. In R2, the cones C1 and C2 both have as a basis {[1, 0], [0, 1]}. Therefore,

both are polyhedra.

Note. A polyhedron determined by three vectors is given here (on the left):

Definition. For two n-vectors x, y ∈ Rn, define the inner product of x = [x1, x2, . . . , xn]

and y = [y1, y2, . . . , yn] (also called dot product or scalar product) as 〈x, y〉 =∑n
i=1 xiyi. A vector space with an inner product is an inner product space.
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Theorem 2.1.6. Properties of Inner Products.

Let x, y, z ∈ Rn and let a ∈ R. Then:

1. If x 6= 0 then 〈x, x〉 > 0 and 〈0, x〉 = 〈x, 0〉 = 〈0, 0〉 = 0 (Nonnegativity and

Mapping of the Identity),

2. 〈x, y〉 = 〈y, x〉 (Commutivity of Inner Products),

3. a〈x, y〉 = 〈ax, y〉 (Factoring of Scalar Multiplication in Inner Products),

4. 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 (Relation of Vector Addition to Addition of Inner

Products).

Note. We can combine the claim of Theorem 2.1.6 to show that the Inner Product

is linear in the first and second entries:

〈ax + by, z〉 = a〈x, z〉+ b〈y, z〉 and 〈x, ay + bz〉 = a〈x, y〉+ b〈x, z〉.

Note. An important property of inner products is the Schwarz Inequality (or

“Cauchy-Schwarz Inequality”). It is used in the proof of the Triangle Inequality

once we address norms.

Theorem 2.1.7. Schwarz Inequality.

For any x, y ∈ Rn we have |〈x, y〉| ≤ 〈x, x〉1/2〈y, y〉1/2.
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Definition. A norm, ‖ · ‖, on a set S ⊂ Rn is a function from S to R satisfying:

1. If x 6= 0 then ‖x‖ > 0, and ‖0‖ = 0 (Nonnegativity and Mapping of the Identity),

2. ‖ax‖ = |a|‖x‖ for all x ∈ S and a ∈ R (Relation of Scalar Multiplication to

Real Multiplication),

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ S (Triangle Inequality).

A vector space together with a norm is a normed linear space (or simply normed

space).

Example. The Euclidean norm on Rn is the familiar norm ‖x‖ = ‖[x1, x2, . . . , xn]‖

=
{∑n

k=1(xk)
2
}1/2

= 〈x, x〉1/2. If x 6= 0 then some xi 6= 0 and so ‖x‖ ≥ |xi| > 0,

and ‖0‖ = 0. So “Nonnegativity and Mapping of the Identity” holds. For x ∈ Rn

and a ∈ R,

‖ax‖ = ‖[ax1, ax2, . . . , axn]‖ =

{
n∑

k=1

(axk)
2

}1/2

=

{
a2

n∑
k=1

(xk)
2

}1/2

= |a|

{
n∑

k=1

(xk)
2

}1/2

= |a|‖x‖,

so “Relation of Scalar Multiplication to Real Multiplication” holds. For any x, y ∈

Rn,

‖x + y‖2 = 〈x + y, x + y〉 = 〈x, x〉+ 2〈x, y〉+ 〈y, y〉

≤ 〈x, x〉+ 2〈x, x〉1/2〈y, y〉1/2 + 〈y, y〉 by the Schwarz Inequality

= ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x||+ ‖y‖)2,

and so ‖x + y‖ ≤ ‖x‖ + ‖y‖ and the Triangle Inequality holds. Therefore, the

Euclidean norm is indeed a norm or Rn.
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Note. Another norm on Rn is the `p-norm, ‖ · ‖p, for p ≥ 1 defined as

‖x‖p = ‖[x1, x2, . . . , xn]‖p =

(
n∑

k=1

|xk|p
)1/p

.

We omit the details of the proof that the `p-norm is indeed a norm. Notice that

the `2-norm is the same as the Euclidean norm. You are likely to encounter the `p-

norm in the future in the setting of `p-spaces (as opposed to the space Rn) where

the `p-spaces are examples of Banach spaces. The `∞-norm on Rn is defined as

‖x‖∞ = max{|xk| | k = 1, 2, . . . , n}. Gentle gives a (not very rigorous) argument

on page 18 that limp→∞ ‖x‖p = ‖x‖∞. Statisticians sometimes call the `∞-norm

the “Chebyshev norm.”

Definition. Let {v1, v2, . . . , vk} be a basis for vector space V . For any x =

c1v1 + c2v2 + · · ·+ ckvk ∈ V we define the basis norm ρ(x) =
{∑k

j=1 c2
j

}1/2
.

Theorem 2.1.8. The basis norm is indeed a norm for any basis {v1, v2, . . . , vk} of

vector space V .

Definition. Let ‖ · ‖a and ‖ · ‖b be norms on a vector space V . Then ‖ · ‖a is

equivalent to ‖ · ‖b, denoted ‖ · ‖a
∼= ‖ · ‖b, if there are r > 0 and s > 0 such that

for all x ∈ V we have r‖x‖b ≤ ‖x‖a ≤ s‖x‖b.

Note. The “equivalence” of ‖ ·‖a and ‖ ·‖b does not reflect the fact that the norms

give the same value for any particular vector. Equivalence is ultimately related to

the “topology” on the vector space and the behavior of convergence sequences.
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Theorem 2.1.9. Equivalence of norms is an equivalence relation. That is, it is

reflexive, symmetric, and transitive.

Proof. The proof is left as Exercise 2.1.D. �

Theorem 2.1.10. Every norm on (finite dimensional vector space) V is equivalent

to the basis norm ρ for any given basis {v1, v2, . . . , vk}. Therefore, any two norms

on V are equivalent.

Note. We are only considering finite dimensional spaces, so Theorem 2.1.10 applies

to all vector spaces we consider. The result does not hold in infinite dimensions

and a given infinite dimensional vector space can have two unequivalent norms.

Definition. A sequence of vectors x1, x2, . . . in a normed vector space V (with

norm ‖ · ‖) converges to vector x ∈ V if for all ε > 0 there is M ∈ N such that if

n ≥ M then ‖x− xn‖ < ε.

Definition. For nonzero vector x in normed vector space V (with norm ‖ · ‖), the

vector x̃ = x/‖x‖ is the normalized vector associated with x.
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Definition. For S any set of elements, ∆ : S × S → R is a metric if for all

x, y, z ∈ S we have:

1. ∆(x, y) > 0 if x 6= y and ∆(x, y) = 0 if x = y,

2. ∆(x, y) = ∆(y, x),

3. ∆(x, y) ≤ ∆(x, z) + ∆(z, y).

Note. We can think of a norm on a vector space as a way to associate a “length”

with a vector. A metric on a vector space gives a way to associate a “distance”

between two vectors. In a vector space, norms and metrics are intimately related.

In fact, if ‖ · ‖ is a norm on vector space V then defining ∆(x, y) = ‖x− y‖ for all

x, y ∈ V implies that ∆ is a metric on V . Conversely, if ∆ is a metric on vector

space V , then defining ‖x‖ = ∆(0, x) is a norm on V . These claims are to be

justified in a modified version of Exercise 2.7.

Definition. Two vectors v1, v2 ∈ V , where V is a vector space with an inner

product, are orthogonal if 〈v1, v2〉 = 0. A set of vectors S = {v1, v2, . . . , vk} is an

orthonormal set if for all vi, vj ∈ S we have 〈vi, vj〉 =

 0 if i 6= j

1 if i = j.

Theorem 2.1.11. A set of nonzero vectors {v1, v2, . . . , vk} in a vector space with

an inner product for which 〈vi, vj〉 = 0 for i 6= j (the vectors are said to be mutually

orthogonal) is a linearly independent set.
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Definition. Two spaces of n-vectors, V1 and V2, are orthogonal, denoted V1 ⊥ V2,

if 〈v1, v2〉 = 0 for all v1 ∈ V1 and v2 ∈ V2. If V1 ⊥ V2 and V1 ⊕ V2 = Rn, then V2

is the orthogonal complement of V1, denoted V2 = V ⊥
1 (sometimes called the “perp

space” of V1).

Note. By Exercise 2.9, if V1 ⊥ V2 then V1 ∩ V2 = {0}. That is, if V1 ⊥ V2 then V1

and V2 are essentially disjoint and so V1 ⊕ V2 is defined.

Note. If B1 is a basis for V1 and B2 is a basis for V2 where V1 ⊥ V2 (and V1, V2

are finite dimensional), then B1∪B2 is a basis for V1⊕V2, by Exercise 2.1.F. Since

B1 ∩ B2 = ∅ (B1 ⊂ V1, B2 ⊂ V2, and V1 ∩ V2 = {0}, but 0 6∈ B1 and 0 6∈ B2).

So the dimension of V1 ⊕ V2 is |B1 ∪ B2| = |B1| + |B2|. That is, dim(V1 ⊕ V2) =

dim(V1) + dim(V2).

Note. We introduced the vector 1n ∈ Rn as 1n = [1, 1, . . . , 1]T above and referred

to it as the “summing vector.” For any x ∈ Rn we have, by treating 1T
n (“1n

transpose”) as a 1 × n matrix and x as a n × 1 matrix, that as a matrix product

1T
nx =

∑n
i=1 xi. (Technically, the right hand side is a 1× 1 matrix.)

Definition. For x ∈ Rn, the arithmetic mean (or simply mean) x is defined as

x =
1

n
1T

nx. The mean vector associated with x ∈ Rn is x = [x, x, . . . , x] ∈ Rn.

Note. We have ‖[x, x, . . . , x]‖2 = nx2. Gentle also uses the symbol “x” for both

the mean of the entries in x and the mean vector of x. We follow his lead, but try

to verbally express whether x represents a scalar or vector.
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