Section 3.10. Approximation of Matrices

Note. When we say "approximate a matrix" we mean, for given matrix A, to find a matrix \tilde{A} such that $||A - \tilde{A}||$ is minimal for all matrices \tilde{A} satisfying some given property. In this brief section (which is just over 2 pages long) we give a best approximation with respect to the proerty of rank. The norm we use is the Frobenius norm.

Theorem 3.10.1. Let A be an $n \times m$ matrix of rank r with singular value decomposition (which exists by Theorem 3.8.16)

$$A = U \left[\begin{array}{cc} D_r & 0 \\ 0 & 0 \end{array} \right] V^T$$

where $D_r = \operatorname{diag}(d_1, d_2, \dots, d_r)$ and the singular values are indexed so that $d_1 \ge d_2 \ge \dots \ge d_r \ge 0$. Then for all $n \times m$ matrices X with rank k < r we have $||A - X||_F^2 \ge \sum_{i=k+1}^r d_i^2$ and this inequality reduces to equality (giving a best approximation) for $X = \tilde{A}$ where

$$A = U \begin{bmatrix} D_k & 0 \\ 0 & 0 \end{bmatrix} V^T$$

and $D_k = \operatorname{diag}(d_1, d_2, \dots, d_k)$.

Revised: 1/27/2018